# Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term 

Maria A. Shan<br>(Presented by I. I. Skripnik)


#### Abstract

In this article we obtained the removability result for quasilinear equations model of which is $$
u_{t}-\sum_{i=1}^{n}\left(u^{m_{i}-1} u_{x_{i}}\right)_{x_{i}}+f(u)=0, u \geq 0
$$


2010 MSC. 35B40.
Key words and phrases. Quasilinear parabolic equations, removable isolated singularity.

## 1. Introduction and main result

In this paper we study solutions to quasilinear parabolic equation in the divergent form

$$
\begin{equation*}
u_{t}-\operatorname{div} A(x, t, u, \nabla u)+a_{0}(u)=0,(x, t) \in \Omega_{T} \tag{1.1}
\end{equation*}
$$

satisfying a initial condition

$$
\begin{equation*}
u(x, 0)=0, x \in \Omega \backslash\{(0,0)\} \tag{1.2}
\end{equation*}
$$

in $\Omega_{T}=\Omega \times(0, T), 0<T<\infty$, where $\Omega$ is a bounded domain in $R^{n}, n>2$.

The qualitative behaviour of solution to elliptic equations was investigated by many authors starting from the seminal papers of Serrin (see [4-8] ). In [1] Brezis and Veron proved that for $q \geq \frac{n}{n-2}$ the isolated singularities of solutions to the elliptic equation

$$
-\triangle u+u^{q}=0
$$

are removable. The result on the removability of an isolated singularity for the following parabolic equation

$$
\frac{\partial u}{\partial t}-\triangle u+|u|^{q-1} u=0, \quad(x, t) \in \Omega_{T} \backslash\{(0,0)\}
$$

was obtained by Brézis and Friedman [2] in the case $q \geq \frac{n+2}{n}$. The anisotropic elliptic equation with absorption

$$
-\sum_{i=1}^{n}\left(\left|u_{x_{i}}\right|^{p_{i}-2} u_{x_{i}}\right)_{x_{i}}+|u|^{q-1} u=0
$$

was studied in [12]. It was proved that the isolated singularity for solution of the this equation is removable if

$$
q \geq \frac{n(p-1)}{n-p}, \quad 1 \leq p_{1} \leq \ldots \leq p_{n} \leq \frac{n-1}{n-p} p
$$

For quasilinear elliptic and parabolic equations of special form with absorption similar questions were treated by many authors. A survey of their results and references can be found in Veron's monograph [14]. The removability of isolated singularities for more general elliptic and parabolic equations with absorption were established in [10] and [11].

We suppose that the functions $A=\left(a_{1}, \ldots, a_{n}\right)$ and $a_{0}$ satisfy the Caratheodory conditions and the following structure conditions hold

$$
\begin{gather*}
A(x, t, u, \xi) \xi \geq \nu_{1} \sum_{i=1}^{n}|u|^{m_{i}-1}\left|\xi_{i}\right|^{2} \\
\left|a_{i}(x, t, u, \xi)\right| \leq \nu_{2} u^{\frac{m_{i}-1}{2}}\left(\sum_{j=1}^{n}|u|^{m_{j}-1}\left|\xi_{j}\right|^{2}\right)^{\frac{1}{2}}, i=\overline{1, n}  \tag{1.3}\\
a_{0}(u) \geq \nu_{1} f(u)
\end{gather*}
$$

with positive constants $\nu_{1}, \nu_{2}$ and continuous, positive function $f(u)$ and

$$
\begin{equation*}
\min _{1 \leq i \leq n} m_{i}>1, \max _{1 \leq i \leq n} m_{i} \leq 1+\frac{\kappa}{n}, p<n \tag{1.4}
\end{equation*}
$$

where $\kappa=n(m-1)+2, d=\frac{1}{n} \sum_{i=1}^{n} \frac{m_{i}}{2}$, and assume without loss, that $m_{n}=\max _{1 \leq i \leq n} m_{i}$.

We will write $V_{2, m}\left(\Omega_{T}\right)$ for the class of functions $\varphi \in C\left(0, T, L^{2}(\Omega)\right)$ with $\sum_{i=1}^{n} \iint_{T}|\varphi|^{m_{i}-1}\left|\varphi_{x_{i}}\right|^{2} d x d t<\infty$.

We say that $u$ is a weak solution to the problem (1.1), (1.2) if for an arbitrary $\psi \in C^{1}\left(\Omega_{T}\right)$, vanishing in a neighborhood of $\{(0,0)\}$, we have an inclusion $u \psi \in V_{2, m}\left(\Omega_{T}\right)$ and for any interval $\left(t_{1}, t_{2}\right) \subset[0, T)$ the integral identity

$$
\begin{equation*}
\left.\int_{\Omega} u \varphi d x\right|_{t_{1}} ^{t_{2}}+\int_{t_{1}}^{t_{2}} \int_{\Omega}\left\{-u \varphi_{t}+A(x, t, u, \nabla u) \nabla \varphi+a_{0}(u) \varphi\right\} d x d t=0 \tag{1.5}
\end{equation*}
$$

holds for $\varphi=\zeta \psi$ with an arbitrary $\zeta \in \stackrel{o}{V}_{2, m}\left(\Omega_{T}\right)$.
We say that solution $u$ to the problem (1.1), (1.2) has a removable singularity at $\{(0,0)\}$ if $u$ can be extended to $\{(0,0)\}$ so that the extension $\tilde{u}$ of $u$ satisfies (1.5) with $\psi \equiv 1$ and $\tilde{u} \in V_{2, m}\left(\Omega_{T}\right)$.

Remark 1.1. Condition (1.4) implies the local boundedness of weak solutions to the equation (1.1) ([3]).

The main result of this paper is the following theorem.
Theorem 1.1. Let the conditions (1.3), (1.4) be fulfilled and $u$ be a nonnegative weak solution to the problem (1.1), (1.2). Assume also that $f(u)=u^{q}$ and

$$
\begin{equation*}
q \geq m+\frac{2}{n} \tag{1.6}
\end{equation*}
$$

then the singularity at the point $\{(0,0)\}$ is removable.
The rest of the paper contains the proof of Theorem 1.1.

## 2. Integral estimates of solutions

For $0 \leq \lambda<n$ we define the following numbers

$$
\kappa(\lambda)=\frac{1}{2+(n-\lambda)(m-1)}, \kappa_{i}(\lambda)=\frac{2}{2+(n-\lambda)\left(m-m_{i}\right)}, i=\overline{1, n} .
$$

Let

$$
\rho_{\lambda}(x, t)=\left(t^{\frac{\kappa(\lambda)}{\kappa_{1}(\lambda)}}+\sum_{i=1}^{n}\left|x_{i}\right|^{\frac{\kappa_{i}(\lambda)}{\kappa_{1}(\lambda)}}\right)^{\kappa_{1}(\lambda)},
$$

assume that $D_{\lambda}(r)=\left\{(x, t): \rho_{\lambda}(x, t)<r\right\}, D_{\lambda}\left(R_{0}\right) \subset \Omega_{T}$ and for $0<r<R_{0}$ we set $M(r, \lambda)=\sup _{D_{\lambda}\left(R_{0}\right) \backslash D_{\lambda}(r)} u(x, t), E(r, \lambda)=\{(x, t) \in$
$\left.\Omega_{T}: u(x, t)>M(r, \lambda)\right\}, u_{r}(r, t, \lambda)=(u(x, t)-M(r, \lambda))_{+}$and consider the function $\psi_{r}(x, t)=\eta_{r}\left(\rho_{\lambda}(x, t)\right)$, where $\eta_{r}: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ is a function taking the following values: $\eta_{r}(z)=0$ if $z \leq r, \eta_{r}(z)=1$ if $z \geq R(r)$, $\eta_{r}(z)=\left[(1-\varepsilon) \ln \ln \frac{1}{r}\right]^{-1}\left(\ln \ln \frac{1}{r}-\ln \ln \frac{1}{z}\right)$, if $r \leq z \leq R(r)$, here $\varepsilon$ is a number from the interval $(0,1)$ specified in what follows and $R(r)$ defined by the equality

$$
\begin{equation*}
\ln \frac{1}{R(r)}=\ln ^{\varepsilon} \frac{1}{r} \tag{2.1}
\end{equation*}
$$

Note that by the evident equalities $\frac{1}{q-1}=(n-\lambda) \kappa(\lambda), \frac{2}{q-m_{i}}=(n-$ $\lambda) \kappa_{i}(\lambda), i=\overline{1, n}$, with $\lambda \geq 0$ defined by

$$
\begin{equation*}
\lambda=n-\frac{2}{q-m} \tag{2.2}
\end{equation*}
$$

the Keller-Osserman estimate yields

$$
\begin{equation*}
M(r, \lambda) \leq \gamma r^{\lambda-n}, r>0 \tag{2.3}
\end{equation*}
$$

This estimate is received from Theorems 4.1, 4.2 (Appendix) in the case $p_{1}=p_{2}=\ldots=p_{n}=2$.

Consider the functions $F_{1}(r, \lambda), F_{2}(r, \lambda)$ defined by the following equalities

$$
\begin{gathered}
F_{1}(r, \lambda)=\left\{\begin{array}{l}
R^{\lambda}(r), \lambda>0, \\
\ln ^{\frac{q-2}{q-1}} \frac{1}{r}, \lambda=0, \quad q>2 \\
\ln \ln \frac{1}{r}, \lambda=0, \quad q=2 \\
\ln ^{-\frac{2-q}{q-1}}, \lambda=0, \quad q<2
\end{array}\right. \\
F_{2}(r, \lambda)=\left\{\begin{array}{r}
R^{\lambda}(r), \lambda>0, \\
\ln ^{\frac{q-2 m_{1}}{q-m_{1}} \frac{1}{r}, \lambda=0, \quad q>2 m_{1}} \begin{array}{r}
\ln \ln \frac{1}{r}, \lambda=0, \quad q=2 m_{1} \\
\ln ^{-\frac{2 m_{1}-q}{1-m_{1}},}, \lambda=0, \quad q<2 m_{1}
\end{array}
\end{array} . \begin{array}{l}
\end{array}\right.
\end{gathered}
$$

To simplify the following calculations we will write $M(r), E(r)$, $u_{r}(x, t)$ instead of $M(r, \lambda), E(r, \lambda), u_{r}(x, t, \lambda)$.

Lemma 2.1. Let the assumptions of Theorem 1.1 be fulfilled, then for every $l \geq \frac{2 q}{q-m_{n}}$ and for every $2 r<\rho \leq \frac{R_{0}}{2}$ the following estimate holds

$$
\begin{array}{r}
\sup _{0<t<T} \int_{E\left(\frac{\rho}{2}\right) \times\{t\}} \int_{M\left(\frac{\rho}{2}\right)}^{u} \ln _{+} \frac{s}{M\left(\frac{\rho}{2}\right)} d s \psi_{r}^{l} d x+\sum_{i=1}^{n} \iint_{E\left(\frac{\rho}{2}\right)} u^{m_{i}-2}\left|u_{x_{i}}\right|^{2} \psi_{r}^{l} d x d t \\
+\iint_{E\left(\frac{\rho}{2}\right)} u^{q} \ln \frac{u}{M\left(\frac{\rho}{2}\right)} \psi_{r}^{l} d x d t \leq \gamma\left(F_{1}(r, \lambda)+F_{2}(r, \lambda)\right) . \tag{2.4}
\end{array}
$$

Proof. Testing (1.5) by $\varphi=\ln _{+} \frac{u}{M\left(\frac{\rho}{2}\right)} \psi_{r}^{l}$, using (1.3) and the Young inequality we get

$$
\begin{aligned}
& \sup _{0<t<T} \int_{E\left(\frac{\rho}{2}\right) \times\{t\}} \int_{M\left(\frac{\rho}{2}\right)}^{u} \ln _{+} \frac{s}{M\left(\frac{\rho}{2}\right)} d s \psi_{r}^{l} d x+\sum_{i=1}^{n} \iint_{E\left(\frac{\rho}{2}\right)} u^{m_{i}-2}\left|u_{x_{i}}\right|^{2} \psi_{r}^{l} d x d t \\
& +\iint_{E\left(\frac{\rho}{2}\right)} u^{q} \ln \frac{u}{M\left(\frac{\rho}{2}\right)} \psi_{r}^{l} d x d t \leq \gamma \iint_{E\left(\frac{\rho}{2}\right)} u \ln \frac{u}{M\left(\frac{\rho}{2}\right)}\left|\frac{\partial \psi_{r}}{\partial t}\right| \psi_{r}^{l-1} d x d t \\
& +\gamma \sum_{i=1}^{n} \iint_{E\left(\frac{\rho}{2}\right)} u^{m_{i}} \ln ^{2} \frac{u}{M\left(\frac{\rho}{2}\right)}\left|\frac{\partial \psi_{r}}{\partial x_{i}}\right|^{2} \psi_{r}^{l-2} d x d t .
\end{aligned}
$$

From this, by the Young inequality we obtain

$$
\begin{align*}
& \sup _{0<t<T} \int_{E\left(\frac{\rho}{2}\right) \times\{t\}} \int_{M\left(\frac{\rho}{2}\right)}^{u} \ln _{+} \frac{s}{M\left(\frac{\rho}{2}\right)} d s \psi_{r}^{l} d x+\sum_{i=1}^{n} \iint_{E\left(\frac{\rho}{2}\right)} u^{m_{i}-2}\left|u_{x_{i}}\right|^{2} \psi_{r}^{l} d x d t \\
& +\iint_{E\left(\frac{\rho}{2}\right)} u^{q} \ln \frac{u}{M\left(\frac{\rho}{2}\right)} \psi_{r}^{l} d x d t \leq \gamma \iint_{E\left(\frac{\rho}{2}\right)} \ln \frac{u}{M\left(\frac{\rho}{2}\right)}\left|\frac{\partial \psi_{r}}{\partial t}\right|^{\frac{q}{q-1}} d x d t \\
& \quad+\gamma \iint_{E\left(\frac{\rho}{2}\right)} \ln ^{\frac{2 q-m_{i}}{q-m_{i}}} \frac{u}{M\left(\frac{\rho}{2}\right)}\left|\frac{\partial \psi_{r}}{\partial x_{i}}\right|^{\frac{2 q}{q-m_{i}}} d x d t=\gamma\left(J_{1}+J_{2}\right) . \tag{2.5}
\end{align*}
$$

By (2.3) we have

$$
\begin{aligned}
& J_{1}+J_{2} \leq \gamma \quad \iint_{D_{\lambda}(R(r)) \backslash D_{\lambda}(r)} \ln ^{-\frac{1}{q-1}} \frac{1}{\rho_{\lambda}} \rho_{\lambda}^{-\frac{1}{\kappa(\lambda)} \frac{q}{q-1}} d x d t \\
& +\gamma \sum_{i=1}^{n} \iint_{D_{\lambda}(R(r)) \backslash D_{\lambda}(r)} \ln ^{-\frac{m_{i}}{q-m_{i}}} \frac{1}{\rho_{\lambda}} \rho_{\lambda}^{-\frac{2 q}{\kappa_{i}(\lambda)\left(q-m_{i}\right)}} d x d t
\end{aligned}
$$

$$
\begin{equation*}
\leq \gamma \int_{r}^{R(r)} \ln ^{-\frac{1}{q-1}} \frac{1}{z} z^{\lambda-1} d z+\gamma \int_{r}^{R(r)} \ln ^{-\frac{m_{1}}{q-m_{1}}} \frac{1}{z} z^{\lambda-1} d z \leq \gamma\left(F_{1}(r, \lambda)+F_{2}(r, \lambda)\right) \tag{2.6}
\end{equation*}
$$

Combining (2.5), (2.6) we obtain (2.4), which completes the proof of the lemma.

Define a function $u^{(\rho)}(x, t)$ and a set $E\left(\frac{\rho}{2}, 2 \rho\right)$ as follows

$$
\begin{gathered}
u^{(\rho)}(x, t)=\min \left(M\left(\frac{\rho}{2}\right)-M(2 \rho), u_{2 \rho}(x, t)\right) \\
E\left(\frac{\rho}{2}, 2 \rho\right)=\left\{x \in E(2 \rho): u<M\left(\frac{\rho}{2}\right)\right\}
\end{gathered}
$$

Lemma 2.2. Under the assumptions of Lemma 2.1 next inequality holds

$$
\begin{align*}
& \iint_{E(2 \rho)} u^{(\rho)} u^{q} \psi_{r}^{l} d x d t \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right) \\
& \quad \times\left\{F_{3}(r, \lambda)+\left(F_{1}(r, \lambda)+F_{2}(r, \lambda)\right)^{\frac{1}{2}} F_{4}^{\frac{1}{2}}(r, \lambda)\right\} \tag{2.7}
\end{align*}
$$

where

$$
F_{3}(r, \lambda)=\left\{\begin{array}{r}
R^{\lambda}(r), \lambda>0, \\
\ln ^{-\frac{1}{q-1}} \frac{1}{r}, \lambda=0,
\end{array} \quad F_{4}(r, \lambda)=\left\{\begin{array}{c}
R^{\lambda}(r), \lambda>0 \\
\ln ^{-1} \frac{1}{r}, \lambda=0
\end{array}\right.\right.
$$

Proof. Testing (1.5) by $\varphi=u^{(\rho)} \psi_{r}^{l}$, using (1.3) and the Young inequality we get

$$
\begin{align*}
& \iint_{E(2 \rho)} u^{(\rho)} u^{q} \psi_{r}^{l} d x d t \leq \gamma \iint_{E(2 \rho)} u^{(\rho)}\left|\frac{\partial \psi_{r}}{\partial t}\right|^{\frac{q}{q-1}} d x d t \\
& \quad+\gamma \sum_{i=1}^{n} \iint_{E(2 \rho)}\left(\sum_{j=1}^{n} u^{m_{j}-1}\left|u_{x_{j}}\right|^{2}\right)^{\frac{1}{2}} u^{\frac{m_{i}-1}{2}} u^{(\rho)}\left|\frac{\partial \psi_{r}}{\partial x_{i}}\right| \psi_{r}^{l-1} d x d t \\
& \quad=\gamma\left(J_{3}+J_{4}\right) \tag{2.8}
\end{align*}
$$

By the Hölder inequality, (2.3) and Lemma 2.1 the integrals in the right-hand side of (2.8) are estimated as follows

$$
J_{3} \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right) \iint_{E(2 \rho)}\left|\frac{\partial \psi_{r}}{\partial t}\right|^{\frac{q}{q-1}} d x d t
$$

$$
\begin{align*}
& \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right) \int_{D_{\lambda}(R(\lambda)) \backslash D_{\lambda}(r)} \ln ^{-\frac{q}{q-1}} \frac{1}{\rho_{\lambda}} \rho_{\lambda}^{-\frac{q}{(q-1) \kappa(\lambda)}} d x d t \\
\leq & \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right) \int_{r}^{R(\lambda)} \ln ^{-\frac{q}{q-1}} \frac{1}{z} z^{\lambda-1} d z \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right) F_{3}(r, \lambda) . \tag{2.9}
\end{align*}
$$

Similarly

$$
\begin{align*}
& J_{4} \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right) \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \iint_{E(2 \rho)} u^{m_{j}-2}\left|u_{x_{j}}\right|^{2} \psi_{r}^{l} d x d t\right)^{\frac{1}{2}} \\
& \times\left(\iint_{E(2 \rho)} u^{m_{i}}\left|\frac{\partial \psi_{r}}{\partial x_{i}}\right|^{2} \psi_{r}^{l} d x d t\right)^{\frac{1}{2}} \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right) \times \\
& \times\left(F_{1}(r, \lambda)+F_{2}(r, \lambda)\right)^{\frac{1}{2}} \sum_{i=1}^{n}\left(\int_{D_{\lambda}(R(\lambda)) \backslash D_{\lambda}(r)} \ln ^{-2} \frac{1}{\rho_{\lambda}} \rho_{\lambda}^{-m_{i}(n-\lambda)-\frac{2}{\kappa_{i}(\lambda)}} d x d t\right)^{\frac{1}{2}} \\
& \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right)\left(F_{1}(r, \lambda)+F_{2}(r, \lambda)\right)^{\frac{1}{2}}\left(\int_{r}^{R(r)} \ln { }^{-2} \frac{1}{z} z^{\lambda-1} d z\right)^{\frac{1}{2}} \\
& \quad \leq \gamma\left(M\left(\frac{\rho}{2}\right)-M(2 \rho)\right)\left(F_{1}(r, \lambda)+F_{2}(r, \lambda)\right)^{\frac{1}{2}} F_{4}^{\frac{1}{2}}(r, \lambda) . \tag{2.10}
\end{align*}
$$

Combining (2.8)-(2.10) we arrive at the required (2.7), this proves the lemma.

### 2.1. Pointwise estimates of solutions

Similarly to [13], using the De Giorgi type iteration, we prove the following estimate

$$
\begin{aligned}
& \left(M(\rho)-M(2 \rho)^{1+m+m \frac{n+2}{2}}\right. \\
\leq & \gamma\left(M\left(\frac{\rho}{2}\right) \rho^{-\frac{1}{\kappa(\lambda)}}+\sum_{i=1}^{n} M^{m_{i}}\left(\frac{\rho}{2}\right) \rho^{-\frac{2}{\kappa_{i}(\lambda)}}\right)^{\frac{n+2}{2}} \iint_{D_{\lambda}\left(R_{0}\right) \backslash D_{\lambda}\left(\frac{\rho}{2}\right)} u_{2 \rho}^{1+m} d x d t .
\end{aligned}
$$

Since $u_{2 \rho} \leq M\left(\frac{\rho}{2}\right)-M(2 \rho)$ for $(x, t) \in D_{\lambda}\left(R_{0}\right) \backslash D_{\lambda}\left(\frac{\rho}{2}\right)$ by the Hölder inequality and Lemma 2.2 we get

$$
\begin{align*}
& \left(M(\rho)-M(2 \rho)^{1+m+m \frac{n+2}{2}}\right. \\
\leq & \gamma M^{\frac{m+1}{q+1}}\left(\frac{\rho}{2}\right)\left(M\left(\frac{\rho}{2}\right) \rho^{-\frac{1}{\kappa(\lambda)}}+\sum_{i=1}^{n} M^{m_{i}}\left(\frac{\rho}{2}\right) \rho^{-\frac{2}{\kappa_{i}(\lambda)}}\right)^{\frac{n+2}{2}} \\
\times & \left\{F_{3}(r, \lambda)+\left(F_{1}(r, \lambda)+F_{2}(r, \lambda)\right)^{\frac{1}{2}} F_{4}^{\frac{1}{2}}(r, \lambda)\right\}\left|D_{\lambda}\left(R_{0}\right)\right|^{\frac{q-m}{q+1}} \tag{2.11}
\end{align*}
$$

In the inequality (2.11) we will pass to the limit as $r \rightarrow 0$. By (2.1) the following relations are valid for $\lambda=0$

$$
\begin{aligned}
& F_{1}(r, 0) F_{4}(r, 0)=\ln ^{\frac{q-2}{q-1}} \frac{1}{r} \ln ^{-1} \frac{1}{R(r)}=\ln ^{\frac{q-2}{q-1}-\varepsilon} \frac{1}{r}, \text { if } q>2 \\
& F_{2}(r, 0) F_{4}(r, 0)=\ln ^{\frac{q-2 m_{1}}{q-m_{1}}} \frac{1}{r} \ln ^{-1} \frac{1}{R(r)}=\ln ^{\frac{q-2 m_{1}}{q-m_{1}}-\varepsilon} \frac{1}{r}, \text { if } q>2 m_{1}
\end{aligned}
$$

choose $\varepsilon$ from the condition $\max \left(\frac{1}{2}, \frac{q-2}{q-1}, \frac{q-2 m_{1}}{q-m_{1}}\right)<\varepsilon<1$, now passing to the limit as $r \rightarrow 0$ in (2.11) we obtain for any $\rho \leq \frac{R_{0}}{2}$

$$
M(\rho)-M(2 \rho) \leq 0
$$

iterating last inequality we get for any $\rho \leq \frac{R_{0}}{2}$

$$
M(\rho) \leq M\left(R_{0}\right)
$$

this proves the boundedness of solutions.

## 3. End of the proof of Theorem 1.1

Let $K$ be a compact subset in $\Omega$, and $\xi=0$ in $\partial \Omega \times(0, T)$, such that $\xi=1$ for $(x, t) \in K \times(0, T)$. Testing (1.5) by $\varphi=u \xi^{2} \psi_{r}, \psi=\psi_{r}$, using conditions (1.3), the Young inequality, the boundedness of $u$ and passing to the limit $r \rightarrow 0$ we get

$$
\begin{equation*}
\sup _{0<t<T} \int_{K} u^{2} d x+\sum_{i=1}^{n} \int_{0}^{T} \int_{K} u^{m_{i}-1}\left|u_{x_{i}}\right|^{2} d x d t+\int_{0}^{T} \int_{K} u^{q+1} d x d t \leq \gamma \tag{3.1}
\end{equation*}
$$

Testing (1.5) by $\varphi \psi_{r}$, where $\varphi$ is an arbitrary function which belongs to $\stackrel{o}{V}_{2, m}\left(\Omega_{T}\right)$, using (3.1), the boundedness of solution, and passing to the limit $r \rightarrow 0$, we obtain the integral identity (1.5) with an arbitrary $\varphi \in \stackrel{o}{V}_{2, m}\left(\Omega_{t}\right)$ and $\psi \equiv 1$. Thus Theorem 1.1 is proved.

## 4. Appendix

Let $\left(x^{(0)}, t^{(0)}\right) \in \Omega_{T}$, for any $\tau, \theta_{1}, \theta_{2}, \ldots, \theta_{n}>0, \theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ we define $Q_{\theta, \tau}\left(x^{(0)}, t^{(0)}\right):=\left\{(x, t):\left|t-t^{(0)}\right|<\tau,\left|x_{i}-x_{i}^{(0)}\right|<\theta_{i}, i=\overline{1, n}\right\}$ and set

$$
\begin{gathered}
M(\theta, \tau):=\sup _{Q_{\theta, \tau}\left(x^{(0)}, t^{(0)}\right)} u, \delta(\theta, \tau):=\sup _{Q_{\theta, \tau}\left(x^{(0)}, t^{(0)}\right)} \delta(u), \\
\Phi(\theta, \tau):=\sup _{Q_{\theta, \tau}\left(x^{(0)}, t^{(0)}\right)} \Phi(u), \Phi(u)=\int_{0}^{u} \varphi(s) d s, \varphi(s)=s^{m_{n}-1} f(s) .
\end{gathered}
$$

We say that nondecreasing continuous function $\psi$ satisfies the condition $(A)$ if for any $\varepsilon \in(0,1)$ there exists $u_{0}(\varepsilon) \geq 1$ such that

$$
\begin{equation*}
\psi(\varepsilon u) \leq \varepsilon^{\mu} \psi(u) \tag{A}
\end{equation*}
$$

with some $\mu>0$ and for all $u \geq u_{0}(\varepsilon)$.
Theorem 4.1 ([9]). Let the conditions (1.3), (1.4) be fulfilled and $u$ be a nonnegative weak solution to equation (1.1), assume also that $f \in$ $C^{1}\left(R_{+}^{1}\right)$ and $f^{\prime}(u) \geq 0 . \quad \operatorname{Let}\left(x^{(0)}, t^{(0)}\right) \in \Omega_{T}$, fix $\sigma \in(0,1), \tau \in$ $\left(0, \min \left(\theta_{n}^{p_{n}}, t^{(0)}, T-t^{(0)}\right)\right), \theta_{i} \in\left(0, \theta_{n}\right)$ for $i \in I^{\prime}=\left\{i=\overline{1, n}: m_{i}\left(p_{i}-1\right)<\right.$ $\left.m_{n}\left(p_{n}-1\right)\right\}$ and $\theta_{i}=\theta_{n}$ for $i \in I^{\prime \prime}=\left\{i=\overline{1, n}: m_{i}\left(p_{i}-1\right)=\right.$ $\left.m_{n}\left(p_{n}-1\right)\right\}$, then there exist positive numbers $c_{8}, c_{9}$ depending only on $n, \nu_{1}, \nu_{2}, m_{1}, \ldots, m_{n}, p_{1}, \ldots, p_{n}$ such that either

$$
\begin{equation*}
u\left(x^{(0)}, t^{(0)}\right) \leq\left(\tau^{-1} \rho^{p_{n}}\right)^{\frac{1}{m_{n}\left(p_{n}-1\right)-1}}+\sum_{i \in I^{\prime}}\left(\theta_{i}^{-1} \theta_{n}^{\frac{p_{n}}{p_{i}}}\right)^{\frac{p_{i}}{m_{n}\left(p_{n}-1\right)-m_{i}\left(p_{i}-1\right)}} \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi(\sigma \theta, \sigma \tau) \leq c_{8}(1-\sigma)^{-c_{9}} \theta_{n}^{-p_{n}} \delta(\theta, \tau) M^{m_{n} p_{n}-1}(\theta, \tau) \tag{4.2}
\end{equation*}
$$

On the other hand, if $I^{\prime}$ is empty, i.e. $m_{1}\left(p_{1}-1\right)=m_{2}\left(p_{2}-1\right)=\cdots=$ $m_{n}\left(p_{n}-1\right)$, then either

$$
\begin{equation*}
u\left(x^{(0)}, t^{(0)}\right) \leq\left(\tau^{-1} \theta_{n}^{p_{n}}\right)^{\frac{1}{m_{n}\left(p_{n}-1\right)-1}}, \tag{4.3}
\end{equation*}
$$

or (4.2) holds true.
Theorem 4.2 ([9]). Let the conditions (1.3), (1.4) be fulfilled, $u$ be a nonnegative weak solution to (1.1), $f \in C^{1}\left(R_{+}^{1}\right)$ and $f^{\prime}(u) \geq 0$. Let $\partial \Omega_{T}$ be the parabolic boundary of $\Omega_{T}$, assume also that $\lim _{(x, t) \rightarrow \partial \Omega_{T}} u(x, t)=+\infty$ and with some $0 \leq a \leq 1$ and $c>0$ there holds

$$
\delta(u) \leq c u^{a}
$$

Let $\psi(u)=u^{-1} \Phi^{\frac{1}{m_{n} p_{n}+a-1}}(u)$ satisfies condition $(A) . \operatorname{Let}\left(x^{(0)}, t^{(0)}\right) \in \Omega_{T}$ and $8 \rho=\operatorname{dist}\left(x^{(0)}, \partial \Omega\right)$. Fix $\tau \in\left(0, \min \left(\rho^{p_{n}}, t^{(0)}, T-t^{(0)}\right)\right)$ and $\theta_{i} \in(0, \rho)$ for $i \in I^{\prime}$, then there exists a positive number $c_{10}$ depending only on $n, \nu_{1}, \nu_{2}, m_{1}, \ldots, m_{n}, p_{1}, \ldots, p_{n}$ and $c$, such that either (4.1) holds, or

$$
\begin{equation*}
\Phi\left(u\left(x^{(0)}, t^{(0)}\right)\right) \leq c_{10} \theta_{n}^{-p_{n}} u^{m_{n} p_{n}+a-1}\left(x^{(0)}, t^{(0)}\right) \tag{4.4}
\end{equation*}
$$

On the other hand if $I^{\prime}$ is empty, i.e. $m_{1}\left(p_{1}-1\right)=m_{2}\left(p_{2}-1\right)=\ldots=$ $m_{n}\left(p_{n}-1\right)$ and $\psi(u)=u^{-1} \Phi^{\frac{1}{m_{n} p_{n}+a-1}}(u)$ satisfies condition $(A)$, then either (4.3) holds, or (4.4) holds true.

## Acknowledgements

This work is supported by grant of Ministry of Education and Science of Ukraine (project number is 0115 U 000136 ) and it is based on the research provided by the grant support of the State Fund For Fundamental Research (project number is 0116U007160).

## References

[1] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equations // Arch. Rational Mech. Anal., 75 (1980), No. 1, 1-6.
[2] H. Brezis, A. Friedman, Nonlinear parabolic equations involving measure as initial conditions // J. Math. Pures Appl., 62 (1983), 73-97.
[3] I. M. Kolodij, On boundedness of generalized solutions of parabolic differential equations // Vestnik Moskov. Gos. Univ., 5 (1971), 25-31.
[4] J. Serrin, Local behaviour of solutions of quasilinear equations // Acta Math., 111 (1964), 247-302.
[5] J. Serrin, Singularities of solutions of nonlinear equations // Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, RI, 68-88, 1965.
[6] J. Serrin, Removable singularities of solutions of elliptic equations // II. Arch. Rational Mech. Anal., 20 (1965), 163-169.
[7] J. Serrin, Removable singularities of solutions of elliptic equations // Arch. Rational Mech. Anal., 17 (1964), 67-78.
[8] J. Serrin, Isolated singularities of quasi-linear equations // Acta Math., 113 (1965), 219-240.
[9] M. O. Shan, I. I. Skrypnik, Keller-Osserman a priori estimates and the Harnack inequality for quasilinear elliptic and parabolic equations with absorption term // Nonlinear Anal. [to appear].
[10] I. I. Skrypnik, Local behaviour of solutions of quasilinear elliptic equations with absorption // Trudy Inst. Mat. Mekh. Nats. Akad. Nauk Ukrainy, 9 (2004), 183190.
[11] I. I. Skrypnik, Removability of isolated singularities of solutions of quasilinear parabolic equations with absorption // Mat. Sb., 196 (2005), No. 11, 141-160; English transl. in Sb. Math., 196 (2005), No. 11, 1693-1713.
[12] I. I. Skrypnik, Removability of an isolated singularity for anisotropic elliptic equations with absorption // Mat. Sb., 199 (2008), No. 7, 85-102.
[13] I. I. Skrypnik, Removability of isolated singularity for anisotropic parabolic equations with absorption // Manuscr. Math, 140 (2013), 145-178.
[14] L. Veron, Singularities of Solution of Second Order Quasilinear Equations, Pitman Research Notes in Mathematics Series, Longman, Harlow, 1996.

## Contact information

Maria Alekseevna Vasyl' Stus Donetsk National University, Shan Vinnytsia, Ukraine E-Mail: shan_maria@ukr.net

