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Spectral and pseudospectral functions of various
dimensions for symmetric systems
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Abstract. The main object of the paper is a symmetric system

Jy' — B(t)y = MA(t)y defined on an interval Z = [a,b) with the reg-

ular endpoint a. Let (-, A) be a matrix solution ¢(-,A) of this sys-

tem of an arbitrary dimension and let (V f)(s) = [ " (¢, s)A(t)f(¢)dt
z

be the Fourier transform of the function f(-) € LA (Z). We define a
pseudospectral function of the system as a matrix-valued distribution
function o(+) of the dimension n, such that V is a partial isometry from
LA (Z) to L*(o;C™) with the minimally possible kernel. Moreover, we
find the minimally possible value of n, and parameterize all spectral
and pseudospectral functions of every possible dimensions n, by means
of a Nevanlinna boundary parameter. The obtained results develop the
results by Arov and Dym; A. Sakhnovich, L. Sakhnovich and Roitberg;
Langer and Textorius.
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1. Introduction

Let H and H be finite dimensional Hilbert spaces, let H = H oH®H
and let [H] be the set of linear operators in [H]. Recall that a non-
decreasing left continuous operator (matrix) function o(-) : R — [H] with
o(0) = 0 is called a distribution function of the dimension n, := dim H.

We consider symmetric differential system [3,11]

Jy —B(t)y = A(t)y, teZ, XeC, (1.1)
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where B(t) = B*(t) and A(t) > 0 are [H]-valued functions defined on an
interval Z = [a,b), b < oo, and integrable on each compact subinterval
la, 8] C Z and

0 —Ig
J=10 iz O -HeHOH - HOHGH. (1.2)
Iy 0

System (1.1) is called a Hamiltonian system if H = {0} and hence H =
H®oH,
_ (0 —IH>
J = He&H— Ho H.
Ig 0
The system is called regular if b < oo and [ || B(t)||dt < oo, [; [|A(t)||dt <
00.

As is known a spectral function is a basic concept in the theory of
eigenfunction expansions of differential operators (see e.g. [10,29] and
references therein). In the case of a symmetric system definition of the
spectral function requires a certain modification. Namely, let $ = L% (Z)
be the Hilbert space of functions f : Z — H satisfying

7[ (A (1), f(t))dt < .

Assume that system (1.1) is Hamiltonian and (-, A) is an [H, H & H]-
valued operator solution of (1.1) such that ©(0,\) = (0,1x)". An [H]-
valued distribution function o(+) is called a spectral function of the system
if the (generalized) Fourier transform V, : $ — L?(o; H) defined by

(Vof)(s) = Jo(s) :== /Iw*(tvs)ﬁ(t)f(t) dt, f()esH (1.3

is an isometry. If o(-) is a spectral function, then the inverse Fourier
transform is defined for each f € $) by

£(t) = / o(t, 5) do(s) fols) (1.4)

(the integrals in (1.3) and (1.4) converge in the norm of L?(o; H) and §
respectively). If the operator A(t) is invertible a.e. on Z, then spectral
functions exist. Otherwise the Fourier transform may have a nontrivial
kernel ker V, and hence the set of spectral functions may be empty. The
natural generalization of a spectral function to this case is an [H]-valued
distribution function o(-) such that the Fourier transform V, of the form
(1.3) is a partial isometry. If o(-) is such a function, then the inverse
Fourier transform (1.4) is valid for each f € $ © kerV,,. Therefore an
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interesting problem is a characterization of [H]-valued distribution func-
tions o(+) such that the Fourier transform V, is a partial isometry with
the minimally possible kernel ker V,,. This problem was solved in |2,31,32]
for regular systems and in [27] for general systems. The results of [27] was
obtained in the framework of the extension theory of symmetric linear
relations. As is known [14,18,22,30] system (1.1) generates the minimal
(symmetric) linear relation Tinin and the maximal relation Tinax(= Tony)
in 9. Let T' D Tiin be a symmetric relation in §) given by

T'={{y, f} € Tmax : (Iu,0)y(a) =0
and %i_rfll)(Jy(t), 2(t)) =0, z € domTiax}

and let mul7 be the multivalued part of 7. It was shown in [27] that
for each [H]-valued distribution function o(-) such that V, is a partial
isometry the inclusion mulT C ker V; is valid. This fact makes natural
the following definition.

Definition 1.1. [27] An [H]-valued distribution function o(-) is called a
pseudospectral function of the system (1.1) (with respect to (-, \)) if the
Fourier transform V, is a partial isometry with the minimally possible
kernel ker V, = mul T'.

If the Hamiltonian system is regular, then ker V,, = {f € 9 : .]?0(8) =
0, s € R} and therefore Definition 1.1 turns into the definition of the
pseudospectral function from the monographes [2,32]. In these mono-
graphes all [H]-valued pseudospectral functions of the regular system are
parameterized in the form of a linear fractional transform of a Nevan-
linna parameter. Similar result for singular systems was obtained in our
paper [27]. Observe also that an existence of [H]-valued pseudospectral
functions of the singular Hamiltonian system in the case dim H = 1 was
proved in [14].

Assume now that system (1.1) is not necessarily Hamiltonian. Let
Y (-, \) be the [H]-valued operator solution of (1.1) with Y (a,\) = Iy
and let X(+) be an [H]-valued distribution function such that the Fourier
transform Vs : § — L2(3;H) defined by

(Vaf)(s) = fs) == /IY*(IZ s)A()f(t)dt, f()enH  (1.5)

is a partial isometry. Moreover, let mul Ty,;, be the multivalued part of
Tnin- Then according to [26] mul Thyi, C ker Vy and the same arguments
as for transform (1.3) make natural the following definition.
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Definition 1.2. [26] An [H]-valued distribution function X(-) is called a
pseudospectral function of the system (1.1) (with respect to Y (-, A)) if the
Fourier transform Vy is a partial isometry with the minimally possible
kernel ker Vs = mul Tipjy,.

Existence of pseudospectral functions 3(-) follows from the results
of [8,9,16,17]. In [16,17] a parametrization of all pseudospectral functions
Y(+) of the regular system (1.1) is given. This parametrization is closed
to that of the [H]-valued pseudospectral functions o(-) in [2,32]. Similar
result for singular systems is obtained in [26].

In the present paper we continue our investigations of pseudospectral
and spectral functions of symmetric systems contained in [1,26,27].

According to Definitions 1.1 and 1.2 the dimensions of pseudospectral
functions X(-) and o(-) are ny; = dimH and n, = dim H(< ny). In this
connection the following problems seems to be interesting:

e To define naturally a spectral and pseudospectral function of an
arbitrary dimension for the system (1.1) and describe all such functions
by analogy with [26,27].

e To characterize spectral functions of the minimally possible dimension

The paper is devoted to the solution of these problems.

Let Hy and 6 be subspaces in H, Ky € [Hp, H| be an operator isomor-
phically mapping Hy onto 6 and ¢(-, A) be the [Hy, H]-valued operator
solution of (1.1) with ¢(a, A) = Ky. Moreover, let o(-) be an [Hyl-valued
distribution function such that the Fourier transform V, : H — L?(o; Hy)
defined by (1.3) is a partial isometry. It turns out that mulT C ker V,
where mul T is the multivalued part of a symmetric relation T' D Ty, in
£ given by

T ={{y, f} € Tiax : y(a) € 0 and %i_r}rll)(Jy(t),z(t)) =0,z € dom Tyax }-

This statement makes natural the following most general definition of
pseudospectral and spectral functions.

Definition 1.3. An [Hyl-valued distribution function o(-) is called a
pseudospectral function of the system (1.1) (with respect to the operator
Ky) if the Fourier transform V, is a partial isometry with the minimally
possible kernel ker V, = mulT'.

A pseudospectral function o(-) with ker V,, = {0} is called a spectral
function.

It turns out that actually a pseudospectral function with respect to
the operator Ky is uniquely characterized by the subspace 6 C H.
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We parametrize all pseudospectral (spectral) functions for a given 6
and find a lower bound of the dimension of all spectral functions o(-)
corresponding to various #. More precisely the following three theorems
are the main results of the paper.

Theorem 1.4. Assume that system (1.1) is definite (see Definition 3.15)
and deficiency indices ny(Twmin) of Tmin Satisfy n—(Tmin) < Ng(Timin)-
Moreover, let 0 be a subspace in H and let 0% := H oS JO. Then a
pseudospectral function o(-) (with respect to Ky) exists if and only if
0> Co.

Theorem 1.5. Assume that 6 is a subspace in H such that 6% C 0 and
there exists only a trivial solution y = 0 of the system (1.1) such that
A(t)y(t) = 0 (a.e. onZ) and y(a) € 0 (the last condition is fulfilled
for definite systems). Moreover, let for simplicity n4(Tmin) = n—(Tiin)-
Then:

(1) There exist auxiliary finite-dimensional Hilbert spaces Hy C H
and H, an operator U = Uy € [Ho, H] isomorphically mapping Hy onto
0, Nevanlinna operator functions mo(\)(€ [Ho]), M(N\)(€ [H]) and an
operator function S(\)(€ [H,Ho]) such that the equalities

mr(\) = mo(A) + S(A)(Co(A) — CL(A)MN)LC1(N)S*(X), AeC\R
(1.6)

1 5—0
o-(s) = lim lim / Imm,(u + ic) du (1.7)
d=4+0e—>+0T J_§5

establish a bijective correspondence o(s) = UT(S. between all Nevanlinna
operator pairs T = {Co(X),C1(N)}, Cj(N) € [H], j € {0,1}, satisfying
the admissibility conditions

Jim 3 (Co(iy) — Cr(iy) M (iy) ™' Ci(iy) = 0 (1.8)
lim - M (iy)(Co(iy) — C1(iy) M (iy)) =" Co (iy) = 0 (1.9)

y—o0 W

and all pseudospectral functions o(-) of the system (with respect to U ).
Moreover, each pair T is admissible (and hence the conditions (1.8) and
(1.9) may be omitted) if and only if lim =M(iy) = 0 and lim y -
y—oo W Yy—o0
Im(M (iy)h, h) = +00, 0#heH.
(2) The set of spectral functions (with respect to U) is not empty
if and only if mulT = {0}. If this condition id fulfilled, then the sets

of spectral and spectral function (with respect to U) coincide and hence
statement (1) holds for spectral functions.



V. MOGILEVSKII 229

Theorem 1.6. Let system (1.1) be definite and let n—(Tinin) < 14 (Tnin) -
Then the set of spectral functions of the system is not empty if and only
if mul Ty, = {0}. If this condition is fulfilled, then the dimension n,
of each spectral function o(-) satisfies dim(H & H) < ny < dimH and
there exists a subspace  C H and a spectral function o(-) (with respect to
Ky) such that the dimension ny, of o(-) has the minimally possible value
ne = dim(H @ fAI)

Note that the coefficients mg(\), S(A) and M(X) in (1.6) are defined
in terms of the boundary values of respective operator solutions of (1.1)
at the endpoints @ and b. Observe also that m.(\) in (1.6) is an [Ho]-
valued Nevanlinna function (the m-function of the system) and (1.7) is
the Stieltjes formula for m,(-). If the system is Hamiltonian, 6 is a
self-adjoint linear relation in H @ H and 7 = 7%, then m,()\) is the
Titchmarsh—Weyl function of the system corresponding to self-adjoint
separated boundary conditions [13|. In the case of a non-Hamiltonian
system such conditions do not exist [22] and m, () corresponds to special
mixed boundary conditions (see Definition 4.16).

For pseudospectral functions o(-) of the minimal dimension n, =
dim(H @& H) formulas similar to (1.6) and (1.7) were obtained in [1].
These formulas are proved in [1| only for a parameter 7 of a special form;
therefore not all pseudospectral functions o(-) are parametrize in this
paper.

As is known [15,28] the set of spectral functions of a symmetric dif-
ferential operator [[y] of an order m coincides with the set of spectral
functions of a special definite symmetric system corresponding to {[y].
Moreover, this system is Hamiltonian if and only if m is even. According
to the classical monograph by N. Dunford and J. T. Schwartz [10, ch.
13.21] an important problem of the spectral theory of differential oper-
ators is a characterization of their spectral functions oy (-) with the
minimally possible dimension nuyi,. It follows from Theorem 1.6 that
Nmin = k£ + 1 in the case m = 2k + 1 and nyin = k in the case m = 2k.
Moreover, by using Theorem 1.5 one may obtain a parametrization of
Omin(+). In more details this results will be specified elsewhere.

For a differential operator {[y] of an even order m formulas similar to
(1.6) and (1.7) were proved in our paper [23|. These formulas enable one
to calculate spectral functions o(-) of an arbitrary dimension n, (% <
ne < m) corresponding to a special parameter 7; hence they do not
parametrize all spectral functions of [y].

In conclusion note that our approach is based on the theory of bound-
ary triplets (boundary pairs) for symmetric linear relations and their Weyl
function (see [4,6,7,12,19,22] and references therein).
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2. Preliminaries

2.1. Notations

The following notations will be used throughout the paper: $, H
denote Hilbert spaces; [H1, Hz] is the set of all bounded linear operators
defined on H; with values in Ha; [H] := [H,H]; C4 (C_) is the upper
(lower) half-plane of the complex plane. If #H is a subspace in H then
Py(€ [H]) denote the orthoprojection in H onto H and P (€ [H, H])

denote the same orthoprojection considered as an operator from H to H.

Recall that a linear relation T : Hg — H1 from a Hilbert space Hg
to a Hilbert space H;p is a linear manifold in the Hilbert Ho & Hi. If
Ho = H1 =: H one speaks of a linear relation T in H. The set of all
closed linear relations from Ho to #; (in ) will be denoted by C(Ho, H1)
(C(H)). A closed linear operator T' from Hg to H; is identified with its
graph grT" € C(Ho, H1).

For a linear relation T € C| (Ho, H1) we denote by dom T, ranT', ker T’
and mul T the domain, range, kernel and the multivalued part of T re-
spectively. Recall that mulT ia a subspace in H; defined by

mulT := {hl € Hy: {O, h1} S T}. (2.1)

Clearly, T' € C(Ho, 1) is an operator if and only if mul7" = {0}. For
T € C(Ho, H1) we will denote by T~ (€ C(H1,Ho)) and T*(€ C(H1,Ho))
the inverse and adjoint linear relations of T respectively.

Recall that an operator function ®(-) : C4 — [H] is called a Nevan-

linna function (and referred to the class R[H]) if it is holomorphic and
Im®(\) >0, A Cs.

2.2. Symmetric relations and generalized resolvents

As is known a linear relation A € 5(55) is called symmetric (self-
adjoint) if A C A* (resp. A = A*). For each symmetric relation A € C($))
the following decompositions hold

H=9H dmul A, A:grA'@rzlﬁA, (2.2)

where mul A = {0} ® mul A and A’ is a closed symmetric not necessarily
densely defined operator in $ (the operator part of A). Moreover, A =
A* if and only if A" = (A")*.

Let A= A* € C($), let B be the Borel o-algebra of R and let Eq(-) :
B — [$0] be the orthogonal spectral measure of Ay. Then the spectral
measure E4(+) : B — [$9)] of A is defined as E4(B) = Eyo(B)Py, B € B.
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Definition 2.1. Let A= A* ¢ CN(%) and let $) be a subspace in 5% The
relation A is called $)-minimal if there is no a nontrivial subspace 5 C
$H© H such that £3(6)$H’ C $’ for each bounded interval § = [a, ) C R.

Definition 2.2. The relations T € C~(5§j), j € {1,2}, are said to be
unitarily equivalent (by means of a unitary operator U € [$1,92]) if
T, =UTy with U =U @ U € [H?, 93]

Let A € C($) be a symmetric relation. Recall the following definitions
and results.

Definition 2.3. A relation A = A* in a Hilbert space HOH satisfying
A C Ais called an exit space self-adjoint extension of A. Moreover, such
an extension A is called minimal if it is $-minimal.

In what follows we denote by gg/lf(A) the set of all minimal exit space
self-adjoint extensions of A. Moreover, we denote by Self(A) the set of all
extensions A = A* € C($) of A (such an extension is called canonical). As
is known, for each A one has é?lf(A) # (. Moreover, Self(A) # ) if and
only if A has equal deficiency indices, in which case Self(A4) C Self(A).

Definition 2.4. Exit space extensions ﬁj = ﬁ;“ € 5(.%]), je{1,2},0of A
are called equivalent (with respect to ) if there exists a unitary operator
Ve [.%1 S 53,.%2 © $)] such that le and 112 are unitarily equivalent by
means of U = Iy @ V.

Definition 2.5. The operator functions R(-) : C\ R — [$] and F(-) :
R — [)] are called a generalized resolvent and a spectral function of A
respectively if there exists an exit space self-adjoint extension A of A (in
a certain Hilbert space ) D ) such that

R\ =Py(A=N)"'19H, AeC\R (2.3)
F(t) = P E7((—00,t)) 19, teR.

Proposition 2.6. Fach genemlized resolvent R(\) of A is generated
by some (minimal) extension A e Self(A). Moreover, the extensions

Ay, Ay e Self(A) inducing the same generalized resolvent R(-) are equiv-
alent.

In the sequel we suppose that a generalized resolvent R( ) and a spec-
tral function F(-) are generated by an extension A € Self (A). Moreover,
we identify equivalent extensions. Then by Proposition 2.6 the equality
(2.3) gives a leeCtIVG correspondence between generahzed resolvents R(\)
and extensions A € Self (A), so that each A € Self (A) is uniquely defined
by the corresponding generalized resolvent (2.3) (spectral function (2.4)).
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Definition 2.7. An extension A € S:H(A) (A € Self(A)) belongs to the
class Selfp(A) (resp. Selfp(A)) if mul A = mul A.

It follows from (2.2) that the operator A’ is densely defined if and
only if mul A = mul A*. This yields the equivalence

Self(A) = Selfy(A) < mul A = mul A* (2.5)

2.3. The classes R(Ho,H,) and R(H)

In the following Hj is a Hilbert space, H; is a subspace in Hg, Ho :=
7‘[0 © 7‘[1, P1 = PHo,?‘h and PQ = PHQ.

Definition 2.8. [24] A function 7(-) : C+ — C(Ho,H1) is referred to
the class R(Ho, H1) if:

(i) QIm(hl,ho) — HPQh()H2 >0, {ho,hl} S T()\), PYS (C+;

(i) (t(\) +iP)~t € [H1,Ho], X € Cy, and the operator-function
(7(X\) +4P;)~t is holomorphic on Cy.

According to [24] the equality

7(A) = {Co(N), C1(N)}
= {{hg, hl} € Ho®Hi: Co()\)h(] + 01(/\)h1 = 0}, AeCy (2.6)

establishes a Dbijective correspondence between all functions
7(-) € R(Ho,H1) and all pairs of holomorphic operator-functions Cj(-) :
Cy — [H;,Ho), j € {0,1}, satisfying

2Im(C1 (A PLCG () + Co(A) PCG(A) > 0,
(Co(A) —iCL(N)P1) "' € [Ho], AeCq. (27)

This fact enables one to identify a function 7(-) € R(Ho,H1) and the
corresponding pair of operator-functions Cj(-) (more precisely the equiv-
alence class of such pairs [24]).

If Hy = Ho =: H, then the class E(’H,H) coincides with the well-
known class ﬁ(’H) of Nevanlinna C| (H)-valued functions (Nevanlinna op-
erator pairs) 7(A\) = {Co(A),C1(N)}, A € Cy. In this case the class
RO(H) is defined as the set of all 7(-) € R(H) such that

7'()\) =0= {Co,cl}, AE C+, (2.8)

with § = 0* € C(H) and C; € [H] satisfying Im(C1Cj) = 0 and (Cy £
Z'Cl)fl S [7‘[]
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2.4. Boundary triplets and boundary pairs

Here we recall some facts about boundary triplets and boundary pairs
following [4,6,7,12,19,21,22].

Assume that A is a closed symmetric linear relation in the Hilbert
space £, My (A) = ker (A*— ) (X € C) is a defect subspace of A, ‘3\1)\(14) =
LA f e M(A)} and ne(A) == dimM(A) < oo, A € Cy, are

deficiency indices of A.

Definition 2.9. A collection II = {#Ho & H1,T,I'1}, where I'; : A* —
H;, j € {0,1}, are linear mapplngs is called a boundary trlplet for A*,

if the mapping T : f — {Fof,Flf} f € A* from A* into Ho @& H; is
surjective and the following Green’s identity

(f,9)—(f.d") = (C1£.T0g)#o — (Do f T1G)ae +i(Polo f, Palog)w, (2.9)

holds for all f = {f, f'}, §={g,g'} € A*.

A boundary triplet IT = {Ho @ H1,To,'1} for A* exists if and only if
n_(A) < ny(A), in which case dimH; = n_(A) and dim Ho = n4(A).

Proposition 2.10. Let IT = {Ho ® H1,T0,T'1} be a boundary triplet for
A* and let m be the orthoprojection in $ @ $ onto $H @ {0}. Then the
equalities

Y+ (A) = m1(To 1 MA(A) "1 A € Cir—(N) = m (Pl | Mi(A) ", A e Co
(2.10)
My (Mho = T1{y+ (M ho, Ay (A ho}, ho € Ho, A€ Cy (2.11)

correctly define holomorphic operator functions v4+(-) : Cy — [Ho, 9],
v—() : Co = [H1, 9] (y-fields of 1) and My (-) : C1 — [Ho, Hi] (the
Weyl function of I1).

v-field v4(+) (7=(-)) can be also defined as a unique [Hg, $]-valued
(resp. [H1,$]-valued) operator function such that vy (A\)Hgo C Ny(A)
(resp. Y—(A\)H1 C MA(A) ) and

FQ{’}/+(>\)ho, )\’y+()\)h0} = hg, ho € Ho, X € (C+ (2.12)
Plro{’y_()\)hl, )\'y_()\)hl} =hy, hi € H1, Ae C_. (2.13)
A boundary pair for A* is a generalization of a boundary triplet. Namely,

a pair {Ho @ H1,T'} with a linear relation I' : & H — Ho S H; is called
a boundary pair for A* if domT' = A*, the identity

(' 9)s = (f,9)s = (h1,20)25 — (ho, T1), + i(Paho, Pato)y, (2.14)
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holds for every {f & f',ho ® h1}, {g® ¢, 20 ® x1} € T and a certain
maximality condition is satisfied [6,22]. The following proposition is
immediate from [22, Section 3|.

Proposition 2.11. Let {Ho ® H1,T'} be a boundary pair for A* with
dimHg < o0 and let T'g : $H B $H — Ho be the linear relations, given by
Lo = PyypqoI'. Moreover, let

Kr =mul (mull') ={h1 € H; : {0 0,0® h;} € T'}, Kr C Hi.
(2.15)

Then: (1) domI' = A*; R
_(2) If Kr = {0},then ranTy [ M\(A) = Ho, A € Cy; ran Pl |
Mr(A) = Hi, A € C_, and the equality

grMy(N) ={ho@hi :{fSAf,ho® h1} €T with some f € Ny\(A)},
AeCy (2.16)

defines the operator function My (-) : C4 — [Ho, H1] (the Weyl function
of the pair {Ho & H1,I'}). Moreover,

gr M (M)
={{Piho® (h1+iPho} : {fSNf,ho®hi1} € I' with some f € N\(A)},
AeC_. (217)

3. Pseudospectral and spectral functions of symmetric
systems

3.1. Notations

For an interval Z = [a,b) C R and a finite-dimensional Hilbert space
H we denote by AC(Z; H) the set of all functions f(-) : Z — H, which are
absolutely continuous on each segment [a, 8] C Z.

Assume that A(-) : Z — [H] is a locally integrable function such that
A(t) > 0 a.e. on Z. Denote by £%(Z) the semi-Hilbert space of Borel
measurable functions f(-) : Z — H satisfying [(A(t) f(t), f(t))u dt < 0o
(see e.g. [10, Chapter 13.5]). The semi-definite inner product in £3 (Z)
will be denoted (-, -)a. Moreover, let L2 (Z) be the Hilbert space of equiv-
alence classes in £3 (Z) with respect to the semi-norm in £3(Z), ma be
the quotient map from £3(Z) onto LA (Z) and 7a{f, g} := {7af, Tag},
{f.9} € (LA(D)*.

For a given finite-dimensional Hilbert space K we denote by £ [K, H]
the set of all Borel measurable operator-functions F'(-) : Z — [K, H] such
that F(t)h € LX(Z), h € K.
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In the following for a distribution function o () : R — [H] we denote
by £2(o;H) the semi-Hilbert space of Borel-measurable functions g(-) :
R — H such that [p(do(s)g(s),g(s))(s) < oo and by L?(c;H) the a
Hilbert space of all equivalence classes in £2(o;H) with respect to the
seminorm || - |[z2 (o) (see e.g. [10, Chapter 13.5]). Moreover, we denote
by 7, the quotient map from £2(o;H) onto L?(o; H).

3.2. Symmetric systems

Let H and H be finite dimensional Hilbert spaces and let

H:=H®H®H (3.1)
v =dimH, U =dimH, n=dmH = 2v +v. (3.2)

A first order symmetric system of differential equations on an interval
T = [a,b), —00 < a < b < 00, (with the regular endpoint a) is of the form

Jy — B(t)y = A(t)y, teI, XeC, (3.3)

where J is the operator (1.2) and B(-) and A(:) are locally integrable
[H]-valued functions on Z such that B(t) = B*(t) and A(t) > 0 (a.e. on
7).

A function y € AC(Z; H) is a solution of system (3.3) if equality (3.3)
holds a.e. on Z. An operator function Y (-, \) : Z — [IC, H] is an operator
solution of (3.3) if y(t) = Y (¢, \)h is a solution of (3.3) for every h € K
(here K is a Hilbert space with dim KC < 00).

In the sequel we denote by Ny, A € C, the linear space of all solu-
tions of the system (3.3) belonging to £3(Z). According to [15, 18] the
numbers Nx = dim N, A € CL, do not depend on A in either C4 or C_.
These numbers are called the formal deficiency indices of the system [15].
Clearly N1 <n.

In the following for each operator solution Y (-,\) € LA [K,H] we
denote by Y (X) the linear operator from K to Ny given by (Y (A\)h)(t) =
Y(t,\)h, h € K.

Clearly, for any A € C the space N of all solutions y of (3.3) with
A(t)y(t) = 0 (a.e. on Z) is a subspace of Ny; moreover, N does depend
on A. The space N is called the null manifold of the system [15]. Denote
by 0 the subspace in H given by

O ={y(a) :y e N'}. (3.4)

As is known [14, 18, 30] system (3.3) gives rise to the maximal linear
relations Tmax and Tmax in £4(Z) and LA (Z) respectively. They are
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given by

Tmax = {{y, f} € (ﬁQA(I))Z 1y € AC(Z; H)
and Jy'(t) — B(t)y(t) = A(t)f(t) a.e. on I}

and Thax = TATmax. Moreover the Lagrange’s identity
(fa Z)A - (yag)A = [ya Z]b - (Jy((l), z(a)), {ya f}7 {Z,g} € Tmax (35)
holds with

[ya Z]b = ltlg}(‘]y(t)’ Z(t))a Y,z € dom Tmax-

Let Dy be the set of all y € dom Tpax such that [y, z], = 0 for all z €
dom Tmax. The minimal relation Tini, in L% (Z) is defined via Ty =
7ATa, where

To = {{3/7 f} € Tmax : Y € Dy, y(a) = O}' (3'6)

As was shown in [14,18,22,30] Tiin is a closed symmetric linear relation

in LA (Z), T, = Twmax and
Ny (Tiin) = Ny — dim N, N (Tmin) = N— — dim . (3.7)

With each subspace # C H we associate the subspace 8% C H given by
0 =He Jd={heH: (Jhk)=0, k €0}
Clearly ** = 6. Moreover, by [22, Proposition 4.19]

On = {y(a) 1y € Dy} (3.8)

Denote by Sym(H) the set of all subspaces 6 in H satisfying § C 8% or,
equivalently, (Jh,k) =0, h,k € 0.
The following three lemmas will be useful in the sequel.

Lemma 3.1. (1) If n € Sym(H), then dimn < v and dimn* > v+ v.
(2) For every n € Sym(H) there exists a subspace 8 C H such that
0> € Sym(H), dim6 = v + U (i.e., the dimension of 6 is minimally
possible) and 6 Nn = {0}.
(3) Let 6 be a subspace in H and 6* € Sym(H). Then there exist
an operator U € [H] and a subspace Hy C H such that U*JU = J and
ﬁHo =0, where

Ho:H@j‘\[@Hl. (3.9)
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Proof. (1) Let J and X be operators in H given by the block represen-
tations

Ig 0 0 —ilyg 0 Iy
T— _ _ L _
J=il|l 0 I 0o |, X=2 0 V2Iz 0

0 0 —Iy Iy 0 Iy

with respect to decomposition (3.1) of H. One can easily verify that
X JX =J,  X*'X=XX*=Iy. (3.10)

and the equality gr V,, = X gives a bijective correspondence between all
n € Sym(H) and all isometries V,, € [dom V},, H] with dom V;, C H ® H.
Hence for every n € Sym(H) one has dimn = dimranV;, < v and,
consequently, dimn™ > v + 1.

(2) Assume that n € Sym(H) and let U € [dom U, H| be an isometry
such that domU € H& H, —V,, C U and ran U = H. Then U = Uy, with
some 0y € Sym(H) and the obvious equality grV; NgrU = {0} yields
n N6y = {0}. Moreover, dimfy = dimranU = v and hence 0 := 6
possesses the required properties.

(3) Let Hy be a subspace in H with codim H; = dim 6%, let Hi- =
HSH; and let Hy C H be subspace (3.9). Then H = Hi-&{0}®{0} and
therefore H) € Sym(H). Let V; = Vigy and Vo = Vys. Since dim H =
dim 6*, one has dim dom V; = dim dom V5. Therefore there exist unitary
operators Uy € [H @ ﬁ] and Uy € [H| such that UydomV; = dom V5
and VoU; | dom Vi, = UyVy. Letting U= diag(U;, Us) one obtains the
operator U € [H] such that U*JU = J and UgrVi = grVs. This and
(3.10) imply that the operator U := X*UX satisfies U*JU = J and

UHJ = 6*. Therefore UH, = 6. O

Remark 3.2. If H; C H is a subspace from Lemma 3.1 (3), H{ =
H © H; and Hj is given by (3.9), then the following decompositions are
obvious:

Hy = Hi ® HioH & H,, H=Hj®H &HoH, ® H =Hy® Hi.
—— —— ——
H H H
(3.11)

Lemma 3.3. Let 0 be a subspace in H. Then:
(1) The equalities

T =Tyx := {%A{yvf} : {y7 f} € Tmax, ¥ € Dy, y(a) € QX} (3'12)
T* ={7afy, [} :{y. f} € Tmax, y(a) € 6} (3.13)
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defines a relation T € 5(L2A(I)) and its adjoint T*. Moreover, Ty C
T C Tiax

(2) The multivalued part mulT of T is the set of all fe $ such that
for some (and hence for all) f(-) € f there exists a solution y of the
system

Jy —Bt)y=A)f(t), teZ (3.14)

satisfying A(t)y(t) =0 (a.e. on Z), y(a) € 0% and y € Dy,
(3) The relation T is symmetric if and only if 6* N0y, € Sym(H).

Proof. (1) The inclusions Ty, C T C Tpax directly follow from (3.12)
and definitions of Ty and Thax. Next we show that the relation T*
adjoint to T is of the form (3.13). In view of the Lagrange’s identity (3.5)
for every {y, f} € Tmax with y(a) € 6 one has Ta{y, f} € T*. Conversely,
assume that {y, f} € T and prove the existence of {y, f} € Tmax such
that y(a) € 0 and ma{y, f} = {y, f}. Since Tiin C T, it follows that
T* C Tyax and hence there is {y1, f} € Tmax such that Ta{y1, f} =
{y,f}. Let h € 0*NOy,. Then in view of (3.8) there exists {2, g} € Tmax
such that z € Dy, z(a) = h and hence {Z,g} := 7a{z,9} € T. Applying
the Lagrange’s identity (3.5) to {y1, f} and {z, g} one obtains

(Jyr(a), k) = (y1,9)a — (f,2)a = (3,9) — ([,2) =0, heb*n 0x:.

Therefore y1(a) € (6*N6O5)*. Obviously (8% NOy,)* = 0+6x and hence
y1(a) = h + y2(a) with some h € 6 and y, € N. Let y = y; — ya. Since
{y2,0} € Tmax, it follows that a pair {y, f} := {y1, f} —{y2, 0} belongs to
Tmax- Moreover, y(a) = y1(a) — y2(a) = h and hence y(a) € 6. Finally,
may2 = 0 and therefore Ta{y, f} = ma{y1, f} = {y, f}. This completes
the proof of (3.13).

Statement (2) directly follows from (2.1).

(3) It follows from (3.8) that T' = TGXmejf,' Therefore to prove state-
ment (3) it is sufficient to prove the following equivalent statement: if
6% C 05, then the equivalence T' C T* <= 6* C 0 is valid.

So assume that 6% C 05, and let T C T*. If h,k € 6%, then by (3.
there exist {y, f},{z, 9} € Tmax such that y, z € Dy and y(a) = h, z(a)
k. Therefore ma{y, f}, ma{z,9} € T and hence

8)

(f,2)a = (y,9)a = 0.

This and the Lagrange’s identity (3.5) imply that (Jh, k) = 0. Therefore
0% C 6. If conversely 8* C 6, then the inclusion T' C T* directly follows
from (3.12) and (3.13). O
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Lemma 3.4. There exists a subspace 8 C H such that §* € Sym(H),
dim8 = v + v and the symmetric extension T = Tpx of Tmin defined by
(3.12) satisfies mulT = mul T}y .

Proof. Let n be a subspace in H defined by

n=A{y(a):y € Dy, A(t)y(t) =0 (a.e. on I)}. (3.15)

If h,k € n, then there exist {y, f},{z,9} € Tmax such that y,z € Dy,

y(a) = h, z(a) = k and A(t)y(t) = A(t)z(t) = 0 (a.e. on 7). Application
of the Lagrange’s identity (3.5) to such {y, f} and {z, g} gives (Jh,k) =
0, which implies that € Sym(H). Therefore by Lemma 3.1, (2) there
exists a subspace ¢ C H such that 6* € Sym(H), dim¢ = v + ¥ and
0* Nn={0}. Let T = Ty« be given by (3.12) and let f € mul7T. Then
according to Lemma 3.3, (2) there exists y € Dj such that y(a) € 0%,
A(t)y(t) = 0 (a.e. on Z) and {y, f} € Tmax for each f(-) € f. Since by
(3.15) y(a) € 0*Nm, it follows that y(a) = 0 and hence {y, f} € T,. Hence
{may, f} € Tmin and the equality may = 0 yields f € mul Ty, Thus
mulT C mul Ty, and in view of the obvious inclusion mul T, C mul T
one has mul T = mul Thin. ]

3.3. g¢-pseudospectral and spectral functions

In what follows we put ) := L3 (Z) and denote by $, the set of all
f € 9 with the following property: there exists 7€ 7 such that for some

(and hence for all) function f € f the equality A(t)f(t) = 0 holds a.c.
on (Bf? b).

Let 6 and Hf, be subspaces in H, let K = Ky € [H,, H] be an operator
such that ker Ky = {0} and KpH[, = 6 and let px (-, \)(€ [Hj, H]) be an
operator solution of (3.3) satisfying px(a,A\) = K, A € C. With each
f € 9, we associate the function f() : R — Hf, given by

fls) = /I St )AD (), f() €T (3.16)

One can easily prove that fA‘() is a continuous function on R.
Recall that an operator V' € [$)1, 2] is a partial isometry if ||V f|| =
|| f|| for all f € $H; S kerV.

Definition 3.5. A distribution function o(-) : R — [Hj] is called a g-
pseudospectral function of the system (3.3) (with respect to the operator
K = Ky) 1ff € L2(o; H}) for all f € $H, and the operator Vf = ng, fe
$p, admits a continuation to a partial isometry V, € [$), L?(o; Hj))]. The
operator V, is called the (generalized) Fourier transform corresponding
to o(-).
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Clearly, if o(-) is a g-pseudospectral function, then for each f(-) €
EQA( ) there exists a unique (up to the seminorm in £2(o; HJ)) function
F() € £2(o; H,) such that

=0.
L2 (o;Hy)

|70~ [ it )amsod
[a,8)

The function f(-) is called the Fourier transform of the function f ().

Remark 3.6. Similarly to [10, 33] (see also [26, Proposition 3.4]) one
proves that for each g-pseudospectral function o(-)

Vog=ma (/R PK () dU(S)Q(S)) , geLo:Hy), g()€g, (3.17)

where the integral converges in the seminorm of £3 (Z). Hence for each
function f(-) € LA (Z) with 7af € $ © ker V,, the equality (the inverse
Fourier transform)

f@=4w@$w@%)

is valid. Therefore the natural problem is a characterization of g-pseudo-
spectral functions o(-) with the minimally possible kernel of V.

The following lemma can be proved in the same way as Lemma 3.7
in [27].

Lemma 3.7. Assume that 0 and HY, are subspaces in H, o(-) is a q-
pseudospectral function (with respect to Ky € [Hf,H]), V, is the cor-
responding Fourier transform and T € 5(.6) is given by (3.12). Then
there exist a Hilbert space H O H and a self-adjoint operator fg in
Ho = H O kerV, such that Ty C T%* (here T%* € C(9) is the linear

relation adjoint to T in ).

By using Lemma 3.7 one can prove similarly to [27, Proposition 3.8]
the following theorem.

Theorem 3.8. Let the assumptions of Lemma 3.7 be satisfied and let
mulT" be the multivalued part of T (see Lemma 3.3, (2)). Then

mul 7" C ker V,, (3.18)

Definition 3.9. Under the assumptions of Theorem 3.8 a ¢g-pseudospec-
tral function o(-) of the system (3.3) with kerV, = mulT is called a
pseudospectral function .
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Definition 3.10. Let 6 and Hj, be subspaces in H. A distribution func-
tion o(+) : R — [H{] is called a spectral function of the system (3.3) (with
respect to Ky € [Hj, H]) if for every f € $, the inclusion f € £2(c; H})
holds and the Parseval equality ||ﬂ| £2(oH) = I1f]ls is valid (for f see
(3.16)).

The number n, := dimH{(= dimé) is called a dimension of the
spectral function o(-).

If for a given Ky € [Hf, H] a pseudospectral function o(-) exists, then
in view of (3.18) it is a ¢-pseudospectral function with the minimally
possible ker V,, (see the problem posted in Remark 3.6). Moreover, (3.18)
yields the following proposition.

Proposition 3.11. Let § and Hj, be subspaces in H and let T € C($)
be given by (3.12). If mulT # {0}, then the set of spectral functions
(with respect to Ky € [Hf, H]) is empty. If mulT = {0}, then the sets of
spectral and pseudospectral functions (with respect to Ky) coincide.

A connection between different g-pseudospectral functions correspon-
ding to the same subspace 6 C H is specified in the following proposition.

Proposition 3.12. Assume that 0 and Hf)j are subspaces in H and K; =
Ko € [Hy;, H] are operators such that ker K; = {0} and K;Hj; =0, j €
{1,2}. Then: (1) there exists a unique isomorphism X € [H{y, H{,| such
that K1 = K2 X; (2) the equality o2(s) = Xo1(s)X* gives a bijective
correspondence between all g-pseudospectral functions o1(-) (with respect
to K1) and oa(-) (with respect to Ka) of the system (3.3). Moreover oa(+)
is a pseudospectral or spectral function if and only if so is o1(-).

Proof. Statement (1) is obvious To prove statement (2) assume that o1 (-)
is a g-pseudospectral function (with respect to K1) and oa(-) is an [H{,]
-valued distribution function given by o2(s) = Xo1(s)X™. One can easily
verify that the equality (Ug)(s) = X 1*g(s), g = g(-) € L2(o1; H},), de-
fines a surjective linear operator U : £L2(oq; Hjy ) — L£2(09; Hjy,) satisfying
49l 2 (00:m1,) = 191l 22(0y:121,)- Therefore the equality Ug = mo,Ug, g €
L*(o1;HYy), g € g, defines a unitary operator U € [L?(a1; Hpy, ), L*(02; Hp,)].
Next assume that f € 5, f(-) € f and fj() is the Fourier transform
of f(-) given by (3.16) with vk (-, A) = vk, (-, A), j € {1,2}. Since obvi-
ously ¢, (t,s) = ¢k, (t,s)X, it follows that .]?2(8) = Xfl*]/”\l(s). Hence
fa=US € L?(09; HY),) and 7['0-2‘](/; = UTrUIﬁ = UVUlf. This implies that
the operator Vg]? = 7r02]?2, f € 9p, admits a continuation to the partial
isometry V,, = UV,, (€ [9, L*(02; Hf),)]) with ker V,, = ker V,,. There-
fore o9(+) is a g-pseudospectral function (with respect to K3); moreover,
o9(+) is a pseudospectral or spectral function if and only if so is o1(+). O
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Remark 3.13. It follows from Proposition 3.12 that a g-pseudospectral
(in particular pseudospectral) function o(-) with respect to the operator
Ky € [H{), H] is uniquely characterized by the subspace 6 C H.

Under the assumptions of Theorem 3.8 we let $H := H © mulT, so
that

H=mulT D H.

Moreover, for a pseudospectral function o(-) we denote by Vp =V, the
1sometry from oy to L?(o; HY) glven by VO o =V, | 9. Next assume
that § D § is a Hilbert space and T =T*ecC(9) with mul7 = mul 7.
In the following we put $g := .6 ©mulT, so that $Hy C Y)o and

5 = mulT&B%o.

Denote also by T o the operator part of T. Clearly, T o is a self-adjoint
operator in £g.

Proposition 3.14. Assume that 0 and Hj, are subspaces in H, o(-) is
a pseudospectral function (with respect to Ky € [Hf),H|) and T € C($)
is given by (3.12). Moreover, let Ly = V,$ and let A, = A% be the
multiplication operator in L*(o;H}) defined by

dom A, = {f € L*(o; Hp) : sf(s) € L2(o; Hj)
for some (and hence for all) f(-) € f}
Aof =mo(sf(s)), fedomA,, f()€f.

Then T is a symmetric extension of Tmin and there exist a Hilbert space
53 ) ﬁ and an exit space self-adjoint extension T ¢ C( ) of T such that
mulT = mulT and the relative spectral function

F( ) P@gET((_OO7t)) fﬁ

of T satisfies

(F(B)—F(a))f, f) = /[ ﬁ)(dU(S) (5): f(s)), f € $Hp, —00 < < B < 00.

7 (3.19)

Moreover, there exists a unitary operator V. € [99, L*(c; Hp)] such that

1% I 90 = Vo, and the operators fo and Ay, are unitarily equivalent by
means of V.

If in addition the operator A, is Lg-minimal, then the extension T is

unique(up to the equivalence) and T € éevlfo(T) (that is, T is $-minimal).
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Proof. By using Lemma 3.7 one proves as in [27, Proposition 5.6] the
following statement:

(S) There is a Hilbert space $§ D § and a relation T = T* €
C($) such that mul7 = mulT, T C T and (3.19) holds with F(t) =
nggEf((_oo’ t)) [ 9.

Moreover, by Lemma 3.3, (1) Tinin C 7. Therefore T' is a symmetric
extension T, and F'(+) is a spectral function of T'. Other statements of

the proposition can be proved as in [27, Proposition 5.6]. ]

Definition 3.15. [3,11] System (3.3) is called definite if N' = {0} or,
equivalently, if for some (and hence for all) A € C there exists only a
trivial solution y = 0 of this system satisfying A(t)y(t) = 0 (a.e. on Z).

Proposition 3.16. Let 0 be a subspaces in H and let o(-) be a pseu-
dospectral function (with respect to Ko € [Hj,H]). Then 0% N0y €
Sym(H). If in addition the system is definite, then 0* € Sym(H).

Proof. The first statement is immediate from Proposition 3.14 and Lem-
ma 3.3, (3). For a definite system 65 = {0} and hence 65, = H. This
yields the second statement. O

Remark 3.17. Proposition 3.16 shows that a necessary condition for
existence of a pseudospectral function for a given 6 is % N0y, € Sym(H).
Clearly this condition is satisfied if 6% € Sym/(H).

4. m-functions of symmetric systems

4.1. Boundary pairs and boundary triplets for symmetric
systems

Definition 4.1. Let 6 be a subspace in H. System (3.3) will be called
O-definite if the conditions y € N and y(a) € 6 yield y = 0.

Remark 4.2. If system is definite then obviously it is #-definite for any
0 € H. Hence 0-definiteness is generally speaking a weaker condition
then definiteness. At the same time in the case § = H(< 6% = {0})
definiteness of the system is the same as f-definiteness.

The following assertion directly follows from definition of T, and
(3.13), (2.1).

Assertion 4.3. (1) The equality mul Ty, = {0} is equivalent to the
following condition:
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(CO) If f(-) € LX(Z) and there exists a solution y(-) of (3.14) such
that A(t)y(t) =0 (a.e. on Z), y(a) =0 and y € Dy, then A(t)f(t) =0
(a.e. on 7).

(2) Let 0* € Sym(H), let system (3.3) be #-definite and let T" be the
relation (3.12). Then the equalities mul7 = {0}, mul7 = mul7™* and
mul 7 = {0} are equivalent to the following conditions (C1), (C2) and
(C3) respectively:

(C1) If f(-) € LA(Z) and there exists a solution y(-) of the system
(3.14) such that A(t)y(t) =0 (a.e. on Z), y(a) € 8* and y € Dy, then
A(t)f(t) =0 (a.e. on 7).

(C2) If f(-) € LA(Z) and y(-) is a solution of (3.14) such that y(a) € 0
and A(t)y(t) =0 (a.e. on Z), then y(-) € Dy and y(a) € 6*.

(C3) If f(-) € LA(Z) and there exists a solution y(-) of (3.14) satis-
fying A(t)y(t) = 0 (a.e. on Z) and y(a) € 0, then A(t)f(t) =0 (a.e. on
7).

The following proposition can be proved in the same way as Proposi-
tion 5.5 in [27].

Proposition 4.4. Assume that 0 and HY, are subspaces in H, o(-) is a q-
pseudospectral function (with respect to Ky € [Hj), H] Jand Lo := V9. If
system is O-definite, then the multiplication operator A, is Lo-minimal.

Below within this section we suppose the following assumptions:

(A1) 6 is a subspace in H and 6* € Sym(H). Moreover, system (3.3)
is f-definite and satisfies N_ < N,.

(A2) H; is a subspace in H, Hy C H is the subspace (3.9), U e [H]
is an operator satisfying U*JU = J and UHy = 0, I'y : dom Tiax — H is
the linear operator given by I'yy = U 'y(a), y € dom Trax, and

To= (T, T2, Ta, T3, 1) : dom Trax — Hi" & Hy ® H ® Hy & Hi-
(4.1)

is the block representation of I'; in accordance with the decomposition
(3.11) of HL N
(A3) Hp and Hyp C Hp are finite dimensional Hilbert spaces and

Fb = (FOb, fbv Flb)T : dom Tmax — ﬁb ©® fl D Hb (42)

is a surjective linear operator satisfying for all y, z € dom Tpax the fol-
lowing identity

[y, 2ls = (Toby, T162) — (C1vy, Lopz) + i( Py Loy, Py Tovz) + i(Toy, Tp2)
) (4.3)
(here Hi- = Hy © Hy).
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Remark 4.5. Existence of the operators U in assumption (A2) and T
in assumption (A3) follows from Lemma 3.1, (3) and [1, Lemma 3.4]
respectively. Moreover, in the case Ny = N_ (and only in this case) one
has Hp = H,, and the identity (4.3) takes the form

[y, 2] = (Copy, T1p2) — (T1y, Topz) + i(Toy, Tv2), 4, 2 € dom Trpax.

Observe also that I'yy is a singular boundary value of a function y €
dom Tmax at the endpoint b (for more details see [1, Remark 3.5]).

The following lemma directly follows from definition of the operator
I, and its block representation (4.1).

Lemma 4.6. Let Y (-,\) € LA[K,H] be an operator solution of (3.3).
Then

U™ 'Y (a,)) =T.Y(N) = (Pag, LY V), T1,Y(A\) T : K — Hy @ Hi,
(4.4)

where

Pap,Ta = (Do, T2, T, T3,) T+ dom Toax — Hi- & H, & H @ Hy.
(4.5)

Proposition 4.7. Let Hy and Hi C Ho be finite dimensional Hilbert
spaces and let F;- : dom Tmax — Hj, j € {0,1}, be linear operators given
by

Ho=Hi o HioHoH, Hi=H eHoHoH,  (46)

6 = (_F%m —F%a, i(fa - fb)7 I_‘Ob)—l— : domeax — H1J_ S, Hl S, ﬁ D ﬁb
(4.7)

1—‘/1 = (I%a? F%av %(fa + fb)u _Flb)T : domeax — HlJ' e H & .ff ) Hb‘
(4.8)

Then dim Ho = N4, dimH, = N_ and a pair {Ho®H1,T'} with a linear
relation I' : H & H — Ho © H1 defined by

I'={Zafy. [} Toy © Ty}t {y, f} € Tmax} (4.9)
is a boundary pair for Tyax such that Kp = {0} (for Kr see (2.15)).

Proof. The fact that {Ho @ H1,T'} is a boundary pair for Tinax as well
as the equalities dim Hg = N, dimH; = N_ directly follow from [22,
Theorem 5.3]. Next, according to [22] mull' = {{T'{y, Iy} : v € N}
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and hence Kr = {Ijy : y € N and T'{jy = 0}. Moreover, the equalities

U~10 = Hy and (3.11), (4.1) yield the equivalence
yla) €0 < T1,y=0, yecdomTmax. (4.10)
Since the system is #-definite, this implies the equality Kr = {0}. O

Definition 4.8. The boundary pair {#Ho @ H1,I'} constructed in Propo-
sition 4.7 is called a decomposing boundary pair for Ty, ax.

Let ’}:[0 and ?:[1 C 7:{0 be finite dimensional Hilbert spaces and I’; :
dom Tax — 7-'[]', j € {0,1}, be linear operators given by

Ho=Hi o HoH, Hi=HoHoH, (4.11)
6 - (_F%av i(fa - fb)? 1—‘Ob)—l— sdom Tnax — H1 @ ﬁ D ﬁb (412)
Fll = (F(2)(y %(fa + fb)a _Flb)—r s dom Trax — Hy @ ﬁ @D Hp. (413)

It follows from (4.6)—(4.8) that

HoIHlL@’Ho, 7‘[1=H1L697“[1 (4.14)
I = (—T'l,, 1) " : dom Tnax — Hi- @ Ho (4.15)
T = (Tge, T+ dom Trnax — Hi- @ Ha. (4.16)

Proposition 4.9. Let T' € C($)) be given by (3.12). Then:
(1) T is a symmetric extension of Tymin and the following equalities

hold:

T = {7a{y, [} : {4, f} € Tnaxs Y € Dy, T1oy =0,
I3,y=T%y=0,Ty=0} (4.17)
T* = {7a{y, f} : {y, £} € Tmax, [,y = 0} (4.18)
(2) For every {y, f} € T there exists a unique y € dom Tiax such
that T,y =0, may =y and .{y, f} G‘Tmz_xx forany f € f.

(3) The collection 11 = {Ho@H1, Lo, T1} with operators T; : T* — H,;
of the form

is a boundary triplet for T*. In (4.19) y € dom Tyax is uniquely defined
by {y, f} in accordance with statement (2).
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Proof. (1) Since U0 = Hy and U~'6* = Hy = Hi @ {0} @ {0} @ {0},
the equivalences (4.10) and

y(a) € 0% < (Ti,y =0, F%ay =T%y =0, fay =0), y € dom Tmax

are valid. This and (3.12), (3.13) yield (4.17) and (4.18).

By using #-definiteness of the system one proves statement (2) simi-
larly to [27, Proposition 4.5, (2)].

(3) Equalities (4.15), (4.16) and identity (2.14) for the decomposing
boundary pair yield the Green’s identity (2. 9) for operators I'g and T';.
To prove surjectivity of the operator (Fo, Fl) it is sufficient to show that

kerDgNkerTy =T,  dimHo=n(T), dimH; =n_(T). (4.20)

Clearly, {7, f} € kerTy N ker 'y if and only if there is {y, f} € Tmax
such that Ta{y, f} = {v, f} and I'l,y =0, T3,y =T7,y =0, Toy = 0,
I'yy = 0. Moreover, in view of (4.3) and surjectivity of the operator I',
the equivalence I'yy = 0 <= y € D, is valid. This yields the first
equality in (4.20). Next assume that

T ={{y, [} € Toax : ¥ € D, y(a) € ° NOS}.

It follows from (3.8) and (3.6) that dim(dom 7 /dom 7,) = dim(6* Néy,)
and T = 7AT. If {y,f} € T and 7a{y,f} = 0, then y € N and
y(a) € 0* C 6. Therefore in view of f-definiteness y = 0 and conse-
quently kera | 7 = {0}. This and the obvious equality dim(7/7,) =
dim(dom 7 /dom 7,) imply that

dim (T Tonin) = dim (6% N 63). (4.21)

In view of f-definiteness one has N6y = {0}. Since obviously % N6y, =
(04 6xn)%, it follows that

dim(0™ N6y;) =n — dim# — dim 6 = codim § — dim N (4.22)

Combining (4.21) and (4.22) with the well known equality n4 (7)
Nt (Tmin) — dim(7'/Thin) and taking (3.7) into account on gets ny (7)) =
Ny — codimf. Moreover, the equality U9 = Hy yields codimf =
dim Hi- and according to Proposition 4.7 dimHy = N, dimH; =
This implies that

ny(T) = dimHo — dim Hi-, n_(T) =dimH; —dim H{-  (4.23)

Now combining (4.23) with (4.14) one obtains the second and third equal-
ities in (4.20). O
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4.2. LQA—solutions of boundary problems

Definition 4.10. Let Hy and H; be given by (4.11). A boundary pa-
rameter is a pair

r=7(\) = {Co(\),C1(A\)} € R(Ho, H1), XeCq, (4.24)

where C;(\)(€ [H;,Ho]), j € {0,1}, are holomorphic operator functions
satisfying (2.7).

In the case Ny = N_ (and only in this case) Hy, = Hy, Ho = Hq =: H
and 7 € R(H). If in addition 7 = 7(X\) € R°(H) is an operator pair (2.8),
then a boundary parameter 7 will be called self-adjoint.

Let 7 be a boundary parameter (4.24). For a given f € £3 (Z) consider
the boundary value problem

Jy — Bty =M MA\(t)y+ A@)f(t), teZ (4.25)
Iy =0, CoMIGy—Ci(MIy=0, AeCy  (4.26)

A function y(-,-) : Z x C4 — H is called a solution of this problem if
for each A € Cy the function y(-, \) belongs to AC(Z;H) N L34 (Z) and
satisfies the equation (4.25) a.e. on Z (so that y € dom Tmax) and the
boundary conditions (4.26).

The following theorem is a consequence of Theorem 3.11 in [24] ap-
plied to the boundary triplet II for T*.

Theorem 4.11. Let under the assumptions (A1)—(A3) T be a symmetric
relation (3.12) (or equivalently (4.17)). If T is a boundary parameter
(4.24), then for every f € LA(Z) the problem (4.25), (4.26) has a unique
solution y(t,\) = y¢(t,\) and the equality

RN f=malys(-N\), fe®n, fef, reCy

defines a generalized resolvent R(A\) =: R:(\) of T. Conversely, for each
generalized resolvent R(X\) of T there exists a unique boundary parameter
7 such that R(A\) = R-(\). Moreover, if Ny = N_, then R.()) is a
canonical resolvent if and only if T is a self-adjoint boundary parameter
(2.8). In this case R-(\) = (Tr — X)L, where T, € Self(T) is given by

j:‘r - {%A{yv f} : {3/7 f} € TmaX)F%ay = 07 Coré]y - Cll—‘,ly = 0} (427)

Proposition 4.12. For any A € C\ R there erists a unique collec-
tion of operator solutions &1(-,\) € LA[H, HJ, &(+,A) € LA[Hy, H] and
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&(, M) € LA [ﬁ[, H] of the system (3.3) satisfying the boundary conditions

F%agl ()‘) = _IHf-v F%a&l()‘) =0, faé-l(>‘) = i-qbfl ()‘)7 reC \ R

(4.28)
FObgl()\> = O, = C+; Pﬁb,HbFObgl ()\) = 0, AeC_. (4.29)
1,60\ =0, T3&0) =1, T\ =T60), AeC\R

(4.30)
FObfg(A) = O, A\ E C+; PﬁijbFObfg()\) = 0, AeC_. (4.31)
.60\ =0, TH&N) =0, (T, —Tyé&(\) =15 AeC\R

(4.32)
FObfg()\) =0, A€ C+; Pﬁhﬂbrobfg()\) =0, MeC._. (4.33)

Moreover, for any A € C, (A € C_) there exists a unique operator
solution u (-, \) € LA [Hp, H] (resp. u_(-,\) € LA [Hyp, H]) satisfying the
boundary conditions

~

Tlus(N) =0, T?2us(N) =0, Tuus(\)=Tpur()), XeCs
(4.34)

FQ{,U+()\) = Iﬁb’ AeCyy Pﬁhﬂbrobu_ ()\) = IHb) AreC_. (435)
Proof. Let {Ho @& H1,I'} be the decomposing boundary pair (4.9) for
Tmax. Then the linear relation I'g = PHO@{O}F : 9% — Ho for this triplet

1S

To = {{7afy, 1,00y} : {y, f} € Tmax} (4.36)

By using (4.36) one proves in the same way as in [27, Proposition 4.8]
that

Lo | 9 (Tmin) = {Faly, A} oy} : y € N3}, A€ C\R.  (4.37)

Since by Proposition 4.7 Kr = {0}, it follows from Proposition 2.11 that
ranTo | Ma(Timin) = Ho and (4.37) yields ThNy = Ho, A € C4. More-
over, by Proposition 4.6 dim A, = dim H( and hence for each A € C,
the operator I’y | Ny isomorphically maps Ny onto Hy. Similarly by
using (4.37) one proves that for each A € C_ the operator PiI'| | N,
isomorphically maps N) onto Hj;. Therefore the equalities Z,(\) =
Ty T ML A eCq,and Z_(\) = (P | Na)~L, A € C_, define the
isomorphisms Z () : Hop — N) and Z_(\) : H1 — N, such that

T)7Z.(\) =Ip,, N€ECy;  PTLZ_(\)=1Iy, Ae€C_. (4.38)
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Assume that the block representations of Zi(\) are

Ze(A) = (&), &), &), us(N) : HE @ Hy & H e Hy, — N,

AeCy (4.39)
Z_(\) = (&1(N), &(N), &N, u—(N) : Hi © Hy @ H®Hy — N,
AeC_ (4.40)

and let 51(7A) € [’QA[HlJ_vH]a 52(7)\) € £2A[H17H] ) §3(7A) € EzA[ﬁ7H]7
uy (-, A) € LA[Hp, H] and u_(-, \) € LA [Hp, H] be the respective operator
solutions of (3.3). It follows from (4.7) that

Pl = (-, =%, i(Ta = Tv), Py, 5, Top) "+ dom Trpax
S HIf o H o HoH, (4.41)

Now combining (4.38) with (4.7), (4.39), (4.41), (4.40) and taking the
block representations of I3, and Iy, into account one gets the equalities
(4.28)—(4.35). Finally, uniqueness of specified operator solutions is im-
plied by the equalities ker I'y [ Ny = {0}, A € C,, and ker P, [ N} =
{0}, xe C_. O

Proposition 4.13. The Weyl function My = M, (\), X € C4, of the
decomposing boundary pair {Ho ® H1,T} for Tmax admits the block rep-
resentation

My My Mz My

Moy Moy Moz Moy 1 Py
M, = Hr o HHOHDH
+ M3z Msza Mszz Msy L ! 2
My My Myz My Ho
S HoH & HoM, (4.42)
H1

with entries M, = Mj(X\), A € C4, defined by

My (\) =Th.600), je{l,2}, ke {1,2,3);

Mjs(N) = Th,ur(N), je€{1,2} (4.43)
Msp(\) = Ta&i(N), k € {1,2}; Maz(\) = To&3(N) + 115,
Msa(N) = Taup (V) (4.44)

Map(A) = =T1ée(A), k€ {1,2,3f;  Maua(A) = —Tpus(A).  (4.45)
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Moreover, for every A € C_ one has

5 =T6E(0N), ke {12}, je{1,2,3}

M (3) = Thu-(V), k€ {12}, (4.46)
B =Tag (), j € {1,2h Mp(Y) =Tags(V) + 415,
M3(N) = Tau_(N). (4.47)

Proof. Let Z4 () be the same as in the proof of Proposition 4.12. Then
by (4.9)

{WAZ+(>\)h0 D )\TFAZ+()\)h0, F6Z+()\)h0 D F/1Z+()\)h0} € F,
hg € Ho, A € (C+,

{WAZ_(/\)hl O ATAL ()\)hl, F6Z_(A)h1 D FQZ_()\)hl} el
hy € H1, AeC_

and in view of (2.16) and (2.17) one has
PLZ4(N) = My (NTHZ4 (V; (T4 +iPaTh)Z- () = ML) PITHZ- (M),

(the first equality holds for A € C,, while the second one for A € C_).
This and (4.38) imply that

[ Z(\) = My(N\), AeCy; (D) +iPoTG)Z_(N) = ME(X), AeC_.
(4.48)
It follows from (4.7) and (4.8) that

/1 + ZP2F6 = (Fém F%a’ %(fﬂ + fb)a *)T : dom Tax
S HeoH e HoMH, (4.49)

(the entry * does not matter). Assume that (4.42) is the block represen-
tation of M4 (\). Combining the first equality in (4.48) with (4.8), (4.39)
and taking the last equalities in (4.28), (4.30), (4.32) and (4.34) into ac-
count one gets (4.43)—(4.45). Similarly combining the second equality in
(4.48) with (4.49) and (4.40) one obtains (4.46) and (4.47). O

Using the entries M;; = M;;(\) from the block representation (4.42)
of M ()) introduce the holomorphic operator-functions mg = mg(A)(
[Ho]), S1 = Sl()\)(e [Ho,H()D, So = SQ()\)(G [Ho,Hl]) and M, =
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M, (N)(€ [Ho, H1]), A € Cy, by setting

My Mo M3 0

M. M. Moy —2iT ~
21 22 23 H,y :HfGBHﬁBH@fh

mo =
0 M3z, Mszy Mg 0 -
0 —3iIg, O 0 Ho
S HoH o Ho®H, (4.50)
Ho
Mo M3 My
Moo Mo Moy 5o
S1 = » Hi®oHOH
! My Msz— 4T My | 2 —"2
Iy, 0 0 Ho
— H®H & H®H, (4.51)
Ho
My Mo Ma3 —1In, .
So = | M31 Mss M33—|—%Iﬁ 0 :Hf@Hl@H@Hl
My My My 0 H,

— H1 & H ®Hpy (4.52)
————

Ha

| May My My o
M+= Mso Mg M3y | : HHd H D Hyp
—_——
My My My,
S H & H®H, (4.53)

—_——

Ha

Lemma 4.14. Let II = {(Ho® Ha, FOZFI} be the boundary triplet (4.19)
for T*. Moreover, let Z(-,\) € LA[Ho,H] and Z_(-,\) € LX[H1,H] be

operator solutions of (3.3) given by
Z—‘r(tu >‘) = (§Z(t7 )‘)763(757 )‘)7U+(tv A)) cHy @ ﬁ D ﬁb — H, A€ (C-‘r
(4.54)

Z.*(tv)‘) = (52(ta >‘)7£3(t¢ A)vu*(ta)‘)) cH1 ® ﬁ@Hb —H, xeC_
(4.55)
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and let M (-) be the operator-function (4.53). Then:
(1) The following equalities hold

U2, (a,\) = (PH7HOF.GZ+(A)> _ (Slw> Ho— Ho® H, AeC,

F%aZJr()\) 0
(4.56)
e = () = (B7) A mesat aec
(4.57)

(2) ~-fields 4+ (-) of the triplet 1T are
(N =7maZy(V), AeCq; 4-(N) =maZ-(N), AeC_ (458

and the Weyl function of I1 coincides with My (\).
(3) If T is a boundary parameter (4.24), then

(Co(A) = C1(A)M4(N) ™" € [Ho]
and

—(T(N) + ML(N) ™" = (Co(N) = CL(N)ML(N)'C1(N), A eCy.
(4.59)

Proof. (1) It follows from (4.5) and Propositions 4.12, 4.13 that
PH,HOFGZ+()‘) = Sl()‘)’ F%aZJr()‘) =0, 2eC4 (460)

and Pgg,TaZ-(\) = S3(\), T1,Z_(\) = 0, A € C_. This and Lemma
4.6 yield (4.56) and (4.57).

(2) Let 4+ () be given by (4.58) and let Z4 () be the same as in the
proof of Proposition 4.12. Comparing (4.54) and (4.55) with (4.39) and
(4.40) one gets Z4(\) =
Zo(N) | Ho, A€ Cp,and Z_(\) = Z_(\) | Hi, A € C_. Therefore by
(4.38)

ThZ,(Nho = ho, ho € Ho, A € Cy; PITYZ_(A\)hy = hy, hy € H1, A e C_

(4.61)
and in view of (4.15) Tl = (~T},, PiT%) 7 with P := Py, This
and (4.14), (4.15) imply that

0,H1"

.z, (\)=0, xeCy; Ti,Z (\)=0 XxeC_ (4.62)
[0Z¢(N) =1y, NeCy;  PIGZ (\)=1Iy, AeC_. (4.63)
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It follows from (4.62) that 44 (A\)Ho C M(T), y-(N)H1 C 9N\ (T) and
(4.63) yields

Loy (Mho, My (Mho} =T0Z4(A\ho = ho,  ho € Ho, A€ Cy
Pilo{A-(Nh1, M- (Ahiy = PITYZ_(\hy = hy, hieMy, AeC_.

Therefore according to definitions (2.12) and (2.13) §(-) are 7-fields of
IT.

Next assume that M, (+) is given by (4.53). Then in view of (4.42)
and (4.14) M4 (X) = Py 5, M+ (X) [ Ho and by using (4.48) one obtains
0024 () = Py, 5, D124 (V) | Ho = Py, 5, M (V) T Ho = My ()

(4.64)

Hence T {44 (A)ho, My (Aho} = T4 Z4 (\ho = My (Nho, ho € Ho, A €
C4, and according to definition (2.11) My (-) is the Weyl function of II.
Statement (3) follows from [24, Theorem 3.11] and [20, Lemma 2.1].

O

Theorem 4.15. Let 7 be a boundary parameter (4.24), let
Co(A) = (Coa(A), Co(N), Cop(N)) : Hy & H & Hy, — Ho (4.65)
C1(A) = (C1a(A), C1(N), C1o(N)) : Hy & H & Hy, — Ho (4.66)

be the block representations of Co(A\) and C1(\) and let
B(N) := (0, Coa(N), Co(A) + £C1(N), =C1a(N))
‘Hi ® Hy & H® H| — Ho. (4.67)

Then for each A € C4 there exists a unique operator solution v,(-, ) €
L3 [Ho, H] of the system (3.3) satisfying the boundary conditions

Mo = By g CoNThor () = CLNor (V) = B(N)
(4.68)

(here Py gt i the orthoprojection in Ho onto Hi- in accordance with
decomposition (3.11) of Hy ).

Proof. Let Zo(-,\) € LA[Hp, H] and Z,(-,\) € LX[Ho,H] be operator
solutions of (3.3) given by

Zo(t7 )‘) = (gl(ta A)) 52(t7A)7 63(757)‘)7 0)
" Hf o HioH® H »H, AeCy (4.69)
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and (4.54) respectively and let Sa(A) be defined by (4.52). Then in view
of Lemma 4.14,(3) the equality

vr(t, A) = Zo(t, A)+ 21 (8, M) (Co(N) = CLN M (X)) T C1(1) $2(N), A € Ty

(4.70)
correctly defines the solution v (-, A) € £4 [Ho, H] of (3.3). Let us show
that this solution satisfies (4.68).

It follows from (4.5) and Propositions 4.12, 4.13 that

Pu o LaZo(A) = mo(A) = 3Jo, T1,Z0(A) = =Py ris A€ Cy,
(4.71)

where Jy € [Hp| is the operator given by

0 O 0 0
0 0 0 —Iy N .
Jo = Pum,J [ Hp = . ''| €e[Hi @ Hi® H ® Hy|.
0 0 O Zfﬁ 0
0 Ip, 0 0 Ho

(4.72)

Combining (4.70) with the second equalities in (4.71) and (4.60) one gets
the first equality in (4.68). Next, by (4.63) and (4.64)

(Co(MTG = C1(AT))vr(A) = (Co(MTh — CL(MNTT) Zo(A)
+ (Co(MTh — CLINT Z1 (M) (Co(A) — CLN ML (X)L C1L(N) S2(N)
= Co(MIHZo(A) + C1(N)(S2(N) — T Zo(N)).

Moreover, by (4.28)—(4.33) and (4.43)—(4.45) one has
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(4.66) imply that

CU(A)fovT(/\) - Cl ()\)flvT()\)

R 0 Iy, 0 0
= (Coa(N),Co(N),Cop(A)) {0 0 Iz O
0 0 0 0
R 00 0 —Ip
+ (C1a(N),C1(N), Cis(N)) [0 0 215 0 | =®(N)
00 0 0

Thus the second equality in (4.68) is valid. Finally uniqueness of v (-, A)
is implied by uniqueness of the solution of the problem (4.25), (4.26) (see
Theorem 4.11). O

4.3. m-~functions

Let 7 be a boundary parameter (4.24), let v-(-,\) € L% [Ho, H] be
the operator solution of (3.3) defined in Theorem 4.15 and let Jy be the
operator (4.72).

Definition 4.16. The operator function m,(-) : C4 — [Hy| defined by
mr()‘) = PH,HoFaUT()‘) + %J()a AeCy (473)

is called the m-function corresponding to the boundary parameter 7 or,
equivalently, to the boundary value problem (4.25), (4.26).

In the following theorem we provide a description of all m-functions
immediately in terms of the boundary parameter 7.

Theorem 4.17. Let the assumptions (A1)—(A3) after Proposition 4.4 be
satisfied and let Ho and Hi be finite-dimensional Hilbert spaces (4.11).
Assume also that My (-) is the operator-function defined by (4.42)—(4.45)
and mo(-), Si(-), Sa(-) and M (-) are the operator-functions (4.50)-
(4.53). Then:

(1) mo(-) is the m-function corresponding to the boundary parameter
T0 — {17‘.[0’07"11,7"[0}"

(2) for every boundary parameter T of the form (4.24) the correspond-
ing m-function m.(-) admits the representation

mr(A) = mo(A) + S1(A)(Co(A) — CL(A) My (A) 7' Cr(M)S2(A), A€ Cy.
(4.74)

Proof. Applying the operator Pym,I'; to the equality (4.70) and tak-
ing the first equalities in (4.71) and (4.60) into account one gets (4.74).
Statement (1) of the theorem is immediate from (4.74). O
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Proposition 4.18. The m-function m,(-) belongs to the class R[Hy] and
satisfies

Tmm, (\) > /I V(L N)A@G) (N dE, A€ Ty (4.75)

If Ny = N_ and 7 is a self-adjoint boundary parameter, then the in-
equality (4.75) turns into the equality.

Proof. It follows from (4.74) that m.(-) is holomorphic in C,. Moreover,
one can prove inequality (4.75) in the same way as similar inequalities
(5.10) in [1] and (4.66) in [25]. Therefore m,(-) € R[Hy]. O

4.4. Generalized resolvents and characteristic matrices

In the sequel we denote by Y (-, A) the [H]-valued operator solution
of (3.3) satisfying Yz (a,\) = U, AeC.
The following theorem is well known (see e.g. [5,9,33]).

Theorem 4.19. For each generalized resolvent R(X) of Tiin there exists
an operator-function Q(-) € R[H] (the characteristic matriz of R(\))
such that for any f € $ and A € C4

R()\)f: TA </I Yz (2, M) (QN) + %sgn(t — x)J)Yg(t,X)A(t)f(t) dt) )

fef. (4.76)

Proposition 4.20. Let 7 be a boundary parameter (4.24) and let R (\)
be the corresponding generalized resolvent of T' (and hence of Twin) in
accordance with Theorem 4.11. Moreover, let Py, 1 and Iy g, be the

orthoprojection in Hy onto Hf and the embedding operator of Hf into
Hy respectively (see decomposition (3.11) of Hy). Then the equality

mT()\) _%IHLH 1 1
Q()‘): _1lp 01’0 :HO@Hl %HO@Hl, )\EC+
2" Fo. i — T
(4.77)

defines a characteristic matriz Q(-) of Rr(\).

Proof. Assume that §.(-) are y-fields and M, (+) is the Weyl function of
the boundary triplet Il = {#Ho & H1,L0,'1} for T defined in Proposi-
tion 4.9. Moreover let

Br(A) i= —(1(A) + My (N) ™! = (Co(N) — CLNML (V) 1C1(N), A € Ty
(4.78)
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(see (4.59)). Then according to [24, Theorem 3.11] the Krein type for-
mula for generalized resolvents

RO = R:(\) = (Ao = V)" + 9N B W), AeCy (479)
holds with the maximal symmetric extension Ay of T" given by
Ay :=ker Iy
= {Fady, 3 {y, £} € Tonars Thay = 0, T,y = 0, Ty = Toy, Topy = 0}
According to [25, (4.36)] for each f € § and A € C.
(Ao—=N7'f
=TA </I Y5 (2, A)(Q0(N) + Tsegn(t — x)J)Y%(t,A)A(t)f(t)dt) , (4.80)

where f(-) € f and Qo()\) is the operator function defined in [25, (4.30)]
(actually (4.80) is proved in [25] for definite systems but the proof is
suitable for the case of a #-definite system as well). One can easily verify
that Qg(\) admits the representation

mo (A —1r
Qo(\) = 10() 2 o | @ HE — Hy @ Hi, AeCy
_51311410,111L 0

(4.81)

with mo(\) given by (4.50). Next, Zy(t,\) = Y5 (t, VU~ Z4(a, \) and
in view of the second equality in (4.58) and [1, Lemma 3.3] one has

AN f = %’ ZX (6, N)A®) f(t) dt

= ;(ﬁ*lz'_(a,X))*Y;(tﬁmwﬂw dt, f()ef.

This and the first equality in (4.58) imply that for any fe Hand X € Cy

AN B (NN f
= 1 [V ( N0 240 \)Br WO 20 X)) VE (AW S (1) de

= M%Yg(wA)ﬁ(/\)Yg(t,X)A(t)f(t) dt, f()€f,
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(here we made use of (4.56) and (4.57)). Combining these relations with
(4.79) and (4.80) one obtains the equality (4.76) with
_ A) + S1(A)Br(N)S2(N) —31
Q) = () 4 G = (O SVB NS0 3
_§PHO HJ_ 0
e

Hence () is a characteristic matrix of R;(\) and in view of (4.74) and
(4.78) the equality (4.77) is valid. O

5. Parametrization of pseudospectral and spectral func-
tions

As before we suppose in this section (unless otherwise stated)the as-
sumptions (A1)—(A3) specified after Proposition 4.4.

Let T be a symmetric relation (3.12). Then according to Theorem
4.11 the boundary value problem (4.25), (4.26) induces parametrizations
R(\) = Ry(\), T = T, and F () = Fr(-) of all generalized resolvents
R()), exit space extensions T’ € Self (T) and spectral functions F () of T
respectively by means of the boundary parameter 7. Here T} (e Self (1))
is the extension of T' generating R, (\) and F-(-) is the respective spectral
function of 7'

Definition 5.1. Let M, = M, (\) be given by (4.53). A boundary
parameter 7 of the form (4.24) is called admissible if

Jim 5Py, 51, (Coliy) — Caiy) Mo (i)™ Ca (i) = 0, (5.1)
Jm M (i) (Coliy) — Cr(iy) My (i)~ Coliy) [ Hi = 0. (5:2)

Proposition 5.2. An extension T =TT belongs to Selfo(T') if and only
if the boundary parameter T is admissible. Therefore the set of admissible
boundary parameters is not empty.

Proof. According to Lemma 4.14, (2) M (-) is the Weyl function of the
boundary triplet IT for 7. Therefore the required result follows from [26,
Theorem 2.15]. O

In the following with the operator U from assumption (A2) we asso-
ciate the operator U = Uy € [Hy, H] given by U = U | Hy. Moreover,
we denote by ¢y (-, \) the [Ho, H]-valued operator solution of (3.3) with
ou(a,\) =U. Clearly ker U = {0} and UH = 6.
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Theorem 5.3. Let 7 be an admissible boundary parameter, let F(-) =
F.(-) be the corresponding spectral function of T and let m,(-) be the
m-function (4.73). Then there exists a unique pseudospectral function
o(-) = o-(-) of the system (3.3) (with respect to U € [Hy, H]) satisfying
(3.19). This pseudospectral function is defined by the Stieltjes inversion
formula

1 s—0
or(s) = lim lim / Imm,(u + ic) du. (5.3)
0—=+0e—=+0m J 5

Proof. Assume that Q(-) € R[H] is the characteristic matrix (4.77) of
R;(\) and 3(-) : R — [H] is the distribution function defined by

1 f[s—¢

¥(s) = lim lim / Im Q(u + i) du.
0—=+0e—=+0T J_5

Using (4.76) and the Stieltjes—Livsic formula one proves as in [9,33] the

equality

(F(8) - F(a)]. J) = /[ @) Tl T €

—o<a<f<oo (54)

with the function ]‘A‘O : R — H defined for each f € 9 by fo(s) =
JYZ(t, s)A(t) f(t)dt, f(-) € f. Let f € $p, let
I

~

f(s) = /I Sut AW (D) d, f()e T (5.5)

and let o(-) = o-(-) be the distribution function (5.3). Since ¢y(t,A) =
Ya(t, A) [ Ho, it follows that f(s) = Pum,fo(s). Moreover, by (4.77) one
has
Y(s) = ("89) 8) . Ho ® H{ — Ho @ Hi*.

This and (5.4) yield the equality (3.19). Next by using (3.19) and Propo-
sition 5.2 one proves that o(-) is a pseudospectral function (with respect
to U) in the same way as in [26, Theorem 3.20] and [27, Theorem 5.4].

Let us prove that o(-) = o,(+) is a unique pseudospectral function sat-
isfying (3.19) (we give only the sketch of the proof because it is similar to

that of the alike result in [27, Theorem 5.4]). Let () be a pseudospec-
tral function (with respect to U) such that (3.19) holds with o (-) instead
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of o(+). Then according to [10] there exists a scalar measure p on Borel
sets in R and functions ¥;(-) : R — [Hy], j € {1, 2}, such that

o(8) - o(a) = /5 Wy (s) du(s), 3(8) — 5(a) = / s (s) du(s), 8= [0, B).

’ (5.6)
Let W(s) := Wi(s) — Wa(s) and let y9 be the Lebesgue measure on Borel
sets in Z. Denote also by G the set of all functions f(-) : R — Hp
admitting the representation (5.5) with some f € $);. Asin [27, Theorem

5.4] one proves that for each fe G there is a Borel set C 7 C R such that

~

p(R\ Cf) =0and po({t € Z: A(t)pu(t,s)¥(s)f(s) #0}) =0, s € Cr.

(5.7)
Let s € C7 and let y = y(t) = eul(t, s)\I'(S)f(s) Then y is a solution
of the system (3.3) with A = s and by (5.7) A(t)y(t) = 0 (uo a.e. on
7). Hence y € N. Moreover, y(a) = UV¥(s)f(s) € 0. Since system is
0-definite, this implies that y = 0 and, consequently, \I!(s)f(s) = 0. Thus
for any f € G there exists a Borel set C 7C R such that

o~

(R Cf) =0 and U(s)f(s) =0, s€ Cs. (5.8)

Next we prove the following statement:
(S) for any s € R and h € Hj there is f() € G such that f(s) = h.
Indeed, let s € R, # € Hy and (f(s),h/) = 0 for any J?(,\) €
Put y = y(t) = ¢u(t,s)h’. Then for any § € Z one has fz(-)
[ et )A(t)y(t) dt € G and, consequently,
[a,5]

g.

0= (Fals), ') = /[ RCARRLOVON SR
- /[ AUy peT

Hence y € N. Moreover, y(a) = Uh' € 6 and #-definiteness of the system
implies that y = 0. Therefore ' = 0, which proves statement (S).

Next by using (5.8) and statement (S) one proves the equality ¥(s) =
0 (p-a.e. on R) in the same way as in [27, Theorem 5.4]. Thus ¥;(s) =
Us(s) (p-a.e. on R) and by (5.6) o(s) = o(s). O

Corollary 5.4. (1) Let the assumption (Al) from Section 4.1 be sat-
isfied. Then the set of pseudospectral functions (with respect to Ky €
[H{), H]) is not empty.
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(2) Let system (3.3) be definite, let N_ < N and let 0 be a subspace
in H. Then the set of pseudospectral functions (with respect to Ky €
[H{), H]) is not empty if and only if 0 € Sym(H).

Proof. Statement (1) is immediate from Proposition 5.2 and Theorem
5.3. Statement (2) follows from statement (1), Remark 4.2 and Proposi-
tion 3.16. 0

A parametrization of all pseudospectral functions o(-) (with respect
to U € [Hy, H]) immediately in terms of a boundary parameter 7 is given
by the following theorem.

Theorem 5.5. Let the assumptions be the same as in Theorem 4.17.
Then the equality

mr(A) = mo(A) + S1(A)(Co(A) = C1(A) M+ (X)) "1C1(A)S2(V), A€ Cy

(5.9)
together with formula (5.3) establishes a bijective correspondence o(s) =
o-(s) between all admissible boundary parameters T defined by (4.24)

and all pseudospectral functions o(-) of the system (3.3) (with respect to
U e [Ho,H])

The proof of Theorem 5.5 is based on Theorems 5.3, 4.17 and Propo-
sitions 3.14, 5.2. We omit this proof because it is similar to that of
Theorem 5.7 in [27].

The following theorem directly follows from Theorem 5.3 and Propo-
sitions 3.14, 4.4.

Theorem 5.6. Let the assumptions (A1) and (A2) from Section 4.1 be
satisfied. Then there is a one to one correspondence o(-) = 05 (-) between

all extensions T € Sfé/lfo(T) and all pseudospectral functions o(-) of the
system (3.3) (with respect to U € [Hy, H]). This correspondence is given
by the equality (3.19), where F(:) is a spectral function of T' generated
by T'. Moreover, the operators Ty (the operator part of T) and A, are
unitarily equivalent and hence they have the same spectral properties. In
particular this implies that the spectral multiplicity of Ty does not exceed
dim Ho.

Corollary 5.7. Let under the assumptions (A1)—(A3) 7 be an admissible
boundary parameter, let o(-) = o.(-) be a pseudospectral function (with
respect to U) and let Vo o(= Vs | $0) be the corresponding isometry
from $o to L*(o;Hp) . Then Vo, is a unitary operator if and only if
the parameter T is self-adjoint. If this condition is satisfied, then the
boundary conditions (4.27) defines an extension T™ € Selfo(T') and the
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operators TVOJ (the operator part of TVT) and A, are unitarily equivalent
by means of Vp »

Proof. The first statement is a consequence of Proposition 3.14 and Theo-
rem 4.11. The second statement is implied by Theorems 4.11 and 5.6. [

The criterion which enables one to describe all pseudospectral func-
tions in terms of an arbitrary (not necessarily admissible) boundary pa-
rameter is given in the following theorem.

Theorem 5.8. The following statements are equivalent:
(1) each boundary parameter T is admissible;
(2) lim M,i(iy) | H1 =0 and
y—r+00

Jtim_y (Tm(A (ig)h, by, + 3 Pah] ) = +oc,
where h € 7:10, h # 0 and Py is the orthoprojection in Ho onto Ho :=
7:[0 © 7:[1,'

(3) mulT = mul T, i.e., the condition (C2) in Assertion 4.3 is ful-
filled;

(4) statement of Theorem 5.5 holds for arbitrary boundary parameters
T.

Proof. Proposition 5.2 and (2.5) yield the equivalence (1)< (3). Since by
Lemma 4.14, (2) M, (-) is the Weyl function of the boundary triplet II,
the equivalence (2)< (3) is implied by [24, Theorem 4.6]. The equivalence
(1) < (4) follows from Theorem 5.5. O

Combining the results of this section with Proposition 3.11 we get the
following theorem.

Theorem 5.9. Let the assumptions (A1) and (A2) be satisfied. Then the
set of spectral functions of the system (3.3) (with respect to U € [Hy, H])
is not empty if and only if mulT = {0} or equivalently if and only if the
condition (C1) in Assertion 4.3 is fulfilled. If this condition is satisfied,
then the sets of spectral and pseudospectral functions of the system (3.3)
coincide and hence Theorems 5.5, 5.6, 5.8 and Corollary 5.7 are valid for
spectral functions (instead of pseudospectral ones). In this case fo, Toﬂ-
and Vo o in Theorem 5.6 and Corollary 5.7 should be replaced with T, TT
and Vy respectively. Moreover, in this case statement (3) in Theorem 5.8
takes the following form:

(3") mul T* = {0}, i.e., the condition (C3) in Assertion 4.3 is fulfilled.
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Remark 5.10. Assume that N_ < N, and 6 is a subspace in H such
that 6% € Sym(H) and system (3.3) is f-definite. Moreover, let Hj, be
a subspace in H and let Ky € [Hf,H] be an operator with ker Ky =
{0} and KpH[, = 6. It follows from Proposition 3.12 and Remark 3.13
that Theorems 5.5, 5.6,5.8, 5.9 and Corollary 5.7 are valid, with some
corrections, for pseudospectral and spectral functions o(-) with respect
to Ky in place of U. We leave to the reader the precise formulation of
the specified results.

6. The case of the minimally possible dimf. Spectral
functions of the minimal dimension

It follows from Lemma 3.1, (1) that the minimally possible dimension
of the subspace 6 C H satisfying the assumption (Al) in Section 4.1 is

dim 6 = v + 7. (6.1)

If 0 satisfies (A1) and (6.1) then the previous results become essentially
simpler. Namely, in this case the subspace Hy from assumption (A2)
satisfies dim Ho = dim(H @ H) and hence H; = {0}, H{ = H and

Hy=Ho H. (6.2)

Therefore the assumption (A2) in Section 4.1 takes the following form:
(A2) Hy is the subspace (6.2), U and T', are the same as in the
assumption (A2) and

Ty = (Toa, Ta,T1a) | : dom Tonax — H & H & H (6.3)

is the block representation of I'.

Below we suppose (unless otherwise is stated) the following assump-
tion (Amin), which is equivalent to the assumptions (A1) - (A3) and the
equality (6.1):

(Amin) In addition to (A1) the equality (6.1) holds and the assump-
tions (A2') and (A3) are satisfied.

Under this assumption the equalities (4.11) take the form

Ho=HoH, Hi=HoH, (6.4)
and a boundary parameter is the same as in definition 4.10.
Theorem 6.1. Let 7 be a boundary parameter (4.24) and let
Co(A) = (Co(\), Cop(N) : H & Hy — Ho,
C1(\) = (C1(\), Ciy(N) : H @ Hy, — Ho
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be the block representations of Co(A) and C1(N). Then for each A € C,
there exists a unique pair of operator solutions & (-, \) € LA[H,H] and
&(LN) € L [fl, H] of the system (3.3) satisfying the boundary conditions

['10&r(A) = —1In, (6.5)

[(iCo(A) = 3CL(N)Ta + Con(MTas — (iCo(A) + 3CL(W)T
+C1p(MT1p)67(A) = 0, (6.6)
T1aé-(A) =0, (6.7)

[(iCo(X) — 2C1(A\)Tq + Cop(N)Top
Ty + CiyWTler(\) = Co(\) + 21 (A). (6.8)

~(iCo(N) + 3Ca(
\) € LA [Hp, H] be the solution of (3.3) defined in theo-

Proof. Let v,(-,
rem 4.15 and let

v (6N = (&N, &GN He H —» H (6.9)
be the block representation of v, (¢, A). Then the first condition in (4.68)
takes the form I'14(¢-(N), & (A)) = (—Ip,0), which is equivalent to (6.5)

and (6.7). Moreover, (4.12), (4.13) and (4.67) take the form

b= (i(Ca —Tu), Top)", T} = (5(Ta+Tp), )",
®(X) = (0, Co(A) + £C1(N)).

Therefore the second condition in (4.68) is equivalent to (6.6) and (6.8).
Now the required statement is implied by Theorem 4.15. 0
It follows from (6.2), (6.3) and (4.72) that Py m,le = (Toa, fa)T and

Jo = (8 2[0A> This and (4.73) imply that in the case (6.1) (i.e., under
H

the assumption (Apin)) the m-function m,(-) can be defined as

() = (P& Toube ) N pog L gea aec,.
CLgT( ) ag'r( ) 2 H — W
The following proposition is implied by Proposition 4.12.

Proposition 6.2. For any A € C, there exists a unique collection of

operator solutions &(+, \) € LA[H, H], &(-,A\) € LA[H,H] anduy (-, ) €
L% [Hp, H] of the system (3.3) satisfying the boundary conditions

I'10éo(A) = —In, Tao(A) = Théo(N), Lono

Féo(N) =0, i(Ta—To)éN) =I5,  Tofo

Igus (M) =0, Touy(N) Fbu+()\) Copus(N) = I .
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If the assumption (A,;y ) is satisfied, then the operator function M (-)
from Proposition 4.13 takes the form

My () Mia(X)  Miz(N) o N
Mi(A) = | Moy(A\) Moa(N\) Mos(\) | cHO HoHy, — H® H®Hy,
Mz1 () Ms2(N)  Mss(N)

where A € C; and

Mi1(N\) = Toaéo(N), M12(>\):F0ag(]()‘)’ Mi3(X) = Toqus (M),
Mar(N) = Tubo(N),  Maa(N) = Tubo(A) + 215,  Mas(\) = Taup(N),
Mz (M) = —T1pé&o(A),  Msap(A) = —Tipbo(A),  Mss(A) = —Typuy (A).

Moreover, the operator functions mg(-), Si(:), Sa(-) and M, () in The-
orem 5.5 take the following simpler form (cf. (4.50)-(4.53)):

_ (Mu(A) Mip(N) 73 7
mo()\)_<M21()\) Ma(\) cHeH—-HeH, MeCy
0 Ho
Mia(N) Mlg()\)> ~ ~ ~
S1(\) = . HoH, > HaoH MeC
1 <M22(A> — il My(n)) LTSS +
Ho Ho
_ (Mxn(N) My(N)+ 51
SQ(A)_<M31(A) ) HeH - HoH, reCs

Ho Hl

Moz (M) M23(A))

M+(>\)_<M32()\) Mas(2) THOH, - HOHy, MeCh.

Y )
Ho Ha
In the following theorem we characterize spectral functions of the minimal
dimension.

Theorem 6.3. Let system (3.3) be definite (see Definition 3.15) and let
N_ < Ny. Then the following statements are equivalent:

(i) mul Tinin = {0}, id.e., the condition (CO) in Assertion 4.3 is ful-
filled;

(ii) The set of spectral functions of the system is not empty, i.e., there
exist subspaces 6 and Hfy in H and a spectral function o(-) of the system
(with respect to Ky €€ [Hj), H]).

If the statement (i) holds, then the dimension n, of each spectral
function o(-) (see Definition 3.10) satisfies

v+vU<mns,<n (6.10)

and there exists a spectral function o(-) with the minimally possible di-
mension nNg =V + 1.
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Proof. Assume statement (i). Then by Lemma 3.4 there exists a subspace
6 C H such that 6 € Sym(H), dimé = v + v and the relation T of the
form (3.12) satisfies mul7 = {0}. Therefore by Corollary 5.4, (2) and
Proposition 3.11 there exists a spectral function o(-) (with respect to
Ky). Moreover, n,(=dimé) =v + 1.

Next assume that 6 is a subspace in H and o(-) is a spectral func-
tion (with respect to Kp). Since the system is definite, it follows from
Proposition 3.16 that 6% € Sym(H). Therefore by Lemma 3.1, (1)
ne(= dim @) > v + v, which yields (6.10).

Conversely, let statement (ii) holds. If o(-) is a spectral function
(with respect to Kp), then according to Proposition 3.11 mulT = {0}.
This and the obvious inclusion mul Ti,i, C mul T yield statement (i).

O]
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