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THE RADICAL FORMULA FOR NONCOMMUTATIVE RINGS *
PAJUKAJIBHA ®OPMVJIA JJIA KVIELLB, IO HE KOMYTYIOTbH

We determine some classes of left modules satisfying the radical formula in a noncommutative ring. We also show that,
under a certain condition, a finitely generated module over an H N P-ring (the generalization of Dedekind domain) both
satisfies the radical formula and can be decomposed into a direct sum of torsion modules and extending modules.

BusHaueHO neski Kiacw JBHX MOIYIIB, SKi 3370BOJNBHSIOTE PaaMKadbHy (OpPMYITy B KiNbIl, 110 HE KOMYTye. Takox
MOKa3aHo, 10 (32 JEsSKOi YMOBH) CKIHYCHHONOPOILKEHHH Momynb Hax H N P-ximeneM (o € y3arajdbHEHHSM OO0JNacTi
Jlenexinna) He JMIIe 330BOJIBHSE PAAUKaIbHY (HOPMYITY, ane it Moxe OyTH PO3KIaJeHUH y IPSIMY CyMY MOAYIIB KPy4eHHS
Ta MOJIYJIB PO3TATY.

1. Introduction. It is well known that the set of nilpotent elements of a commutative ring R with
unity forms an ideal which is equal to the intersection of all the prime ideals. This notion has been
generalized in [9] to modules. Let N be a proper submodule of an R-module M. The radical of
N in M, denoted by rady;(N), is defined to be the intersection of all prime submodules of M
containing N. If there is no prime submodule containing N, then we put rady;(N) = M. The
envelope submodule REy;(NN) of N in M is a submodule of M generated by the set

Ey(N) ={rm:r € R and m € M such that r"m € N for some n € N} .

Then N is said to satisfy the radical formula in M if rady (V) = REj (V). Unfortunately, not
every module satisfies the radical formula. The radical formula and relations between Dedekind
domain and the radical formula were studied in many papers (see, for example, [1, 2, 4, 10, 11,
14—-16]). Hence, by the use of these concepts, some characterizations for Dedekind domains and
modules were obtained in many results. Unfortunately, in noncommutative case, there are not enough
useful results between the radical formula and an H N P-ring, which is one of the generalizations of
Dedekind domian.

Let R be a noncommutative ring with unity. Then an ideal P of R is called prime if, for
a,b € R, either a or b is in P whenever aRb C P. For an ideal I of R, the radical of I, denoted
by Rad (I), is defined as the intersection of all prime ideals containing I. The radical of an ideal is
characterized by m-system in [6] (Theorem 10.7). A nonempty set S C R is called an m-system
if, for any a,b € S, there exists » € R such that arb € S. Then, for any ideal I of any ring R, it
follows that

Rad (I) = {s € R: every m-system containing s meets [ }.

The concepts of prime ideals and radicals of a noncommutative ring have been generalized to
modules in [13]. Let M be a module over a noncommutative ring. A proper submodule P of M is
prime if, for any » € R and m € M such that rRm C P, either rM C P or m € P. Then similarly,
radys(N) is defined as the intersection of all prime submodules containing N for a submodule N
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of M. As in commutative ring theory, it is natural to ask whether the radical of a submodule of a
module over a noncommutative ring has a simple description and there is any relation among the
radical formula, the HN P-ring.

In this paper, we are interested in the radical of a submodule of a module M over a noncom-
mutative ring and describe a submodule Wj;;(N) generated by a strongly nilpotent element on a
submodule N. In fact, this submodule is the generalization of the envelope of a submodule over a
commutative ring. Then we prove that the radical of a projective module has a simple description
and so show that a projective module satisfies the radical formula. Moreover, we give a simple de-
scription for radical of a submodule N of a module M that radps(N) = Wy (N) = Wr(0)M + N
for a ring R such that R = R/rad(0) is semisimple.

In the last section, we deal with an H N P-ring to show that under a condition, a finitely generated
module over an H N P- ring, the generalization of Dedekind domain, both satisfies the radical formula
and can be decomposed into a direct sum of a torsion module and an extending module. (The notion
of extending modules is one of the other important concepts in module theory and many authors
focus on this topic [5, 12].) Moreover, by using the prime submodule, we also prove that the left
socle of a left extending ring is in the Jacobson radical under the condition.

2. The radical of a submodule. Throughout the paper R will denote a ring with identity and
M be an unital left module over R. We start to prove some properties of a prime submodule of pR.

Lemma 2.1. Let P be a left ideal of R. Then:

(i) If a nonzero homomorphism f of Endg(R/P) is injective, then P is a prime submodule
of rR.

(i) If P is a prime submodule such that x Ry C P whenever xy € P, then every homomorphism
f of Endr(R/P) is injective.

Proof. Let xRy C P fory € R and x € R. If y is not in P, define a homomorphism
f € Endgr(R/P) such that f(I{ + P) = ly+ P so f(zr + P) = 0 for all » € R. This means that
zR C P.

Let f € Endr(R/P). Then there is y € R such that f(1+ P) =y + P. If 2+ P € Ker f, then
xy € P and so xRy C P. Hence, y € P or xR C P and so Ker f = 0.

Corollary2.1. Let P be a left ideal of R such that xRy C P whenever xy € P. If P is a prime
submodule of rR, then R/P is an indecomposable R-module.

Proof. Let R/P = A/P @ B/P for some A, B C R. Consider the projection homomorphism
from f(a@,b) = @ where @ = a + P. Then Ker f = 0 by Lemma 2.1.

Now we define the concept of strongly nilpotent element on a submodule. Let N be a submodule
of a module M. An element x = am of an R-module M on N is called strongly nilpotent if, for
each sequence

{ai eER: Qi1 € a;Ra; and ap = a, 1€ Z},

there is a positive integer & such that ayRm C N. We use the notation Sy, (V) to denote the set of
strongly nilpotent elements of M on N. In generally, Sy;(/N) does not need to be a submodule. Then
the submodule generated by Sy;(NN) is denoted by Wy, (N). In the commutative ring, it is easy
prove that Wy, (IN) = RE\(N). Therefore, it is a generalization of the envelope of a submodule
and so the radical of a submodule N of a module may not equal to Wy, (V) (see, for example, [11]).
Similarly, N is said to satisfy the radical formula when W/ (N) = rad/ (V). If every submodule
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of a module M satisfies the radical formula, then M is said to satisfy the radical formula. If every
R-module M satisfies the radical formula, then R is said to satisfy the radical formula.

Let I be a submodule of pR. It is clear that a is a strongly nilpotent element of R on [ if, for
each sequence

{a; € R: aj+1 € a;Ra; and ap =a, i€ Z},

there is a positive integer k£ such that ap R C I. It is also easy to see that every element of a left
T'-nilpotent ideal L of R is strongly nilpotent and so L is in Wg(0).

Lemma 2.2. Let M be any finitely generated R-module and N, L be submodules of M. Then
War(N) + Wy (L) = M ifand only if N + L = M.

Proof. We know that Sys(N) U Sy(L) generates Wy (N) + Wy (L). Let N + L # M.
Since M is a finitely generated R-module, there exists a maximal submodule 7" of M such that
N + L C T. Since T is also a prime submodule of M, we have Wy, (N) C T and Wy (L) C T
and so Wi (N) + Wi (L) C T. This is a contradiction. Then N + L = M.

Since N C Wy (N), L C Wy (L) and N + L = M, it follows that Wy (N) + Wy (L) = M.

Lemma 2.3. Let M, N be R-modules and B be a submodule of M. Then for an R-module
homomorphism f: M — N, f(Wy(B)) C Wn(f(B)).

In particular, if f is an epimorphism and ker f C B, the inverse inclusion holds.

Proof. Let x = am € Sy;(B) where m € M and a € R. Then, for each sequence ag, aj, ag, ...
such that ag = a and a;+1 € a;Ra;, there is a positive integer k£ such that apRm C B. Hence,
flagRm) = arRf(m) C f(B) and so f(z) € Sy(f(B)). Therefore, f(Wy(B)) C Wn(f(B)).

Let x = tn € Sy(f(B)) where n € N and t € R. Let n = f(b) for some b € B. Then, for
each sequence ag,ai,as, ... such that ag = ¢t and a;41 € a;Ra;, there is a positive integer k such
that apRn C f(B). Thus we get axrn = f(b,) where b, € B and r» € R. Then f(ayrb —b,) =0
and so, for all » € R, it follows that ayRb C B. We have © € f(Sy(B)). This means that
Sn(f(B)) C f(Swm(B)). Therefore, Wx(f(B)) C f(War(B)).

Lemma 2.4. Let M be an R-module and let N be a submodule of M. Then
Wgr(N : MM C Wy (N).

Proof. Let x = am where a € Sp(N : M) and m € M. Since a € Sr(N : M), for each
sequence ag, a1,as,..., where ag = a and a;+1 € a;Ra;, there is a positive integer k£ such that
arR C (N : M). Therefore, we get that ay RM C N and so axRm C N. Then am € Sy (V) and
so it follows that Wr(N : M)M C Wy (N).

Lemma 2.5. Let N be a submodule of a module M. Then we have Wy (N) C radps(N).

Proof. Let x = agm € Sp(N) and assume that « ¢ rad;/ (V). Then there exists a prime
submodule P of M containing N such that agm ¢ P . Since P is a prime submodule of M, we
get that agRagm C P and so there exists an element a; € agRag such that a;m ¢ P. Similarly, by
the hypothesis on P, we also get that a; Raym C P. So there exists an element ao € a; Ra; such
that agm ¢ P. Therefore, we obtain the sequence ag, a1, ag, ... such that a = a¢ and a;4+1 € a;Ra;,
1=0,1,2,3,..., but there does not exist any positive integer k such that aym is in P and so aiRm
is not in N. This means that agm is not a strongly nilpotent element of M on N, a contradiction.
Then Sy (N) C radys(N) and the proof is completed.

Theorem 2.1. Let I be a left ideal of a ring R. Then
Wgr(I) Cradr(l) C radg(IR) = Rad(IR) = Wr(IR). (2.1)

ISSN 1027-3190. Vkp. mam. scypn., 2019, m. 71, Ne 9



1244 0. ONES, M. ALKAN

Proof. Since every prime ideal of R is a prime submodule of pR, we get that radg([)
C Rad(IR). Therefore, we have Wgr(I) C radr(/) C Rad(/R) and Wgr(IR) C radr(/R)
C Rad(IR).

Let x ¢ Sr(IR). Then there is a sequence

C
C

{z; € R: xi41 € x;Rx; and xzy=z, i€Z}

—

such that, for all positive integer k, xR C IR and so zj ¢ IR. It is clear that S = {x, 1, z2,. ..
is m-system but S does not meet IR. Therefore, we get that x ¢ Rad(/R). Thus Rad(/R) C
C Wg(IR) and this completes the proof.

Corollary2.2. Let I be a submodule of rR. If I satisfies one of the following conditions:

(1) every element of IR is strongly nilpotent on 1,

(ii) I is an ideal of a ring R,
then radgr(I) = Wgr(I).

Proof. (i) Let z be in Wgr(IR). Then, for each sequence {z; € R: z;+1 € x;Rz; and z¢ = z,
i € Z}, there is a positive integer k such that zy R C IR and so z;, € I R. Hence, by the hypothesis,
for each sequence {a; € R: a;+1 € a;Ra; and ay = xy, i € Z}, there is a positive integer ¢ such
that a; R C I. This means that z is strongly nilpotent element on [ and so x € Wg(I).

(i1) It is clear from (i).

Theorem 2.2. Let M = Rm be an R-module. Then we have:

(1) Wi (0) = W(ann(m))m,

(i) if every element of ann(m)R is strongly nilpotent on ann(m), then radp(0) = Wy (0).

Proof. (i) Let M = Rm and I = ann(m). Then [ is an left ideal of R. Let z = rdm € Sys(0).
Then, for each sequence ag, ai, ag,..., where ag = rd and a;+1 € a;Ra;, there is a positive
integer k& such that a;, Rm = 0 and so axR C ann(m). This means that rd is in Sgp(ann(m)) and
so Wy (0) € W (ann(m))m. The converse is clear and we get the first equality.

(ii) Since M = Rm is isomorphic to R/I, it follows that W,(0) is isomorphic to Wg,;(0) =
= Wg(I)/I. Then similarly, we get that radys(0) is isomorphic to radg,;(0) = radg(l)/I. On
the other hand, by Corollary 2.2, we have that radr(I) = Wg(I) and so rads(0) is isomorphic
to Wy (0). Therefore, by Lemma 2.3, we get radys(0) = Wi (0).

Lemma 2.6. Let M be an R-module and N be a submodule of M. Then we have:

() Waryn(0) = (War(N))/N,

Proof. (i) 1Itis sufficient to show that Sy;/n(0) = {r(z + N): rz € Sy (N)}.

Let m = r(m + N) € Syyn(0). Then, for each sequence ag, a1, as, ..., where ap = r and
a;+1 € a;Ra;, there is a positive integer k such that ay Rm = 0. Thus, axRm = (axRm+N)/N =0
and so agyRm C N. This means that rm € Sp;(N). Therefore, m = rm + N € {rx + N:

re € Spr(N)}.
Let m=m+ N € {re+ N : rx € Sy;(N)}. We may assume that m = rz € Sp;(IN). Then,
for each sequence ag, ay, as, ..., where ag = r and a;41 € a;Ra;, there is a positive integer k£ such

that aj, Rz C N and so we have a; R(z + N) = 0+ N. Hence it follows that 7(z + N) € Sy;/n(0).
(i1) It is clear.
Lemma 2.7. Let M and M* be R-modules. Then we have:
(1) War(0) & War«(0) = Waren+(0),
(i1) radM(O) @ rad (O) = rad prq - (0)
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Proof. 1t is enough to prove (i).

It is clear that the set A = {(ra,0): ra € Sp(0)} (the set B = {(0,kb): kb € Sp+(0)})
generates the submodule W, (0) &0 ( 0 & Wiy« (0), respectively).

Let © € AU B. We may assume that x = (rm,0) € A and so rm € Sj;(0). Then, for each
sequence ag, ai,das, ..., such that ag = r and a;y1 € a;Ra;, there is a positive integer k£ such
that ayRm = 0 and so apR(m,0) = 0. Then r(m,0) € Syrgar+(0). This means that W;,(0) &
@ Wi (0) € Wargnr=(0).

Let x = r(m,n) € Syeum+(0). Then, for every sequence ag,ai,as,... such that ag = r and
ai+1 € a;Ra;, there is a positive integer k such that apR(m,n) = 0, and it follows that ax Rm = 0
and ayRn = 0. Therefore, r(m,n) = r(m,0) + r(0,n) € Whs(0) @ Wy«(0). This means that
Wrenr+(0) € War(0) & Wiy« (0).

By using the fact that every module is a homorphic image of a free module and Lemma 2.7, we
get the following result.

Theorem 2.3. Let R be a ring. If every free R-module satisfies the radical formula, then so
does every R-module.

Proposition 2.1. Let M be a projective R-module. Then we have

WR(O)M = WM(O) = radM(O) = radR(O)M.

Proof- Let M be a projective R-module. Then there exists a free R-module F' and an R-
module A such that F' = M & A.

Firstly, we prove that our claim is true for F. Let {z;: i € I} be a basis for F. Then F' = ©Rx;
and so each x € F' has a unique expansion x = Zz‘e ;rix;, where r; € R and almost all r; = 0.
Define a homomorphism ¢; from F to R by ¢;(x) = r;. Then ¢; is an epimorphism for all 7 €
and we obtain x = ), ; pi(x)z;.

Let u = > ,.;mx; € Wp(0) where r; € R and almost all 7; = 0. Thus, u = Y, ; vi(u)z;
and, by Lemma 2.3, we have u = Y . ; ¢i(u)z; € Wr(0)F. Now, we get Wr(0) € Wgr(0)F and
so Wg(0) = Wgr(0)F.

Take m € Wjs(0). By Lemma 2.7, it follows that Wr(0) = W) (0) & W4(0) and we have
m € Wp(0) = Wr(0)F = Wg(0)M @& Wgr(0)A. This implies that m = Y rym; + ) kja;
where r;, kj € Wg(0), m; € M and a; € A. Therefore, we get m = Y r;m; € Wr(0)M and
Wr(0)M = Wi (0).

By the using the similar argument, we get rady;(0) = radg(0)M. Therefore, we complete the
proof since radr(0) = Wx(0).

Theorem 2.4. Let M /N be a projective R-module and N be a submodule of M. Then we get

radM(N) == WM(N) == WR(O)M—I- N.

Proof.  We know that rad;/n(0) = (rady (IV))/N and Wy (N)/N = Wy /n(0). Since M/N
is a projective RZ-module, we have rady;/n(0) = Wy /n(0) = Wr(0)(M/N) and so Wy (N)/N =
= (Wgr(0)M + N)/N. Therefore, we obtain Wy (N) = Wgr(0)M + N = radp(N).

Corollary2.3. Let N be a submodule of an R-module M such that M/N is a projective
R-module and Wgr(0)M C N. Then we have radp(N) = Wy (N) = N.

Proof. 1t is clear by Theorem 2.4.

Theorem 2.5. Let R be a ring such that R = R/radg(0) is semisimple and let N be a sub-
module of an R-module M. Then we have radp;(N) = Wy (N) = Wr(0)M + N.
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Proof. Assume that N = 0. Then it will be enough to show that rad;(0) = Wgr(0)M. Since R
is semisimple, we know that M = M/Wg(0)M is a semisimple and so Wr(0)M = rad;(0) = 0.
On the other hand, since Wr(0)M C radr(0)M = radp;(0), we get

radM(O) = I‘adM(O)/WR(O)M = (_)

This means that rad;(0) = Wgr(0)M.
Now let N # 0. Then we obtain

radys/n(0) = Wr(0)(M/N).

Therefore, radys(N) = Wr(0)M + N = Wy (N).

Corollary2.4. Let R be a ring such that R = R/Wg(0) is semisimple. Then R satisfies the
radical formula.

Proof. Let M be any R-module. Then, by Theorem 2.5, we get rady(0) = Wgr(0)M. If
Wr(0)M C Wy (0) C radp(0), we have Wr(0)M = Wi (0) = radps(0). This means that M
satisfies radical formula.

3. Modules over H N P-rings. Let M be a finitely generated module over an H N P-ring R
and M = @}, Rm; ® K where K is a projective module for some element m; € M. Assume that
ann(m;) = ann(rm;) for all non zero elements » € R and i € {1,...,n}.

Theorem 3.1. With the above notations, we have

Wgr (ﬁ ann(mi)) <é RmZ-) ® Wgr(0)K = Wy (0).

i=1 =1

Proof. Let M be a module. Then M = @' | Rm; ® K for some elements my,...,m; of M
and a projective module K.

We show that Wr (i, ann(m;)) (@i, Rmi) = Wign_ grm,)(0).

We may assume that n = 2.

Let rm € S(le@RmQ)(O). Then, for each sequence ag, ai, as,... such that ag = r and
a;+1 € a;Ra;, there is a positive integer k such that a;R(d1,e1) = 0 where m = (dy, e1). It follows
arRdy = 0 and axRe; = 0 and, by the hypothesis, we get that ayR C ann(mq) N ann(ms).
Therefore, it follows that 7 € Sg(ann(m1) Nann(ms)) and so Wig,, @Rm,)(0) € Wr(ann(mi) N
Nann(me))(Rmy & Rmy).

For the converse, take an element n = a(dy,e1) € Sg(ann(my) N ann(msz))(Rmy & Rms)
where a € Sg(ann(mi) N ann(ms)). Then, for each sequence ag,ai,... such that ag = a
and a;y1 € a;Ra;, there is a positive integer k such that ayR C ann(m;) N ann(msz) and so
arR(m1,my) = 0. Therefore, we get the equality.

By Proposition 2.1, we get

W (0) = Wigr_ rm,)(0) & Wi (0) = Wigr_ rim,)(0) & Wgr(0)K.

An element m of a module M over a ring R is called a torsion element of the module if there
exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that
annihilates m (i.e., rm = 0) and if T (M) = M, then M is called torsion module and if T'(M) = 0,
then M is called torsion free module.
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As well known, the concept of Dedekind domain is important for the commutative ring theory
and it is well known that a Dedekind domain satisfies radical formula. In noncommutative ring
theory, one of its generalization is called an H N P-ring (a right and left Noetherian prime ring in
which every right and every left ideal are a projective module). From [7] (Lemma 7.4), we note
that if M is a finitely generated R-module over an H N P-ring, then M = T(M) @ K where K is
isomorphic to M /T(M).

To recall the definition of an extending module, we need the definition of an essential submodule.
A submodule N of a module M is called essential in M if, for all m € M, there is an element
r € R such that 0 # rm € N. A submodule N is said to be closed in M if N has no proper
essential extension in M. Let N and K be submodules of M such that N is essential in K. If K
is closed in M, then K is called the closure of N. A module M is called extending if every closed
submodule of M is a direct summand of M.

Lemma 3.1. Let R be a ring such that every element of R is regular and let N be a submodule
of a module M such that T(M) is a submodule of N. Then the closure L of N is of the form
T(M/N)=L/N.

In particular, if M is finitely generated over an HN P-ring, then L is a direct summand of M.

Proof. Let N and K be submodules of M such that /V is essential in K. Then it is clear that
K/N is a submodule of T'(M/N).

Let N and L be submodules such that T'(M) is a submodule of N and L/N = T (M/N). Take
an element 0 # 2 + N € T(M/N) and so there is an element r € R such that 0 # rx € N.
Otherwise x + N = 0. Hence, L is an essential extension of N and also L is a closed submodule of
M. Moreover, we derive that M /L is torsion free since M /L is isomorphic to (M/N) /T(M/N).
If M is a finitely generated module over an H N P-ring, then M /L is projective and so L is a direct
summand of a module M.

For any prime ideal P of R, we say that P has the properties S if xRy C P whenever zy € P
where x,y € R. We call that a ring R is HN PS-ring if R is H N P-ring and the zero ideal satisfies
S-property. It is clear that H N P.S-ring is a generalization of Dedekind domain.

Corollary3.1. Let R be a left extending ring. Then:

(1) Let P be a prime submodule of rR with the S-property. Then P is essential in R.

(i) If every prime ideal has the S-property, then Soc (rR) C radr(0) C J(R) where J(R) is
the Jacobson radical of R.

Proof. (i) Let P be a prime submodule of pR and L be a closure of P. Then there is a
decomposition R = L @& K for a submodule K of R since R is extending. On the other hand, by
Corollary 2.1, it follows that R/P is indecomposable and so K = 0. Hence, P is essential in R.

(if) It is clear since Soc(rR) is the intersection of essential left ideals of R.

Theorem 3.2. Let R be an HN PS-ring. Then a finitely generated module is the direct sum of
a torsion module and an extending module.

Proof. By [7] (Lemma 7.4), it is known that M = T (M) & K where K is isomorphic to
M/T(M) if M is a finitely generated R-module over an H N P-ring. Let A be a submodule of K.
Then L is a closure of A where T'(K/A) = L/A and so L is a summand of K. This means that K
is an extending module.

Theorem 3.3. Let M be a finitely generated module over an HN P-ring R. If for any element
m of M, every element of ann(m)R is strongly nilpotent on ann(m), then M satisfies the radical
Sformula.
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Proof. Let M be a finitely generated module over an H N P-ring R. By [3] (Lemma 7), we get
that M is direct sum of cyclic modules and projective module. Then, by the use of Theorem 2.2 and
Proposition 2.1, the proof is completed.

In the commutative theory, every module over a Dedekind domain satisfies the radical formula.
Therefore, we wonder whether the condition in Theorem 3.3 can be removed or not.
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