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Abstract. Asymptotic analysis of the problem of large deviations for
random evolutions with independent increments in the circuit of the Lévy
approximation is carried out. Large deviations for random evolutions in
the circuit of the Lévy approximation are determined by the exponential
generator for a jump process with independent increments.
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1. Introduction

We conduct the asymptotic analysis of the problem of large deviations
for random evolutions with independent increments and switching in the
circuit of the Lévy approximation. To apply the Lévy approximation
scheme, we use the nonlinear generator approach instead of the classical
cumulant method useful in the case of an average scheme. The solution of
the large deviations problem is determined by the exponential generator
for a jump process with independent increments.

The theory of large deviations arose in work [3] and deals with the
asymptotic estimations of probabilities of rare events. The main problem
in the large deviations theory is to construct the rate functional estimat-
ing the probabilities of rare events. The method used in the majority
of classical works is based on a change of the measure and the applica-
tion of a variational formula to the cumulant of the process under study.
Different aspects and applications of this problem were studied by many
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mathematicians. Since we discuss Markov processes with independent
increments, it is natural to refer to the fundamental works [4, 11,12,28].

Another approach arose in works [2, 13] and was applied to the large
deviations problem in [10]. It is based on the asymptotic analysis of the
nonlinear Hamilton–Jacobi equation corresponding to the process under
study. Then the solution of the limit nonlinear Hamilton–Jacobi equation
is given by a variational formula that defines the rate functional of the
pre-limit process. The main problem here is to prove the uniqueness of
the solution of the limit nonlinear equation.

The technical problems connected with the application of this last
method to different classes of Markov problems are solved in book [9].
The basic idea is the following:

Let L be the generator of a Markov process x(t), t ≥ 0, defined on
a standard state space (E, E) (i.e., E is a Polish space and E its Borel
σ-algebra). It has a dense domain D(L) ⊆ BE that contains continuous
functions with continuous derivatives. Here BE is a Banach space of
real-valued finite test-functions φ(x) ∈ E, endowed by the norm: ∥φ∥ :=
supx∈E |φ(x)|.

Unlike the classical martingale characterization of Markov processes
(see [6])

µt = φ(x(t))− φ(x(0))−
t∫

0

Lφ(x(s)) ds, (1.1)

the large deviations theory is based on the exponential martingale char-
acterization (see [8] and [9, Ch. 1]):

µ̃t = exp{φ(x(t))− φ(x(0))−
t∫

0

Hφ(x(s)) ds} (1.2)

is a martingale.
Here the exponential nonlinear operator

Hφ(x) := e−φ(x)Leφ(x), eφ(x) ∈ D(L)

is the Hamiltonian associated with the Markov process.
If φ(x) is bounded away from zero, then the equivalence of martingales

(1.1) and (1.2) follows from the observations:

Proposition 1.1 (see [6, p. 66]). Let x(t) and y(t) be real-valued, right-
continuous, {Ft}-adapted processes. Suppose that, for each t, infs≤t x(s)
> 0. Then

µ(t) = x(t)−
t∫

0

y(s) ds
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is an {Ft}-local martingale if and only if

µ̃(t) = x(t)exp

−
t∫

0

y(s)

x(s)
ds

 is an{Ft}-local martingale.

We may assume that the domain D(L) contains constants, and if
φ(x) ∈ D(L), then there exists a constant c such that φ(x)+ c ∈ D(L) is
positive and bounded away from zero.

The solution of the large deviations problem for a scaled Markov
process xε(t), t ≥ 0, ε → 0+ consists in the verification of the large
deviations principle. The large deviations principle is satisfied if there
exists a lower semicontinuous function I : E → [0,∞) such that, for each
open set A,

lim inf
ε→0

ε lnP{xε(t) ∈ A} ≥ − inf
x∈A

I(x),

and, for each closed set B,

lim sup
ε→0

ε lnP{xε(t) ∈ B} ≤ − inf
x∈B

I(x).

I is called the rate function for the large deviations principle.
The problem of large deviations is solved in four stages ([9, Ch. 2]):
1) Verification of the convergence of the exponential (nonlinear) gen-

erator Hε to the limit exponential (nonlinear) generator H;
2) Verification of the exponential tightness of the pre-limit Markov

processes. Convergence of the semigroups corresponding to Hε and ex-
ponential tightness of the pre-limit Markov processes give the large devi-
ations principle in DE [0,∞);

3) Verification of the comparison principle for the limit exponential
generator, showing that the semigroups corresponding to Hε really con-
verge to the unique semigroup corresponding to H;

4) Construction of a variational representation for the limit exponen-
tial generator that gives the rate function.

Stages 2)–4) were realized in [9] under rather general conditions for
the exponential generators corresponding to the processes with indepen-
dent increments. Namely, the verification of exponential tightness for the
solutions of the martingale problem (1.2) was discussed in Ch. 4 on pages
67–71; the verification of the comparison principle with partial differen-
tial equations (PDEs) analysis for the limit exponential generator of the
view H0φ(u) = H0(φ′(u)) (see formula (4.4) below) was made in Ch. 9
on pages 172–179; finally, the construction of a variational representation
for the limit exponential generator of view (4.4) may be found in Ch. 10
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on page 202. The methods used there are similar for the Lévy approxima-
tion and small diffusion schemes discussed below. Thus, our aim is only
to realize stage 1) of this program in the case of the Lévy approximation
scheme, as soon as it demands a quite different scaling of the process.

Some of the stages are also presented in book [12], where the large
deviations problem was studied, using the cumulant of the process with
independent increments.

Remark 1.1. The cumulant and the exponential generator are obviously
connected. Really, the generator of a Markov process may be presented
in the form (see, e.g., [26])

Lφ(x) =

∫
R

eλxa(λ)φ(λ)dλ,

where a(λ) is the cumulant of the process, φ(λ) =
∫
R e

−λxφ(x)dx.
The inverse transformation gives∫

R

e−λxLφ(x)dx = a(λ)φ(λ).

Let us rewrite∫
R

e−λxLφ(x)dx =

∫
R

e−λxa(λ)φ(x)dx.

Taking
e−λxφ(x) =: φ̃(x),

we obtain ∫
R

e−λxLeλxφ̃(x)dx =

∫
R

a(λ)φ̃(x)dx.

Thus,
e−λxLeλx = a(λ),

or, using the exponential generator,

Hφ0(x) = a(λ), where φ0(x) = λx.

The Lévy approximation scheme was proposed by V. S. Koroliuk and
N. Limnios (see [15, Ch. 9] for examples and possible applications) for
the asymptotic analysis of random evolutions. The basic idea of the Lévy
approximation scheme is that the jump values of a stochastic system are
split into two parts: small jumps taking values with probabilities close
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to one and big jumps taking values with probabilities tending to zero
together with the series parameter δ → 0. So, in the Lévy approxi-
mation principle, the probabilities (or the intensities) of the jumps are
normalized by the series parameter δ > 0. This characteristic of the Lévy
approximation scheme is defined by Lévy approximation conditions (see
Section 3).

In this model, the big jumps are rare events, so we suppose that
the Lévy approximation scheme is a natural media to apply the theory of
large deviations. The main problem in the case of the Lévy approximation
scheme is to choose correct scalings both for time and intensity of jumps
(see Section 2).

We should also note that the majority of models discussed in [9] a
priori contain a diffusion term as a part of the pre-limit process (see,
e.g., the model by M. Freidlin and A. Wentzel ([12, Ch. 3,4])).

A model, where the small diffusion term is not defined ad hoc, but
appears only in the limit generator, was developed by A. Mogulski [21]
(see also Ch. 10, pp. 202–204 in [9]). This effect is reached due to the
appropriate scaling of the process with independent increments. The ex-
haustive analysis of this model with different types of scalings may also
be found in [17]. We may see that, under Lévy approximation condi-
tions, the pre-limit generator (4.2)–(4.3), that defines the scaled random
evolution with independent increments and switching, does not contain a
diffusion part a priori, but the limit generator (4.4) has the small diffusion
term (see Section 4).

Random evolutions with switching were also studied in [9, Ch. 11] by
the classical methods of averaging and homogenization. This approach
arose in works [19, 23] and involves perturbed PDEs operators and per-
turbed test functions. Recent books [24,27] include the large bibliography
on this problem. The nonlinear case may also be found in work [7]. This
approach is important for the infinite-dimensional state space models.
But in this case, a lot of additional problems appear: correct descrip-
tion of the functional space for the solutions, a domain of infinitesimal
operators, etc.

We use the generators of Markov processes with a locally compact
vector state space (see [15] for more details). Similar methods for the
average scheme were used in [22] in the case of the large deviations prob-
lem for stochastic additive functionals with switching. This simplifies the
analysis because the generators are defined for all bounded measurable
functions. We lose generality, but may present obvious algorithms for the
verification of convergence conditions and the calculation of the limit gen-
erators. This approach is important for finite-dimensional models such
as random evolutions in Rd, queuing theory, etc.
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The paper consists of five parts. In Section 2, we define the process
of random evolutions with independent increments and its scaling by two
small series parameters. The conditions of the Lévy approximation are
introduced in Section 3. In Section 4, we prove the main result. Finally,
the proofs of three auxiliary lemmas are presented in Section 5.

2. Basic definitions

Let x(t), t ≥ 0 be a Markov switching process on the standard state
space (E, E) (here again, E is a Polish space, and E is its Borel σ-algebra)
defined by the generator

Qφ(x) = q(x)

∫
E

[φ(y)− φ(x)]P (x, dy), x ∈ E, φ(u) ∈ BE , (2.1)

where q(x), x ∈ E, is the intensity of jumps function of x(t), t ≥ 0;
P (x, dy) is the transition kernel of the embedded Markov chain xn, n ≥ 0
defined by xn = x(τn), n ≥ 0, with 0 = τ0 ≤ τ1 ≤ · · · ≤ τn ≤ · · · is the
jump times of x(t), t ≥ 0.

The corresponding counting process of jumps is

ν(t) := max{k ≥ 0 : τk ≤ t}.

The Markov processes with independent increments η(t;x), t ≥ 0, x ∈
E, are modulated by the process x(t). Thus, the transition probabilities
are generated by the Markov semigroup

Γt(x)φ(u) := E[φ(η(t;x))|η(0;x) = u], u ∈ R x ∈ E.

The family (indexed by x) of the corresponding generators is the follow-
ing:

Γ(x)φ(u) =

∫
R

[φ(u+ v)− φ(u)]Γ(dv;x), φ(u) ∈ BR, x ∈ E,

where the intensity kernel Γ(dv;x) satisfies the boundedness property:
Γ(R;x) ∈ R+.

The random evolutions with independent increments (see Ch. 1 in
book [15]) are defined by:

ξ(t) = ξ0 +

t∫
0

η(ds;x(s)), t ≥ 0. (2.2)
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Remark 2.1. Definition (2.2) may be rewritten in the following form:

ξ(t) = ξ0 +

ν(t)∑
k=1

[η(τk+1, xk)− η(τk, xk)] + η(t− τν(t), x(t)). (2.3)

The increment of the random evolution on an interval between jumps
of the switching Markov process ξ(τk+t)−ξ(τk) is defined by the process
with independent increments η(t− τk, x(t)).

We see that the random evolution is independent of the switching
process, but consists of the parts of trajectories of the Markov processes
with independent increments η(t;x), that are indexed by the switching
process.

The processes of the type (2.3) may be applied, for instance, in the
queuing theory (see [1]). For such problems, the Lévy approximation
scheme models systems with the rare appearance of large information
batches.

The random evolution (2.2) is characterized by the generator of a
two-component Markov process ξ(t), x(t), t ≥ 0 (see [15, Ch. 2])

Lφ(u, x) = Qφ(u, ·)(x) + Γ(x)φ(·, x)(u).

The basic assumption about the switching Markov process is the fol-
lowing:

C1: The Markov process x(t), t ≥ 0, is uniformly ergodic with the
stationary distribution π(A), A ∈ E .

Remark 2.2. Uniform ergodicity means the following:

Let Π be the projector onto the null-subspace of the reducible-inver-
tible operator Q defined in (2.1):

Πφ(x) =

∫
E

π(dx)φ(x).

A Markov process x(t), t ≥ 0, is called uniformly ergodic if, for the
semigroup Pt generated by this process, the following limit exists:

lim
t→∞

Pt = Π ̸= 0

in the uniform operator topology (see [5, 16] for details).
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The following relation is true

QΠ = ΠQ = 0.

The potential operator ( [15, Ch. 1])

R0 := Π− (Q+Π)−1 = (Π−Q)−1 −Π

has the following property:

QR0 = R0Q = Π− I. (2.4)

For a uniformly ergodic Markov process with the semigroup Pt, t ≥ 0,
the potential operator R0 is a bounded operator and may be also defined
by

R0 :=

∞∫
0

(Pt −Π)dt.

Remark 2.3. It follows from relation (2.4) that, under the solvability
condition

Πψ = 0,

the Poisson equation

Qφ = ψ

has the unique solution

φ = −R0ψ,

when Πφ = 0.

The exponential operator in the series scheme with a small series
parameter ε→ 0(ε > 0) has the form (see, e.g., [18]):

Hεφ(x) := e−φ(x)/εεLεeφ(x)/ε,

where the operators Lε, ε > 0, define some Markov processes ζε(t), t ≥
0, ε > 0 in the series scheme. The test-functions φ(x) are real-valued
and finite. In our case, the Markov processes ζε(t), t ≥ 0, ε > 0 are
two-component scaled Markov processes ξδε(t), x(t), t ≥ 0, ε, δ > 0.

The correct scaling of the random evolution (2.2) by small series pa-
rameters in the Lévy approximation scheme is not a trivial problem itself
and is different from the small diffusion approximation scheme (see [18]).
We use two small parameters: ε normalizing time and the range of jumps,
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and δ normalizing the intensity of big and small jumps. The order of scal-
ing is conditioned by the proofs of Lemmas 4.1, 4.2. Thus, the scaling is
the following:

ξδε(t) = ξδε(0) +

t∫
0

ηδε(ds;x(s/ε
3)), t ≥ 0,

ηδε(t;x) = εηδ(t/ε3;x).

To prove the main theorem, we use the solution of a singular pertur-
bation problem with two small series parameters.

Remark 2.4. In work [18], V. S. Koroliuk considered a singular per-
turbation problem with one small series parameter to study the large
deviations for the random evolutions with independent increments in the
asymptotically small diffusion scheme.

The method of two small parameters was firstly proposed in [25] for
a scheme of Poisson approximation.

3. Lévy approximation conditions

C2: Lévy approximation. The family of the processes with independent
increments ηδ(t;x), x ∈ E, t ≥ 0 satisfies the Lévy approximation
conditions:

LA1 Approximation of the first two moments:

aδ(x) =

∫
R

vΓδ(dv;x) = δa1(x) + δ2[a(x) + θδa(x)],

and

cδ(x) =

∫
R

v2Γδ(dv;x) = δ2[c(x) + θδc(x)],

where

sup
x∈E

|a1(x)| ≤ a1 < +∞, sup
x∈E

|a(x)| ≤ a < +∞,

sup
x∈E

|c(x)| ≤ c < +∞.
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LA2 Asymptotic representation of the intensity kernel

Γδ
g(x) =

∫
R

g(v)Γδ(dv;x) = δ2[Γg(x) + θδg(x)]

for all g ∈ C3(R) — measure-determining class of functions
which are real-valued, bounded, and such that φ(u)/u2 →
0, |u| → 0 (see [14]), Γg(x) is a finite kernel

|Γg(x)| ≤ Γg (a constant depending on g).

The kernel Γ0(dv;x) is defined on the measure-determining
class of functions C3(R) by the relation

Γg(x) =

∫
R

g(v)Γ0(dv;x), g ∈ C3(R).

The negligible terms θδa, θδc , θδg satisfy the condition

sup
x∈E

|θδ· (x)| → 0, δ → 0.

LA3 The balance condition:∫
E

π(dx)a1(x) = 0.

C3: Uniform square integrability:

lim
c→∞

sup
x∈E

∫
|v|>c

v2Γ0(dv;x) = 0.

C4: Exponential finiteness:∫
R

ep|v|Γδ(dv;x) <∞, ∀ p ∈ R.

Example 3.1. A simple example of the process with similar character-
istics is the following. For the process α, let us have:

P{α = b} = δ2p,

P{α = δa1 + δ2b1} = 1− δ2p.

Then condition LA1 is true:

Eα = δa1 + δ2(bp+ b1) + o(δ2),

Eα2 = δ2(b2p+ a21) + o(δ2).
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4. Main result

The scaled random evolution with independent increments

ξδε(t) = ξδε(0) +

t∫
0

ηδε(ds;x(s/ε
3)), t ≥ 0, (4.1)

ηδε(t;x) := εηδ(t/ε3;x)

is defined by the generator of the two-component Markov process ξδε(t),
x(t), t ≥ 0

Lδ
εφ(u, x) = ε−3Qφ(u, ·)(x) + Γδ

ε(x)φ(·, x)(u), (4.2)

where

Γδ
ε(x)φ(u) = ε−3

∫
R

[φ(u+ εv)− φ(u)]Γδ(dv;x), x ∈ E. (4.3)

By C3(R), we denote the space of continuous bounded functions with
continuous bounded derivatives up to the third degree.

Theorem 4.1. Let conditions C1–C4 hold for the family of scaled pro-
cesses with independent increments ηδε(t;x).

Then the exponential generator associated with the scaled random evo-
lution (4.1)

Hε,δφδ
ε(u) := e−φδ

ε/εεLδ
εe

φδ
ε/ε

converges to the limit exponential generator, when ε, δ → 0+, ε−1δ → 1.

The limit exponential generator has the view (φ(u) ∈ C3(R)):

H0φ(u) = (ã− ã0)φ
′(u) +

1

2
σ2(φ′(u))2 +

∫
R

[evφ
′(u) − 1]Γ̃0(dv), (4.4)

ã = Πa(x) =

∫
E

π(dx)a(x), ã0 = Πa0(x) =

∫
E

π(dx)a0(x),

a0(x) =

∫
R

vΓ0(dv;x), c̃ = Πc(x) =

∫
E

π(dx)c(x),

c̃0 = Πc0(x) =

∫
E

π(dx)c0(x), c0(x) =

∫
R

v2Γ0(dv;x),
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σ2 = (c̃− c̃0) + 2

∫
E

π(dx)a1(x)R0a1(x),

Γ̃0(v) = ΠΓ0(v;x) =

∫
E

π(dx)Γ0(v;x).

Remark 4.1. Large deviations for random evolutions in the Lévy ap-
proximation scheme are determined by the exponential generator for
a jumping process with independent increments. The large deviations
problem for such type of processes was studied in book [12, Ch. 3,4].

Remark 4.2. The limit exponential generator in the Euclidean space
Rd, d > 1 can be represented in the following form:

H0φ(u) =

d∑
k=1

(ãk − ã0k)φ
′
k +

1

2

d∑
k,r=1

σkrφ
′
kφ

′
r +

∫
Rd

[evφ
′(u) − 1]Γ̃0(dv),

φ′
k := ∂φ(u)/∂uk, 1 ≤ k ≤ d.

Here σ2 = [σkr; 1 ≤ k, r ≤ d] is the variance matrix.
The last exponential generator may be extended on the space of ab-

solutely continuous functions (see [9])

C1
b (R

d) =
{
φ : ∃ lim

|u|→∞
φ(u) = φ(∞), lim

|u|→∞
φ′(u) = 0

}
.

Proof. The limit transition for the exponential nonlinear generator of a
random evolution is performed on the perturbed test-functions

φδ
ε(u, x) = φ(u) + ε ln[1 + δφ1(u, x) + δ2φ2(u, x)],

where φ(u) ∈ C3(R). Thus, relation (4.2) yields

Hε,δφδ
ε = e−φδ

ε/εεLδ
εe

φδ
ε/ε = e−φδ

ε/ε[ε−2Q+ εΓδ
ε(x)]e

φδ
ε/ε

= e−φ/ε[1 + δφ1 + δ2φ2]
−1[ε−2Q+ εΓδ

ε(x)]e
φ/ε[1 + δφ1 + δ2φ2].

To see the asymptotic behavior of the last exponential generator, we use
Lemmas 4.1 and 4.2 (see Section 5 for the proofs).

Lemma 4.1. The exponential generator

Hε
Qφ

δ
ε(u, x) = e−φδ

ε/εε−2Qeφ
δ
ε/ε (4.5)

has the following asymptotic representation:

Hε
Qφ

δ
ε = ε−1Qφ1 +Qφ2 − φ1Qφ1 + θε,δQ (x), (4.6)

where supx∈E |θε,δQ (x)| → 0, ε, δ → 0.
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Lemma 4.2. Under conditions C2–C4, the exponential generator

Hε,δ
Γ (x)φδ

ε(u, x) = e−φδ
ε/εεΓδ

ε(x)e
φδ
ε/ε (4.7)

has the asymptotic representation

Hε,δ
Γ (x)φδ

ε = HΓ(x)φ(u) + ε−1a1(x)φ
′(u) + θε,δΓ (x),

where

HΓ(x)φ(u) = (a(x)− a0(x))φ
′(u) +

1

2
(c(x)− c0(x))(φ

′(u))2+∫
R

[evφ
′(u) − 1]Γ0(dv;x), (4.8)

and supx∈E |θε,δΓ (x)| → 0, ε, δ → 0.

From (4.5) and (4.7), we see that

Hε,δφδ
ε = Hε

Qφ
δ
ε(u, x) +Hε,δ

Γ (x)φδ
ε(u, x).

Using Lemmas 4.1 and 4.2, we obtain the following asymptotic rep-
resentation:

Hε,δφδ
ε = ε−1[Qφ1 + a1(x)φ

′(u)] +Qφ2 − φ1Qφ1 +HΓ(x)φ(u) + hε,δ(x),

where hε,δ(x) = θε,δQ (x) + θε,δΓ (x).
The equations that give the solution of the singular perturbation

problem for the reducibly invertible operator Q (see [15, Ch. 1]) take the
form

Qφ1 + a1(x)φ
′(u) = 0,

Qφ2 − φ1Qφ1 +HΓ(x)φ(u) = H0φ(u).

Due to the balance condition LA3, the first equation yields

φ1(u, x) = R0a1(x)φ
′(u), Qφ1(u, x) = −a1(x)φ′(u).

After the substitution to the second equation, we have

Qφ2 + a1(x)R0a1(x)(φ
′(u))2 +HΓ(x)φ(u) = H0φ(u)

From the solvability condition, we have

H0φ(u) = ΠHΓ(x)Πφ(u) + Πa1(x)R0a1(x)1(φ
′(u))2,

where 1 is the unit vector.
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Now, using (4.8), we finally obtain (4.4).
The negligible term hε,δ(x) may be found explicitly, using the solution

of the Poisson equation (see Remark 2.3 in [15] for details)

φ2(u, x) = R0H̃(x)φ(u)−R0a1(x)R0a1(x)1(φ
′(u))2,

H̃(x) := H0 −HΓ(x).

The theorem is proved.

5. Proofs of the auxiliary lemmas

Proof of Lemma 4.1. We have

Hε
Qφ

δ
ε = e−φ/ε[1 + δφ1 + δ2φ2]

−1ε−2Qeφ/ε[1 + δφ1 + δ2φ2]

=

[
1− δφ1 + δ2

φ2
1 + δφ1φ2 − φ2

1 + δφ1 + δ2φ2

]
[δε−2Qφ1 + δ2ε−2Qφ2]

= δε−2Qφ1 + δ2ε−2Qφ2 − δ2ε−2φ1Qφ1 + θε,δQ (x),

where

θε,δQ (x) = δ3ε−2φ
2
1 + δφ1φ2 − φ2

1 + δφ1 + δ2φ2
[Qφ1 + δQφ2]− δ3ε−2φ1Qφ2.

By the limit condition ε−1δ → 1, ε, δ → 0, we finally obtain (4.6).
Lemma 4.1 is proved.

Proof of Lemma 4.2. We have

Hε,δ
Γ (x)φδ

ε = e−φ/ε[1 + δφ1 + δ2φ2]
−1εΓδ

ε(x)e
φ/ε[1 + δφ1 + δ2φ2]

= e−φ/ε

[
1− δφ1 + δ2

φ2
1 + δφ1φ2 − φ2

1 + δφ1 + δ2φ2

] [
εΓδ

ε(x)e
φ/ε + εδΓδ

ε(x)e
φ/εφ1

+ εδ2Γδ
ε(x)e

φ/εφ2

]
.

Thus,

Hε,δ
Γ (x)φδ

ε = Hε,δ
Γ (x)φ(u)+e−φ/εεδ{Γδ

ε(x)e
φ/εφ1−φ1Γ

δ
ε(x)e

φ/ε}+θ̃ε,δΓ (x),
(5.1)

where

θ̃ε,δΓ (x) = εδ2[e−φ/εΓδ
ε(x)e

φ/εφ2 − e−φ/εφ1Γ
δ
ε(x)e

φ/εφ1]

+ εδ2
φ2
1 + δφ1φ2 − φ2

1 + δφ1 + δ2φ2
[e−φ/εΓδ

ε(x)e
φ/ε + e−φ/εδΓδ

ε(x)e
φ/εφ1
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+ e−φ/εδ2Γδ
ε(x)e

φ/εφ2]− εδ3e−φ/εφ1Γ
δ
ε(x)e

φ/εφ2.

Now let us rewrite Hε,δ
Γ (x)φ(u) in (5.1), using generator (4.3). We

have

Hε,δ
Γ (x)φ(u) = ε−2

∫
R

[e∆εφ(u) − 1]Γδ(dv;x),

where
∆εφ(u) := ε−1[φ(u+ εv)− φ(u)].

We may rewrite it in a following way:

Hε,δ
Γ (x)φ(u) = ε−2

∫
R

[
e∆εφ(u) − 1−∆εφ(u)−

1

2
(∆εφ(u))

2
]
Γδ(dv;x)

+ ε−2

∫
R

[
∆εφ(u) +

1

2
(∆εφ(u))

2
]
Γδ(dv;x).

It is easy to see that the function ψε
u(v) = e∆εφ(u) − 1 − ∆εφ(u) −

1
2(∆εφ(u))

2 belongs to the class C3(R). Really,

ψε
u(v)/v

2 → 0, v → 0.

In addition, this function is continuous and bounded for every ε under the
condition that φ(u) is bounded. Moreover, the function ψε

u(v) is bounded
uniformly by u under conditions C3, C4 and if φ′(u) is bounded.

Thus, by condition C2, we have

Hε,δ
Γ (x)φ(u) = ε−2δ2

∫
R

[
e∆εφ(u)− 1−∆εφ(u)−

1

2
(∆εφ(u))

2
]
Γ0(dv;x)

+ ε−2

∫
R

[
∆εφ(u)− vφ′(u)− ε

v2

2
φ′′(u)

]
Γδ(dv;x)

+ ε−2δa1(x)φ
′(u) + ε−2δ2a(x)φ′(u) + ε−1δ2c(x)φ′′(u)

+ ε−2

∫
R

[1
2
(∆εφ(u))

2 − v2

2
(φ′(u))2

]
Γδ(dv;x) + ε−2δ2

1

2
c(x)(φ′(u))2.

The functions in the second and third integrals obviously belong to
C3(R). Using the Taylor formula for the test-functions φ(u) ∈ C3(R)
and condition LA2, we obtain

Hε,δ
Γ (x)φ(u) = ε−2δ2

∫
R

[
evφ

′(u) − 1− vφ′(u)− v2

2
(φ′(u))2

]
Γ0(dv;x)
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+ ε−2δ2
∫
R

(
evφ

′(u)ε
v2

2
φ′′(ũ)− ε

v2

2
φ′′(ũ)− ε2

v4

8
(φ′′(ũ))2

)
Γ0(dv;x)

+ ε−2δ2
∫
R

ε2
v3

3!
φ′′′(ũ)Γ0(dv;x) + ε−2δa1(x)φ

′(u) + ε−2δ2a(x)φ′(u)

+ ε−1δ2c(x)φ′′(u) + ε−2δ2
∫
R

ε2
v4

4
(φ′′(ũ))2Γ0(dv;x)

+ ε−2δ2
1

2
c(x)(φ′(u))2.

By the limit condition ε−1δ → 1, we finally have

Hε,δ
Γ (x)φ(u) = HΓ(x)φ(u) + ε−1a1(x)φ

′(u) + θε,δ(x), (5.2)

where

HΓ(x)φ(u) = (a(x)− a0(x))φ
′(u) +

1

2
(c(x)− c0(x))(φ

′(u))2

+

∫
R

[evφ
′(u) − 1]Γ0(dv;x),

and supx∈E |θε,δ(x)| → 0, ε, δ → 0.
To finish the proof, we have to show that the term in the braces in

(5.1) is equal to 0. Thus, we use the following lemma.

Lemma 5.1.

Γδ
ε(x)e

φ(u)/εφ1(u, x) = φ1(u, x)Γ
δ
ε(x)e

φ(u)/ε + (εδ)−1θ̂ε,δΓ (x),

where the negligible term

sup
x∈E

|θ̂ε,δΓ (x)| → 0, ε, δ → 0.

Proof. Really, by (4.3), we have

Γδ
ε(x)e

φ(u)/εφ1(u, x) = ε−3

∫
R

[eφ(u+εv)/εφ1(u+ εv, x)

− eφ(u)/εφ1(u, x)]Γ
δ(dv;x) = φ1(u, x)Γ

δ
ε(x)e

φ(u)/ε

+ (εδ)−1

φ′
1(u, x)ε

−1δ

∫
R

eφ(u+εv)/εvΓδ(dv;x)

 .
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Let us estimate the last integral. As soon as the function φ(u) is
bounded, we have, for fixed ε,∫

R

eφ(u+εv)/εvΓδ(dv;x) < eC
∫
R

vΓδ(dv;x)

= δeC [a1(x) + δa(x) + δθδa(x)].

Thus, we see that the last term is negligible, as ε, δ → 0.
Lemma 5.1 is proved.

Applying equality (5.2) and Lemma 5.1 to (5.1), we finally obtain

Hε,δ
Γ (x)φδ

ε = HΓ(x)φ(u) + ε−1a1(x)φ
′(u) + θε,δΓ (x),

where supx∈E |θε,δΓ (x)| → 0, ε, δ → 0.
Lemma 4.2 is proved.
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