A truncated indefinite Stieltjes moment problem

Ivan Kovalyov

(Presented by M. M. Malamud)

Abstract

A truncated indefinite Stieltjes moment problem in the class \mathbf{N}_{κ}^{k} of generalized Stieltjes functions is studied. The set of solutions of Stieltjes moment problem is described by Schur step-by-step algorithm, which is based on the expansion of the solutions in a generalized Stieltjes continued fraction. The resolvent matrix is represented in terms of generali-zed Stieltjes polynomials. A factorization formula for the resolvent matrix is found.

2010 MSC. Primary 30E05; Secondary 15B57, 46C20, 47A57.
Key words and phrases. Stieltjes moment problem, Continued fraction, Generalized Stieltjes fraction, Schur algorithm, Solution matrix.

1. Introduction

The classical Stieltjes moment problem was studied in [23]. It consists in the following:

Given a sequence of real numbers $\left\{s_{i}\right\}_{i=0}^{\infty}$, find a positive measure σ with a support on \mathbb{R}_{+}, such that

$$
\begin{equation*}
s_{i}=\int_{\mathbb{R}_{+}} t^{i} d \sigma(t), \quad i \in \mathbb{Z}_{+}=\mathbb{N} \cup\{0\} \tag{1.1}
\end{equation*}
$$

The problem (1.1) with a finite data set $\left\{s_{i}\right\}_{i=0}^{2 n}$ is called the truncated Stieltjes moment problem. The following inequalities

$$
\begin{equation*}
S_{n+1}:=\left(s_{i+j}\right)_{i, j=0}^{n} \geq 0, \quad S_{n}^{+}:=\left(s_{i+j+1}\right)_{i, j=0}^{n-1} \geq 0 \tag{1.2}
\end{equation*}
$$

are necessary for solvability of the truncated Stieltjes moment problem. If, additionally, the matrices S_{n+1} and S_{n}^{+}are nondegenerate, then the inequalities

$$
S_{n+1}>0 \quad \text { and } \quad S_{n}^{+}>0
$$

Received 20.11.2016

The author thanks V. A. Derkach for many suggestions and observations.
are also sufficient for solvability of the truncated moment problem (1.1) with the data set $\left\{s_{i}\right\}_{i=0}^{2 n}$ (see [16]). The degenerate case of the truncated Stieltjes moment problem was studied in [3].

Recall that a function f holomorphic on $\mathbb{C} \backslash \mathbb{R}$ is said to belong to the class \mathbf{N} (see [1, Section 3.1]) [22, Appendix]), if $\operatorname{Im} f(z) \geq 0$ and $f(\bar{z})=\overline{f(z)}$ for all $z \in \mathbb{C}_{+}$. Clearly, the Stieltjes transform of σ

$$
\begin{equation*}
f(z)=\int_{\mathbb{R}_{+}} \frac{d \sigma(t)}{t-z} \quad z \in \mathbb{C} \backslash \mathbb{R}_{+} \tag{1.3}
\end{equation*}
$$

belongs to \mathbf{N}. Moreover, f belongs to the Stieltjes class \mathbf{S} consisting of functions $f \in \mathbf{N}$ which admit holomorphic and nonnegative continuations to \mathbb{R}_{-}. By M.G. Krein's criterion [15]

$$
\begin{equation*}
f \in \mathbf{S} \Longleftrightarrow f \in \mathbf{N} \quad \text { and } \quad z f \in \mathbf{N} \tag{1.4}
\end{equation*}
$$

By the Hamburger-Nevanlinna Theorem (see [1]) the truncated Stieltjes moment problem can be reformulated in terms of the Stieltjes transform (1.3) of σ as the following interpolation problem at ∞ : Find $f \in \mathbf{S}$ such that

$$
\begin{equation*}
f(z)=-\frac{s_{0}}{z}-\frac{s_{1}}{z^{2}}-\cdots-\frac{s_{2 n}}{z^{2 n+1}}+o\left(\frac{1}{z^{2 n+1}}\right), \quad z \widehat{\rightarrow} \infty \tag{1.5}
\end{equation*}
$$

The notation $z \widehat{\rightarrow} \infty$ means that $z \rightarrow \infty$ nontangentially, that is inside the sector $\varepsilon<\arg z<\pi-\varepsilon$ for some $\varepsilon>0$.

A function f meromorphic on $\mathbb{C} \backslash \mathbb{R}$ with the set of holomorphy \mathfrak{h}_{f} is said to be in the generalized Nevanlinna class $\mathbf{N}_{\kappa}(\kappa \in \mathbb{N})$, if for every set $z_{i} \in \mathbb{C}_{+} \cap \mathfrak{h}_{f}(j=1, \ldots, n)$ the form

$$
\sum_{i, j=1}^{n} \frac{f\left(z_{i}\right)-\overline{f\left(z_{j}\right)}}{z_{i}-\bar{z}_{j}} \xi_{i} \bar{\xi}_{j}
$$

has at most κ and for some choice of $z_{i}(i=1, \ldots, n)$ it has exactly κ negative squares. For $f \in \mathbf{N}_{\kappa}$ let us write $\kappa_{-}(f)=\kappa$. In particular, if $\kappa=0$ then the class \mathbf{N}_{0} coincides with the class \mathbf{N} of Nevanlinna functions.

A function $f \in \mathbf{N}_{\kappa}$ is said to belong to the class \mathbf{N}_{κ}^{+}(see [17, 18]) if $z f \in \mathbf{N}$ and to the class $\mathbf{N}_{\kappa}^{k}(k \in \mathbb{N})$ if $z f \in \mathbf{N}_{\kappa}^{k}$ (see [5,6]). In particular, if $k=0$, then $\mathbf{N}_{\kappa}^{0}:=\mathbf{N}_{\kappa}^{+}$, and if $\kappa=0, k \neq 0 N_{0}^{k}$ coincides with the generalized Stieltjes class S_{κ}^{+}introduced in $[12,13]$.

In the present paper the following indefinite moment problem in the classes \mathbf{N}_{κ}^{k} is studied.

Problem $\mathrm{MP}_{\kappa}^{k}(\mathbf{s}, \ell)$. Given $\ell, \kappa, k \in \mathbb{Z}_{+}$, and a sequence $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{\ell}$ of real numbers, describe the set $\mathcal{M}_{\kappa}^{k}(\mathbf{s})$ of functions $f \in \mathbf{N}_{\kappa}^{k}$, which have the following asymptotic expansion

$$
\begin{equation*}
f(z)=-\frac{s_{0}}{z^{1}}-\frac{s_{1}}{z^{2}}-\cdots-\frac{s_{\ell}}{z^{\ell+1}}+o\left(\frac{1}{z^{\ell+1}}\right), \quad z \rightarrow \infty \tag{1.6}
\end{equation*}
$$

Indefinite moment problems in the classes \mathbf{N}_{κ} were studied in [4, 5, 14, 19]. Indefinite moment problems in the classes \mathbf{N}_{κ}^{+}and \mathbf{N}_{κ}^{k} were studied in $[19,20]$ and $[7,10]$, respectively.

This paper is a continuation of [10], where a Schur type algorithm for the moment problem $\mathbf{M P}_{\kappa}^{k}(\mathbf{s}, \ell)$ was elaborated. We restrict ourselves to the case of a nondegenerate problem. Namely, if $\ell=2 n-1$ the even moment problem $M P_{\kappa}^{k}(\mathbf{s}, 2 n-1)$ is called nondegenerate if $\operatorname{det} S_{n} \neq 0$.

Recall ([9]), that a number $n_{j} \in \mathbb{N}$ is called a normal index of the sequence \mathbf{s}, if $\operatorname{det} S_{n_{j}} \neq 0$. The ordered set of all normal indices

$$
n_{1}<n_{2}<\cdots<n_{N}
$$

of the sequence \mathbf{s} is denoted by $\mathcal{N}(\mathbf{s})$. With this notation the even moment problem $M P_{\kappa}^{k}(\mathbf{s}, 2 n-1)$ is nondegenerate if $n \in \mathcal{N}(\mathbf{s})$. Let us set $n:=n_{N}$ and $\ell=2 n_{N}-1$. In Theorem 4.2 we show that the nondegenerate even moment problem $M P_{\kappa}^{k}\left(\mathrm{~s}, 2 n_{N}-1\right)$ is solvable if and only if

$$
\kappa_{N}^{+}:=\nu_{-}\left(S_{n_{N}}\right) \leq \kappa \quad \text { and } \quad k_{N}^{+}:=\nu_{-}\left(S_{n_{N}}^{+}\right) \leq k,
$$

where $\nu_{-}\left(S_{n_{N}}\right)$ denotes the number of negative eigenvalues of $S_{n_{N}}$ with account of multiplicities. Every solution f of the even moment problem $M P_{\kappa}^{k}\left(\mathrm{~s}, 2 n_{N}-1\right)$ admits the following representation

$$
\begin{equation*}
f(z)=\frac{1}{-z m_{1}(z)+\frac{1}{l_{1}(z)+\cdots+\frac{1}{-z m_{N}(z)+\frac{1}{l_{N}(z)+\tau(z)}}}} \tag{1.7}
\end{equation*}
$$

where $m_{i}(z)$ and $l_{i}(z)$ are some polynomials determined by the data $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 n_{N}-1}$, and $\tau \in \mathbf{N}_{\kappa-\kappa_{N}^{N}}^{k-k_{N}^{+}}$and $\tau(z)^{-1}=o(1)$, as $z \widehat{\rightarrow} \infty$.

Furthermore, the continued fraction (1.7) is associated with the following system of difference equations

$$
\left\{\begin{array}{l}
y_{2 i+1}-y_{2 i-1}=-z m_{i+1}(z) y_{2 i}, \tag{1.8}\\
y_{2 i+2}-y_{2 i}=l_{i+1}(z) y_{2 i+1} .
\end{array}\right.
$$

see $\left[24\right.$, Section 1]. The polynomials $P_{i}^{+}(z)$ and $Q_{i}^{+}(z)$, which satisfy the system (1.8) and the following initial conditions

$$
P_{-1}^{+}(z) \equiv-1, \quad P_{0}^{+}(z) \equiv 0 ; \quad Q_{-1}^{+}(z) \equiv 0, \quad Q_{0}^{+}(z) \equiv 1
$$

are called generalized Stieltjes polynomials.
In Theorem 5.5 it is shown that the formula (1.7) can be rewritten in terms of the polynomials $Q_{2 N-1}^{+}, Q_{2 N}^{+}, P_{2 N-1}^{+}$and $Q_{2 N}^{+}$as follows

$$
\begin{equation*}
f(z)=\frac{Q_{2 N-1}^{+}(z) \tau(z)+Q_{2 N}^{+}(z)}{P_{2 N-1}^{+}(z) \tau(z)+P_{2 N}^{+}(z)} \tag{1.9}
\end{equation*}
$$

The resolvent matrix of the even moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 n_{N}-1\right)$

$$
W_{2 N}(z)=\left(\begin{array}{ll}
Q_{2 N-1}^{+}(z) & Q_{2 N}^{+}(z) \tag{1.10}\\
P_{2 N-1}^{+}(z) & P_{2 N}^{+}(z)
\end{array}\right)
$$

admits the following factorization

$$
\begin{equation*}
W_{2 N}(z)=M_{1}(z) L_{1}(z) \ldots M_{N}(z) L_{N}(z) \tag{1.11}
\end{equation*}
$$

where the matrices $M_{j}(z)$ and $L_{j}(z)$ are defined by (4.12).
Analogous results for odd moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 n_{N}-2\right)$ are presented in Theorem 4.1 and Theorem 5.2. Sequences $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{\ell}$ which satisfy the condition

$$
\begin{equation*}
\operatorname{det} S_{n_{j}}^{+} \neq 0 \quad j=1, \ldots, N \tag{1.12}
\end{equation*}
$$

are called regular, [10]. The moment problem $M P_{\kappa}^{k}(\mathbf{s}, \ell)$ in the class of regular sequences $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{\ell}$ was studied in [10]. As was shown in [10] the polynomials $l_{j}(z)$ in this case are reducing to constants and the resolvent matrices $L_{j}(z)$ are changing accordingly.

2. Preliminaries

2.1. Generalized Nevanlinna and Stieltjes classes

Every real polynomial $P(t)=p_{\nu} t^{\nu}+p_{\nu-1} t^{\nu-1}+\ldots+p_{1} t+p_{0}$ of degree ν belongs to a class \mathbf{N}_{κ}, where the index $\kappa=\kappa_{-}(P)$ can be evaluated by (see [17, Lemma 3.5])

$$
\kappa_{-}(P)= \begin{cases}{\left[\frac{\nu+1}{2}\right],} & \text { if } p_{\nu}<0 ; \text { and } \nu \text { is odd } ; \tag{2.1}\\ {\left[\frac{\nu}{2}\right],} & \text { otherwise }\end{cases}
$$

Proposition 2.1. ([17]) Let $f \in \mathbf{N}_{\kappa}, f_{1} \in \mathbf{N}_{\kappa_{1}}, f_{2} \in \mathbf{N}_{\kappa_{2}}$. Then
(1) $-f^{-1} \in \mathbf{N}_{\kappa}$;
(2) $f_{1}+f_{2} \in \mathbf{N}_{\kappa^{\prime}}$, where $\kappa^{\prime} \leq \kappa_{1}+\kappa_{2}$;
(3) If, in addition, $f_{1}(i y)=o(y)$ as $y \rightarrow \infty$ and f_{2} is a polynomial, then

$$
\begin{equation*}
f_{1}+f_{2} \in \mathbf{N}_{\kappa_{1}+\kappa_{2}} \tag{2.2}
\end{equation*}
$$

(4) If a function $f \in \mathbf{N}_{\kappa}$ has an asymptotic expansion (1.6), then there exists $\kappa^{\prime} \leq \kappa$, such that $\left\{s_{j}\right\}_{j=0}^{\ell} \in \mathcal{H}_{\kappa^{\prime}, \ell}$.

Proposition 2.2. ([10]) The following equivalences hold:
(1) $f \in \mathbf{N}_{\kappa}^{k} \Longleftrightarrow-\frac{1}{f} \in \mathbf{N}_{\kappa}^{-k}$;
(2) $f \in \mathbf{N}_{\kappa}^{k} \Longleftrightarrow z f \in \mathbf{N}_{k}^{-\kappa}$, in particular, $f \in \mathbf{N}_{\kappa}^{+} \Longleftrightarrow z f \in \mathbf{S}_{\kappa}^{-}$;
(3) If a function $f \in \mathbf{N}_{\kappa}^{k}$ has an asymptotic expansion (1.6) then

$$
\begin{equation*}
\left\{s_{j}\right\}_{j=0}^{\ell} \in \mathbf{H}_{\kappa^{\prime}, \ell}^{k^{\prime}} \quad \text { with } \kappa^{\prime} \leq \kappa, \quad k^{\prime} \leq k \tag{2.3}
\end{equation*}
$$

2.2. Normal indices

Recall that the set $\mathcal{N}(\mathbf{s})=\left\{n_{j}\right\}_{j=1}^{N}$ of normal indices of the sequence $\mathbf{s}=\left\{s_{j}\right\}_{j=0}^{\ell}$ is defined by

$$
\begin{equation*}
\mathcal{N}(\mathbf{s})=\left\{n_{j}: D_{n_{j}} \neq 0, j=1,2, \ldots, N\right\}, \quad D_{n_{j}}:=\operatorname{det}\left(s_{i+k}\right)_{i, k=0}^{n_{j}-1} \tag{2.4}
\end{equation*}
$$

Let us set $D_{n}^{+}:=\operatorname{det}\left(s_{i+j+1}\right)_{i, j=0}^{n-1}$. By the Sylvester identity (see [9, Proposition 3.1] or [7, Lemma 5.1] for detail), the set $\mathcal{N}(\mathbf{s})$ is the union of two not necessarily disjoint subsets

$$
\begin{equation*}
\mathcal{N}(\mathbf{s})=\left\{\nu_{j}\right\}_{j=1}^{N_{1}} \cup\left\{\mu_{j}\right\}_{j=1}^{N_{2}} \tag{2.5}
\end{equation*}
$$

which are selected by

$$
\begin{equation*}
D_{\nu_{j}} \neq 0 \quad \text { and } \quad D_{\nu_{j}-1}^{+} \neq 0, \quad \text { for all } j=\overline{1, N_{1}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\mu_{j}} \neq 0 \quad \text { and } \quad D_{\mu_{j}}^{+} \neq 0, \quad \text { for all } j=\overline{1, N_{2}} \tag{2.7}
\end{equation*}
$$

Moreover, the normal indices ν_{j} and μ_{j} satisfy the following inequalities

$$
\begin{equation*}
0<\nu_{1} \leq \mu_{1}<\nu_{2} \leq \mu_{2}<\ldots \tag{2.8}
\end{equation*}
$$

For every $n_{j} \in \mathcal{N}(s)$ polynomials of the first and the second kind $P_{n_{j}}(z)$ and $Q_{n_{j}}(z)$ can be defined by standard formulas

$$
\begin{gather*}
P_{n_{j}}(z)=\frac{1}{D_{n_{j}}} \operatorname{det}\left(\begin{array}{cccc}
s_{0} & s_{1} & \cdots & s_{n_{j}} \\
\cdots & \cdots & \cdots & \cdots \\
s_{n_{j}-1} & s_{n_{j}} & \cdots & s_{2 n_{j}-1} \\
1 & z & \cdots & z^{n_{j}}
\end{array}\right), \tag{2.9}\\
Q_{n_{j}}(z)=\mathfrak{S}_{t}\left(\frac{P_{n_{j}}(z)-P_{n_{j}}(t)}{z-t}\right)
\end{gather*}
$$

where \mathfrak{S}_{t} is the linear functional on the set of polynomial of formal degree ℓ, defined by

$$
\mathfrak{S}_{t}\left(t^{i}\right)=s_{i}, \quad i=0,1, \ldots, \ell
$$

Definition 2.3. The sequence $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{\ell}$ is called regular $\left(\mathbf{s} \in \mathcal{H}_{\kappa, \ell}^{k, \text { reg }}\right)$ if and only if one of the following equivalent conditions holds ([9, Lemma 3.1])
(1) $P_{n_{j}}(0) \neq 0$ for every $j \leq N$;
(2) $D_{n_{j}-1}^{+} \neq 0$ for every $j \leq N$;
(3) $D_{n_{j}}^{+} \neq 0$ for every $j \leq N$;
(4) $\nu_{j}=\mu_{j}$ for all j, such that $\nu_{j}, \mu_{j} \in \mathcal{N}(\mathbf{s})$.

2.3. Class $\mathcal{U}_{\kappa}(J)$ and linear fractional transformations

Let $\kappa_{1} \in \mathbb{N}$ and let J be the 2×2 signature matrix

$$
J=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

A 2×2 matrix valued function $W(z)=\left(w_{i, j}(z)\right)_{i, j=1}^{2}$ that is meromorphic in \mathbb{C}_{+}is said to belong to the class $\mathcal{U}_{\kappa}(J)$ of generalized J-inner matrix valued functions if (see [2], [8]):
(i) the kernel

$$
\begin{equation*}
\mathrm{K}_{\omega}^{W}(z)=\frac{J-W(z) J W(\omega)^{*}}{-i(z-\bar{\omega})} \tag{2.10}
\end{equation*}
$$

has κ negative squares in $\mathfrak{H}_{W}^{+} \times \mathfrak{H}_{W}^{+}$and
(ii) $J-W(\mu) J W(\mu)^{*}=0$ for a.e. $\mu \in \mathbb{R}$,
where \mathfrak{H}_{W}^{+}denotes the domain of holomorphy of W in \mathbb{C}_{+}.
Consider the linear fractional transformation

$$
\begin{equation*}
T_{W}[\tau]=\left(w_{11} \tau(z)+w_{12}\right)\left(w_{21} \tau(z)+w_{22}\right)^{-1} \tag{2.11}
\end{equation*}
$$

associated with the matrix valued function $W(z)$. The linear fractional transformation associated with the product $W_{1} W_{2}$ of two matrix valued function $W_{1}(z)$ and $W_{2}(z)$, coincides with the composition $T_{W_{1}} \circ T_{W_{2}}$.

As is known, if $W \in \mathcal{U}_{\kappa_{1}}(J)$ and $\tau \in \mathbf{N}_{\kappa_{2}}$ then $T_{W}[\tau] \in \mathbf{N}_{\kappa^{\prime}}$, where $\kappa^{\prime} \leq \kappa_{1}+\kappa_{2}$, cf. [17, Satz 4.1]

In the present paper two partial cases, in which the preceding inequality becomes equality, will be needed.

Lemma 2.4. ([10]) Let $m(z)$ be a real polynomial $\kappa_{1}=\kappa_{-}(z m), k_{1}=$ $\kappa_{-}(m)$, let M be a 2×2 matrix valued function

$$
M(z)=\left(\begin{array}{cc}
1 & 0 \tag{2.12}\\
-z m(z) & 1
\end{array}\right)
$$

and let τ be a meromorphic function, such that $\tau(z)^{-1}=o(z)$ as $z \widehat{\rightarrow} \infty$. Then $M \in \mathcal{U}_{\kappa_{1}}(J)$ and the following equivalences hold:

$$
\begin{align*}
& \tau \in \mathbf{N}_{\kappa_{2}} \Longleftrightarrow T_{M}[\tau] \in \mathbf{N}_{\kappa_{1}+\kappa_{2}} \tag{2.13}\\
& \tau \in \mathbf{N}_{\kappa_{2}}^{k_{2}} \Longleftrightarrow T_{M}[\tau] \in \mathbf{N}_{\kappa_{1}+\kappa_{2}}^{k_{1}+k_{2}} \tag{2.14}
\end{align*}
$$

Lemma 2.5. ([10]) Let $l(z)$ be a real polynomial and indices $\kappa_{1}=\kappa_{-}(l)$, $k_{1}=\kappa_{-}(z l(z))$, let L be a 2×2 matrix valued function

$$
L(z)=\left(\begin{array}{cc}
1 & l(z) \tag{2.15}\\
0 & 1
\end{array}\right)
$$

and let τ be a meromorphic function, such that $\tau(z)^{-1}=o(1)$ as $z \widehat{\rightarrow} \infty$. Then $L \in \mathcal{U}_{k_{1}}(J)$ and the following equivalences hold:

$$
\begin{aligned}
& \tau \in \mathbf{N}_{\kappa_{2}} \Longleftrightarrow T_{L}[\tau] \in \mathbf{N}_{\kappa_{1}+\kappa_{2}} \\
& \tau \in \mathbf{N}_{\kappa_{2}}^{k_{2}} \Longleftrightarrow T_{L}[\tau] \in \mathbf{N}_{\kappa_{1}+\kappa_{2}}^{k_{1}+k_{2}}
\end{aligned}
$$

3. Basic moment problem in \mathbf{N}_{κ}^{k}

In this section we expose some material from [10] concerning the basic odd and even moment problems in generalized Stieltjes class \mathbf{N}_{κ}^{k} and describe their solutions.

3.1. Basic odd moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \nu_{1}-2\right)$

An odd moment problem $M P_{\kappa}^{k}(\mathbf{s}, 2 n-2)$ is called nondegenerate if

$$
\begin{equation*}
D_{n} \neq 0 \quad \text { and } \quad D_{n-1}^{+} \neq 0 \tag{3.1}
\end{equation*}
$$

If, in addition, $n=\nu_{1} \in \mathcal{N}(\mathbf{s})$, then the nondegenerate moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \nu_{1}-2\right)$ is called basic. In this case

$$
\begin{equation*}
\mathcal{N}(\mathbf{s})=\left\{\nu_{1}\right\} \quad \text { and } \quad s_{0}=\ldots=s_{\nu_{1}-2}=0, \quad s_{\nu_{1}-1} \neq 0 \tag{3.2}
\end{equation*}
$$

The basic moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \nu_{1}-2\right)$ can be reformulated as follows:
Given a sequence $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \nu_{1}-2}$, such that (3.2) holds, or equivalently $\mathcal{N}(\mathbf{s})=\left\{\nu_{1}\right\}$. Find all functions $f \in \mathbf{N}_{\kappa}^{k}$, which admit the asymptotic expansion

$$
\begin{equation*}
f(z)=-\frac{s_{\nu_{1}-1}}{z^{\nu_{1}}}-\cdots-\frac{s_{2 \nu_{1}-2}}{z^{2 \nu_{1}-1}}+o\left(\frac{1}{z^{2 \nu_{1}-1}}\right), \quad z \widehat{\rightarrow} \infty \tag{3.3}
\end{equation*}
$$

Let $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \nu_{1}-2}$ be a sequence of real numbers from \mathcal{H} and let (3.2) hold. Then $\mathbf{s} \in \mathcal{H}_{\kappa_{1}, 2 \nu_{1}-2}^{k_{1}}$, where κ_{1} and k_{1} are defined by

$$
\begin{gather*}
\kappa_{1}=\nu_{-}\left(S_{\nu_{1}}\right)=\left\{\begin{array}{cl}
{\left[\frac{\nu_{1}+1}{2}\right],} & \text { if } \nu_{1} \text { is odd and } s_{\nu_{1}-1}<0 \\
{\left[\frac{\nu_{1}}{2}\right],} & \text { otherwise }
\end{array}\right. \tag{3.4}\\
k_{1}=\nu_{-}\left(S_{\nu_{1}-1}^{+}\right)=\left\{\begin{array}{cl}
{\left[\frac{\nu_{1}}{2}\right],} & \text { if } \nu_{1} \text { is even and } s_{\nu_{1}-1}<0 \\
{\left[\frac{\nu_{1}-1}{2}\right],} & \text { otherwise }
\end{array}\right. \tag{3.5}
\end{gather*}
$$

Let us define the polynomial m_{1}, associated with the sequence $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \nu_{1}-2}$, by

$$
m_{1}(z)=\frac{(-1)^{\nu_{1}+1}}{D_{\nu_{1}}}\left|\begin{array}{ccccc}
0 & \ldots & 0 & s_{\nu_{1}-1} & s_{\nu_{1}} \tag{3.6}\\
\vdots & & \ldots & \ldots & \vdots \\
s_{\nu_{1}-1} & \ldots & \ldots & \ldots & s_{2 \nu_{1}-2} \\
1 & z & \ldots & z^{\nu_{1}-2} & z^{\nu_{1}-1}
\end{array}\right| \quad\left(D_{\nu_{1}}:=\operatorname{det} S_{\nu_{1}}\right)
$$

Obviously, the leading coefficient of m_{1} is

$$
\begin{equation*}
(-1)^{\nu_{1}+1} \frac{D_{\nu_{1}-1}^{+}}{D_{\nu_{1}}}=\frac{1}{s_{\nu_{1}-1}} \tag{3.7}
\end{equation*}
$$

and by Proposition 2.1, $m_{1} \in \mathbf{N}_{k_{1}}^{\kappa_{1}}$, i.e. the indices κ_{1} and k_{1} are connected with m_{1} by

$$
\begin{equation*}
\kappa_{1}=\kappa_{-}\left(z m_{1}\right), \quad k_{1}=\kappa_{-}\left(m_{1}\right) \tag{3.8}
\end{equation*}
$$

Lemma 3.1. (cf. [4, 10]) Let a function $f \in \mathbf{N}_{\kappa}^{k}$ admit the asymptotic expansion (3.3) and let ν_{1} be the first normal index of the sequence $s=\left\{s_{i}\right\}_{i=0}^{2 \nu_{1}-2}$, let polynomial m_{1}, indices κ_{1} and k_{1} be defined by (3.6) and (3.8), respectively. Then f admits the following representation

$$
\begin{equation*}
f(z)=T_{M_{1}}[\tau]=\frac{\tau(z)}{-z m_{1}(z) \tau(z)+1} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau \in \mathbf{N}_{\kappa-\kappa_{1}}^{k-k_{1}} \quad \text { and } \quad \tau^{-1}=o(z), \quad z \widehat{\rightarrow} \infty \tag{3.10}
\end{equation*}
$$

Furthermore, the matrix valued function

$$
M_{1}(z)=\left(\begin{array}{cc}
1 & 0 \tag{3.11}\\
-z m_{1}(z) & 1
\end{array}\right)
$$

belongs to the class $\mathcal{U}_{\kappa_{1}}(J)$.
Conversely, if τ satisfies (3.10) and f is defined by (3.9), then $f \in$ \mathbf{N}_{κ}^{k}.
Proof. Assume that $f \in \mathbf{N}_{\kappa}^{k}$ and f admits the asymptotic expansion (3.3). Then by [10, Lemma 3.1]

$$
\begin{equation*}
f(z)=-\frac{1}{z m_{1}(z)+g(z)} \tag{3.12}
\end{equation*}
$$

where the polynomial m_{1} is defined by (3.6), $g \in \mathbf{N}_{\kappa-\kappa_{1}}$ and $g(z)=o(z)$ as $z \widehat{\rightarrow} \infty$. On the other hand, we can rewrite (3.12) as follows

$$
\begin{equation*}
-1 / f(z)=z m_{1}(z)+g(z) \tag{3.13}
\end{equation*}
$$

Replacing g by $-\tau^{-1}$ in (3.13), we obtain $\tau \in \mathbf{N}_{\kappa-\kappa_{1}}$. Due to the assumption $z f \in \mathbf{N}_{k}$ one gets $-\frac{1}{z f} \in \mathbf{N}_{k}$ and hence the equality

$$
\begin{equation*}
-1 / z f(z)=m_{1}(z)-1 / z \tau(z) \tag{3.14}
\end{equation*}
$$

Proposition 2.1 and (3.8) imply $-(z \tau(z))^{-1} \in \mathbf{N}_{k-k_{1}}$. Therefore, $\tau \in$ $\mathbf{N}_{\kappa-\kappa_{1}}^{k-k_{1}}$ and $\tau^{-1}=o(z)$ as $z \widehat{\rightarrow} \infty$. Replacing g by $-\tau^{-1}$ in (3.12) one obtains (3.9). Furthermore, by Lemma $2.4 M_{1} \in \mathcal{U}_{\kappa_{1}}(J)$. This completes the proof.

A sequence $\left(c_{0}, \ldots, c_{n}\right)$ of real numbers determines an upper triangular Toeplitz matrix $T\left(c_{0}, \ldots, c_{n}\right)$ of order $(n+1) \times(n+1)$ with entries $t_{i, j}=c_{j-i}$ for $i \leq j$ and $t_{i, j}=0$ for $i>j$:

$$
T\left(c_{0}, \ldots, c_{n}\right)=\left(\begin{array}{ccc}
c_{0} & \ldots & c_{n} \tag{3.15}\\
& \ddots & \vdots \\
& & c_{0}
\end{array}\right)
$$

Theorem 3.2. ([10]) Let ν_{1} be the first normal index of the sequence $s=\left\{s_{i}\right\}_{i=0}^{2 \nu_{1}-2}$, let m_{1}, κ_{1} and k_{1} be defined by (3.6), (3.4) and by (3.5), respectively, and let $\ell \geq 2 \nu_{1}-2$. Then:
(1) The problem $M P_{\kappa}^{k}(s, \ell)$ is solvable if and only if

$$
\begin{equation*}
\kappa_{1} \leq \kappa \quad \text { and } \quad k_{1} \leq k \tag{3.16}
\end{equation*}
$$

(2) $f \in \mathcal{M}_{\kappa}^{k}\left(s, 2 \nu_{1}-2\right)$ if and only if f admits the representation

$$
\begin{equation*}
f=T_{M_{1}}[\tau] \tag{3.17}
\end{equation*}
$$

where τ satisfies the following conditions

$$
\begin{equation*}
\tau \in \mathbf{N}_{\kappa-\kappa_{1}}^{k-k_{1}} \quad \text { and } \quad \frac{1}{\tau(z)}=o(z), \quad \widehat{\rightarrow} \infty \tag{3.18}
\end{equation*}
$$

(3) If $\ell>2 \nu_{1}-2$, then $f \in \mathcal{M}_{\kappa}^{k}(s, \ell)$ if and only if f admits the representation $f=T_{M_{1}}[\tau]$, where $\tau \in \mathbf{N}_{\kappa-\kappa_{1}}^{k-k_{1}}$ and τ admits the following asymptotic expansion
$-\tau^{-1}(z)=-\mathfrak{s}_{-1}^{(1)}-\frac{\mathfrak{s}_{0}^{(1)}}{z}-\cdots-\frac{\mathfrak{s}_{\ell-2 \nu_{1}}^{(1)}}{z^{\ell-2 \nu_{1}+1}}+o\left(\frac{1}{z^{\ell-2 \nu_{1}+1}}\right), \quad z \widehat{\rightarrow} \infty$,
where the sequence $\left\{\mathfrak{s}_{i}^{(1)}\right\}_{i=-1}^{\ell-2 \nu_{1}}$ is determined by the matrix equation

$$
\begin{equation*}
T\left(m_{\nu_{1}-1}^{(1)}, \ldots, m_{0}^{(1)},-\mathfrak{s}_{-1}^{(1)}, \ldots,-\mathfrak{s}_{\ell-2 \nu_{1}}^{(1)}\right) T\left(s_{\nu_{1}-1}, \ldots, s_{\ell}\right)=I_{\ell-\nu_{1}+2} . \tag{3.20}
\end{equation*}
$$

Remark 3.3. On the other hand, the sequence $\left\{\mathfrak{s}_{i}^{(1)}\right\}_{i=-1}^{n-2 \nu_{1}}$ can be found by the following equivalent formulas (see [4, Proposition 2.1])

$$
\begin{gather*}
\mathfrak{s}_{-1}^{(1)}=\frac{(-1)^{\nu_{1}+1}}{s_{\nu_{1}-1}} \frac{D_{\nu_{1}}^{+}}{D_{\nu_{1}}}, \tag{3.21}\\
\mathfrak{s}_{i}^{(1)}=\frac{(-1)^{i+\nu_{1}}}{s_{\nu_{1}-1}^{i+\nu_{1}+2}}\left|\begin{array}{ccccc}
s_{\nu_{1}} & s_{\nu_{1}-1} & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & \ddots & s_{\nu_{1}-1} \\
s_{2 \nu_{1}+i} & \ldots & \ldots & \cdots & s_{\nu_{1}}
\end{array}\right| \quad i=\overline{0, n-2 \nu_{1}} . \tag{3.22}
\end{gather*}
$$

3.2. Basic even moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{1}-1\right)$

An even moment problem $M P_{\kappa}^{k}(\mathbf{s}, 2 n-1)$ is called nondegenerate, if the following conditions hold

$$
\begin{equation*}
D_{n} \neq 0 \quad \text { and } \quad D_{n}^{+} \neq 0 \tag{3.23}
\end{equation*}
$$

The nondegenerate even moment problem $M P_{\kappa}^{k}(\mathbf{s}, 2 n-1)$ is called basic, if n is the smallest normal index of the sequence $\left\{s_{i}\right\}_{i=0}^{2 n-1}$ such that (3.23) holds. In view of the classification of normal indices in (2.6) and (2.7), the basic even moment problem coincides with the problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{1}-1\right)$. In this case

$$
\text { either } \mathcal{N}(\mathbf{s})=\left\{\nu_{1}\right\} \text { or } \mathcal{N}(\mathbf{s})=\left\{\nu_{1}, \mu_{1}\right\}
$$

regarding to the conditions

$$
\nu_{1}=\mu_{1} \quad \text { or } \quad \nu_{1}<\mu_{1}
$$

The basic even moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{1}-1\right)$ can be reformulated as follows:

Given a sequence $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \mu_{1}-1} \in \mathcal{H}$, where μ_{1} is the smallest index n such that (3.23) holds, find all functions $f \in \mathbf{N}_{\kappa}^{k}$, such that

$$
f(z)=-\frac{s_{\nu_{1}-1}}{z^{\nu_{1}}}-\cdots-\frac{s_{2 \mu_{1}-1}}{z^{2 \mu_{1}}}+o\left(\frac{1}{z^{\mu_{1}}}\right), \quad z \widehat{\rightarrow} \infty
$$

Solution of the basic even moment problem will be splitted into two steps. On the first step one applies Lemma 3.1 to construct a sequence $\left\{\mathfrak{s}_{i}^{(1)}\right\}_{i=-1}^{2\left(\mu_{1}-\nu_{1}\right)-1}$ from the asymptotic expansion of the function $-\tau^{-1}$. If $f \in \mathcal{M}_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{1}-1\right)$ then by Theorem $3.2 f$ admits the representation (3.9) which can be rewritten as

$$
\begin{equation*}
-\frac{1}{f(z)}=z m_{1}(z)-\frac{1}{g_{1}(z)}, \tag{3.24}
\end{equation*}
$$

where we use g_{1} instead of τ and $-g_{1}^{-1}$ has the following asymptotic expansion

$$
\begin{equation*}
-\frac{1}{g_{1}(z)}=-\mathfrak{s}_{-1}^{(1)}-\frac{\mathfrak{s}_{0}^{(1)}}{z}-\cdots-\frac{\mathfrak{s}_{2\left(\mu_{1}-\nu_{1}\right)-1}^{(1)}}{z^{2\left(\mu_{1}-\nu_{1}\right)}}+o\left(\frac{1}{z^{2\left(\mu_{1}-\nu_{1}\right)}}\right), \quad \widetilde{\rightarrow} \infty \tag{3.25}
\end{equation*}
$$

with $\mathfrak{s}_{i}^{(1)}$ defined by (3.20). By Lemma 2.5

$$
\begin{gather*}
\kappa-\kappa_{-}\left(z m_{1}\right)=\kappa_{-}\left(g_{1}\right) \geq \kappa_{-}\left(l_{1}\right)+\kappa_{-}(\tau) \tag{3.26}\\
\kappa-\kappa_{-}\left(m_{1}\right)=\kappa_{-}\left(z g_{1}\right) \geq \kappa_{-}\left(z l_{1}\right)+\kappa_{-}(z \tau)
\end{gather*}
$$

Therefore, $f \in \mathbf{N}_{\kappa}^{k}$ if and only if $g_{1} \in \mathbf{N}_{\kappa-\kappa_{-}\left(z m_{1}\right)}^{k-\kappa_{-}\left(m_{1}\right)}$ and g_{1} is represented as

$$
\begin{equation*}
g_{1}(z)=T_{L_{1}}[\tau]:=l_{1}(z)+\tau(z) \tag{3.27}
\end{equation*}
$$

where $\tau \in N_{\kappa-\kappa_{-}\left(z m_{1}\right)-\kappa_{-}\left(l_{1}\right)}^{k-\kappa_{-}\left(m_{1}\right) \kappa_{-}\left(z l_{1}\right)}$ and $l_{1}(z)$ is calculated as follows:
(1) if $\nu_{1}=\mu_{1}$, then

$$
\begin{equation*}
l_{1}=\frac{1}{\mathfrak{s}_{-1}^{(1)}}=(-1)^{\nu_{1}+1} s_{\nu_{1}-1} \frac{D_{\nu_{1}}}{D_{\nu_{1}}^{+}} \tag{3.28}
\end{equation*}
$$

(2) if $\nu_{1}<\mu_{1}$, then

$$
l_{1}(z)=\frac{1}{\mathfrak{s}_{\mu_{1}-\nu_{1}-1}^{(1)} \operatorname{det}\left(\mathcal{S}_{\mu_{1}-\nu_{1}}^{(1)}\right)}\left|\begin{array}{cccc}
\mathfrak{s}_{0}^{(1)} & \ldots & \mathfrak{s}_{\mu_{1}-\nu_{1}-1}^{(1)} & \mathfrak{s}_{\mu_{1}-\nu_{1}}^{(1)} \tag{3.29}\\
\ldots & \ldots & \ldots & \cdots \\
\mathfrak{s}_{\mu_{1}-\nu_{1}-1}^{(1)} & \ldots & \mathfrak{s}_{2 \mu_{1}-2 \nu_{1}-2}^{(1)} & \mathfrak{s}_{2 \mu_{1}-2 \nu_{1}-1}^{(1)} \\
1 & \ldots & z^{\mu_{1}-\nu_{1}-1} & z^{\mu_{1}-\nu_{1}}
\end{array}\right|
$$

where the matrix $\mathcal{S}_{\mu_{1}-\nu_{1}}^{(1)}$ is defined as in (1.2), i.e.

$$
\mathcal{S}_{\mu_{1}-\nu_{1}}^{(1)}=\left(\mathfrak{s}_{i+j-1}^{(1)}\right)_{i, j=0}^{\mu_{1}-\nu_{1}-1} .
$$

Theorem 3.4. ([10]) Let $s=\left\{s_{i}\right\}_{i=0}^{2 \mu_{1}-1}$ be a sequence from \mathcal{H}_{κ}^{k}, such that $\mathcal{N}(\mathbf{s})=\left\{\nu_{1}, \mu_{1}\right\}\left(\nu_{1} \leq \mu_{1}\right)$, and let m_{1}, l_{1} be defined by (3.6), (3.28) and (3.29), respectively. Then:
(1) The problem $M P_{\kappa}^{k}\left(s, 2 \mu_{1}-1\right)$ is solvable if and only if

$$
\begin{equation*}
\kappa_{1}^{+}:=\nu_{-}\left(S_{\mu_{1}}\right) \leq \kappa \quad \text { and } \quad k_{1}^{+}:=\nu_{-}\left(S_{\mu_{1}}^{+}\right) \leq k . \tag{3.30}
\end{equation*}
$$

(2) $f \in \mathcal{M}_{\kappa}^{k}\left(s, 2 \mu_{1}-1\right)$ if and only if f admits the following representation

$$
\begin{equation*}
f=T_{M_{1} L_{1}}[\tau]=\frac{1}{-z m_{1}(z)+\frac{1}{l_{1}(z)+\tau(z)}} \tag{3.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau \in \mathbf{N}_{\kappa-\kappa_{1}^{+}}^{k-k_{1}^{+}} \quad \text { and } \quad \tau(z)=o(1) \quad \text { as } \quad z \rightarrow \infty \tag{3.32}
\end{equation*}
$$

The indices κ_{1}^{+}and k_{1}^{+}can be expressed in terms of m_{1} and l_{1} by

$$
\begin{equation*}
\kappa_{1}^{+}=\kappa_{-}\left(z m_{1}\right)+\kappa_{-}\left(l_{1}\right), \quad k_{1}^{+}=\kappa_{-}\left(m_{1}\right)+\kappa_{-}\left(z l_{1}\right) . \tag{3.33}
\end{equation*}
$$

(3) If $\ell>2 \mu_{1}-1$, then $f \in \mathcal{M}_{\kappa}^{k}(s, \ell)$, if and only if f admits the representation (3.31), where

$$
\begin{equation*}
\tau \in \mathcal{M}_{\kappa-\kappa_{1}}^{k-k_{1}^{+}}\left(s^{(1)}, \ell-2 \mu_{1}\right) \tag{3.34}
\end{equation*}
$$

κ_{1}^{+}and k_{1}^{+}are determined by (3.30) and the sequence $\left\{s_{i}^{(1)}\right\}_{i=-1}^{\ell-2 \mu_{1}}$ is determi-ned by the matrix equation

$$
\begin{equation*}
T\left(l_{1},-s_{0}^{(1)}, \ldots,-s_{\ell-2 \mu_{1}}^{(1)}\right) T\left(\mathfrak{s}_{-1}^{(1)}, \ldots, \mathfrak{s}_{\ell-2 \mu_{1}}^{(1)}\right)=I_{\ell-2 \mu_{1}+2} \tag{3.35}
\end{equation*}
$$

if $\mu_{1}=\nu_{1}$, and if $\nu_{1}<\mu_{1}$ by the following equation

$$
\begin{align*}
& T\left(l_{\mu_{1}-\nu_{1}}^{(1)}, \ldots, l_{0}^{(1)},-s_{0}^{(1)}, \ldots,-s_{\ell-2 \mu_{1}}^{(1)}\right) T\left(\mathfrak{s}_{\mu_{1}-\nu_{1}-1}^{(1)}, \ldots, \mathfrak{s}_{\ell-2 \nu_{1}}^{(1)}\right) \\
& =I_{\ell-\mu_{1}-\nu_{1}+2} . \tag{3.36}
\end{align*}
$$

Proof. (1)-(3) are implied by the above considerations, in particular, (3.30) follows from (3.26) and (3.33) follows from (3.27) and Proposition 2.1.

Remark 3.5. The sequence $\left\{s_{i}^{(1)}\right\}_{i=0}^{\ell-2 \mu_{1}}$ can also be found by the following formula (see [4, Proposition 2.1], [10, (3.38)])

$$
s_{i}^{(1)}=\frac{(-1)^{i+\mu_{1}-\nu_{1}}}{\left(\mathfrak{s}_{\mu_{1}-\nu_{1}-1}^{(1)}\right)^{i+\mu_{1}-\nu_{1}+2}}\left|\begin{array}{ccccc}
\mathfrak{s}_{\mu_{1}-\nu_{1}}^{(1)} & \mathfrak{s}_{\mu_{1}-\nu_{1}-1}^{(1)} & 0 & \ldots & 0 \tag{3.37}\\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & \ddots & \mathfrak{s}_{\mu_{1}-\nu_{1}-1}^{(1)} \\
\mathfrak{s}_{2\left(\mu_{1}-\nu_{1}\right)+i}^{(1)} & \ldots & \ldots & \ldots & \mathfrak{s}_{\mu_{1}-\nu_{1}}^{(1)}
\end{array}\right|
$$

where $i=\overline{0, \ell-2 \mu_{1}}$.
Remark 3.6. The resolvent matrix of the basic even moment problem $\mathcal{M}_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{1}-1\right)$ takes the form

$$
W_{2}(z)=\left(\begin{array}{cc}
1 & l_{1}(z) \tag{3.38}\\
-z m_{1}(z) & -z m_{1}(z) l_{1}(z)+1
\end{array}\right)
$$

Furthermore, $W_{2}(z)$ admits the following factorization

$$
\begin{equation*}
W_{2}(z)=M_{1}(z) L_{1}(z) \tag{3.39}
\end{equation*}
$$

where the matrices $M_{1}(z)$ and $L_{1}(z)$ are defined by (2.12), (2.15) and the corresponding linear fractional transform is defined by

$$
\begin{equation*}
T_{W_{2}}\left[f_{1}\right]=\frac{f_{1}(z)+l_{1}(z)}{-z m_{1}(z) f_{1}(z)-z m_{1}(z) l_{1}+1} \tag{3.40}
\end{equation*}
$$

Remark 3.7. If the sequence $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \mu_{1}-1}$ belongs to $\mathcal{H}_{\kappa, 2 \mu_{1}-1}^{k, r e g}$, then $l_{1}(z)$ is a constant,

$$
l_{1}=\frac{1}{\mathfrak{s}_{-1}^{(1)}} \quad \text { and } \quad L_{1}=\left(\begin{array}{cc}
1 & l_{1} \\
0 & 1
\end{array}\right)
$$

In this case, the resolvent matrix $W_{2}(z)$ of the basic even moment prob-lem $\mathcal{M}_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{1}-1\right)$ admits the factorization

$$
W_{2}(z)=M_{1}(z) L_{1} .
$$

and (3.38) takes the form

$$
W_{2}(z)=\left(\begin{array}{cc}
1 & l_{1} \tag{3.41}\\
-z m_{1}(z) & -z m_{1}(z) l_{1}+1
\end{array}\right) .
$$

4. The Schur algorithm

In this section we study a step-by-step algorithm, which describes all solutions of the general nondegenerate indefinite moment problem in the class \mathbf{N}_{κ}^{k}. This algorithm is based on the elementary steps introduced in the previous section.

4.1. Odd moment problem

Let $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \nu_{N}-2\right)$ be a nondegenerate odd moment problem, i.e.

$$
\begin{equation*}
D_{\nu_{N}} \neq 0 \quad \text { and } \quad D_{\nu_{N}-1}^{+} \neq 0 \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Let $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \nu_{N}-2} \in \mathcal{H}_{\kappa, 2 \nu_{N}-2}^{k}$, let $\mathcal{N}(\mathbf{s})=\left\{\nu_{j}\right\}_{j=1}^{N} \cup$ $\left\{\mu_{j}\right\}_{j=1}^{N-1}$, and let $m_{j}(z)$ and $l_{j}(z)$ be defined by (4.10) and (4.11), respectively. Then:
(1) A nondegenerate odd moment problem $M P_{\kappa}^{k}\left(s, 2 \nu_{N}-2\right)$ is solvable if and only if

$$
\begin{equation*}
\kappa_{N}:=\nu_{-}\left(S_{\nu_{N}}\right) \leq \kappa \quad \text { and } \quad k_{N}:=\nu_{-}\left(S_{\nu_{N}-1}^{+}\right) \leq k . \tag{4.2}
\end{equation*}
$$

(2) $f \in \mathcal{M}_{\kappa}^{k}\left(s, 2 \nu_{N}-2\right)$ if and only if f admits the following representation

$$
\begin{equation*}
f=T_{W_{2 N-1}}[\tau] \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{2 N-1}(z):=M_{1}(z) L_{1}(z) \ldots L_{N-1}(z) M_{N}(z) \tag{4.4}
\end{equation*}
$$

and $\tau(z)$ satisfies the conditions

$$
\begin{equation*}
\tau \in \mathbf{N}_{\kappa-\kappa_{N}}^{k-k_{N}} \quad \text { and } \quad \frac{1}{\tau(z)}=o(z), \quad z \widehat{\rightarrow} \infty \tag{4.5}
\end{equation*}
$$

(3) The representation (4.3) can be rewritten as a continued fraction expansion

$$
\begin{equation*}
f(z)=\frac{1}{-z m_{1}(z)+\frac{1}{l_{1}(z)+\frac{1}{-z m_{2}(z)+\cdots+\frac{1}{-z m_{N}(z)+\frac{1}{\tau(z)}}}} . . .} \tag{4.6}
\end{equation*}
$$

(4) The indices κ_{N} and k_{N} are related to m_{j} and l_{j} by

$$
\kappa_{N}=\sum_{j=1}^{N} \kappa_{-}\left(z m_{j}\right)+\sum_{j=1}^{N-1} \kappa_{-}\left(l_{j}\right), \quad k_{N}=\sum_{j=1}^{N} \kappa_{-}\left(m_{j}\right)+\sum_{j=1}^{N-1} \kappa_{-}\left(z l_{j}\right)
$$

Proof. Let $f \in \mathbf{N}_{\kappa}^{k}$ and f have the asymptotic

$$
f(z)=-\frac{s_{0}}{z}-\frac{s_{1}}{z^{2}}-\cdots-\frac{s_{2 \nu_{N}-2}}{z^{2 \nu_{N}-1}}+o\left(\frac{1}{z^{2 \nu_{N}-1}}\right), \quad z \widehat{\rightarrow} \infty
$$

Then by Theorem 3.4, the function f can be represented as follows

$$
f(z)=\frac{1}{-z m_{1}(z)+\frac{1}{l_{1}(z)+f_{1}(z)}}
$$

where the polynomials m_{1} and l_{1} are defined by (3.6) and (3.29), respectively, and

$$
\begin{equation*}
\kappa_{1}^{+}=\kappa_{-}\left(z m_{1}\right)+\kappa_{-}\left(l_{1}\right) \leq \kappa \quad \text { and } \quad k_{1}^{+}=\kappa_{-}\left(m_{1}\right)+\kappa_{-}\left(z l_{1}\right) \leq k \tag{4.7}
\end{equation*}
$$

In this case $f_{1} \in \mathbf{N}_{\kappa-\kappa_{1}^{+}}^{k-k_{1}^{+}}$and f_{1} has the following asymptotic expansion

$$
f_{1}(z)=-\frac{s_{0}^{(1)}}{z}-\frac{s_{1}^{(1)}}{z^{2}}-\cdots-\frac{s_{2\left(\nu_{N}-\nu_{1}\right)-2}^{(1)}}{z^{2\left(\nu_{N}-\nu_{1}\right)-1}}+o\left(\frac{1}{z^{2\left(\nu_{N}-\nu_{1}\right)-1}}\right), \quad 㐅 \widehat{\rightarrow} \infty
$$

where the sequence $\mathbf{s}^{(1)}=\left\{s_{i}^{(1)}\right\}_{i=1}^{2\left(\nu_{N}-\nu_{1}\right)-2}$ is found recursively by (3.20), (3.35) and (3.36). Moreover, by [10, Lemma 2.5] the set of normal indices of the sequence $\mathbf{s}^{(1)}$ is

$$
\mathcal{N}\left(\mathbf{s}^{(1)}\right)=\left\{n_{j}-\nu_{1}\right\}_{j=2}^{N} .
$$

Continuing this process and applying Theorem $3.4 N-1$ times, one const-ructs sequences of polynomials m_{j}, l_{j} and functions f_{j}, g_{j}, such that

$$
\begin{gathered}
-\frac{1}{f_{j-1}(z)}=z m_{j}(z)-\frac{1}{g_{j}(z)}, \quad 1 \leq j \leq N \\
g_{j}(z)=l_{j}(z)+f_{j}(z), \quad 1 \leq j \leq N-1
\end{gathered}
$$

The indices κ_{j}^{+}and k_{j}^{+}are defined by

$$
\begin{align*}
\kappa_{j}^{+} & =\sum_{i=1}^{j} \kappa_{-}\left(z m_{i}\right)+\sum_{i=1}^{j} \kappa_{-}\left(l_{i}\right) \leq \kappa \\
k_{j}^{+} & =\sum_{i=1}^{N} \kappa_{-}\left(m_{i}\right)+\sum_{i=1}^{j} \kappa_{-}\left(z l_{i}\right) \leq k . \tag{4.8}
\end{align*}
$$

Hence

$$
g_{j} \in \mathbf{N}_{\kappa-\kappa_{j}}^{k-k_{j}} \quad \text { and } \quad f_{j} \in \mathbf{N}_{\kappa-\kappa_{j}^{+}}^{k-k_{j}^{+}}, \quad 1 \leq j \leq N-1
$$

Moreover, g_{j} and f_{j} have the following induced asymptotic expansions

$$
\begin{gathered}
g_{j}(z)=-\mathfrak{s}_{-1}^{(j)}-\frac{\mathfrak{s}_{0}^{(j)}}{z}-\frac{\mathfrak{s}_{1}^{(j)}}{z^{2}}-\cdots-\frac{\mathfrak{s}_{2\left(\nu_{N}-\nu_{j}\right)-2}^{(j)}}{z^{2\left(\nu_{N}-\nu_{j}\right)-1}}+o\left(\frac{1}{z^{2\left(\nu_{N}-\nu_{j}\right)-1}}\right), \quad z \widehat{\rightarrow} \infty \\
f_{j}(z)=-\frac{s_{0}^{(j)}}{z}-\frac{s_{1}^{(j)}}{z^{2}}-\cdots-\frac{s_{2\left(\nu_{N}-\mu_{j}\right)-2}^{(j)}}{z^{2\left(\nu_{N}-\mu_{j}\right)-1}}+o\left(\frac{1}{z^{2\left(\nu_{N}-\mu_{j}\right)-1}}\right), \quad z \widehat{\rightarrow} \infty
\end{gathered}
$$

where the sequences $\left\{\mathfrak{s}_{i}^{(j)}\right\}_{i=-1}^{2\left(\nu_{N}-\nu_{i}\right)-2}$ and $\left\{s_{i}^{(j)}\right\}_{i=0}^{2\left(\nu_{N}-\mu_{i}\right)-2}$ are found from the equalities

$$
\begin{aligned}
& T\left(m_{\nu_{j}-1}^{(j)}, \ldots, m_{0}^{(j)},-\mathfrak{s}_{-1}^{(j)}, \ldots,-\mathfrak{s}_{\ell_{j}-2 \nu_{j}}^{(j)}\right) T\left(s_{\nu_{j}-1}^{(j)}, \ldots, s_{\ell_{j}}^{(j)}\right)=I_{\ell_{j}-\nu_{1}+2}, \quad \ell_{j}=\ell-2 \mu_{j-1}, \\
& T\left(l_{\mu_{j}-\nu_{j}}^{(j)}, \ldots, l_{0}^{(j)},-s_{0}^{(j)}, \ldots,-s_{\ell-2 \mu_{j}}^{(j)}\right) T\left(\mathfrak{s}_{\mu_{j}-\nu_{j}-1}^{(j)}, \ldots, \mathfrak{s}_{\ell_{j}-2 \nu_{j}}^{(j)}\right)=I_{\ell-\mu_{j}-\nu_{j}+2} .
\end{aligned}
$$

Therefore, f_{j-1} takes the following representation in terms of f_{j} :

$$
\begin{equation*}
f_{j-1}(z)=\frac{1}{-z m_{j}(z)+\frac{1}{l_{j}(z)+f_{j}(z)}} \quad(j=1, \ldots, N-1) \tag{4.9}
\end{equation*}
$$

Here the sequence $\mathbf{s}^{(j)}=\left\{s_{i}^{(j)}\right\}_{i=0}^{2\left(\nu_{N}-\mu_{j}\right)-2}$ is determined recursively by (3.20) and (3.36) and polynomials m_{j} and l_{j} are defined by the formulas

$$
\begin{gather*}
m_{j}(z)=\frac{(-1)^{\nu+1}}{\operatorname{det} S_{\nu}^{(j)}}\left|\begin{array}{ccccc}
0 & \ldots & 0 & s_{\nu-1}^{(j-1)} & s_{\nu}^{(j-1)} \\
\vdots & & \ldots & \ldots & \vdots \\
s_{\nu-1}^{(j-1)} & \ldots & \ldots & \ldots & s_{2 \nu-2}^{(j-1)} \\
1 & z & \ldots & z^{\nu-2} & z^{\nu-1}
\end{array}\right|, \tag{4.10}\\
l_{j}(z)=\left\{\begin{array}{l}
\frac{1}{\mathfrak{s}_{-1}^{(j)}}=(-1)^{\nu+1} s_{\nu-1}^{(j)} \frac{D_{j}^{(j)},}{D^{(j)+}}, \\
\frac{1}{\mathfrak{s}_{\mu-1}^{(j)} \operatorname{det}\left(\mathcal{S}_{\mu}^{(j)}\right)}\left|\begin{array}{llll}
\mathfrak{s}_{0}^{(j)} & \ldots & \mathfrak{s}_{\mu-1}^{(j)} & \mathfrak{s}_{\mu}^{(j)} \\
\ldots & \ldots & \ldots & \ldots \\
\mathfrak{s}_{\mu-1}^{(j)} & \ldots & \mathfrak{s}_{2 \mu-2}^{(j)} & \mathfrak{s}_{2 \mu-1}^{(j)} \\
1 & \ldots & z^{\mu-1} & z^{\mu}
\end{array}\right|, \quad \text { if } \nu_{j}=\mu_{j} ;
\end{array}\right. \tag{4.11}
\end{gather*}
$$

where $\nu=\nu_{j}-\mu_{j-1}$ and $\mu=\mu_{j}-\nu_{j}$ for all $j=1, \ldots, N-1$.
Let the matrix functions $M_{j}(z)$ and $L_{j}(z)$ be defined by

$$
M_{j}(z)=\left(\begin{array}{cc}
1 & 0 \tag{4.12}\\
-z m_{j}(z) & 1
\end{array}\right) \text { and } L_{j}(z)=\left(\begin{array}{cc}
1 & l_{j}(z) \\
0 & 1
\end{array}\right),(j=1, \ldots, N-1)
$$

Then it follows from (4.9) that

$$
\begin{equation*}
f_{j-1}(z)=T_{M_{j}(z) L_{j}(z)}\left[f_{j}(z)\right] \quad(j=1, \ldots, N-1) \tag{4.13}
\end{equation*}
$$

On the last step we get the function $f_{N-1}(z)$, which is a solution of the basic moment problem $M P_{\kappa}^{k}\left(\mathbf{s}^{(N-1)}, 2\left(\nu_{N}-\mu_{N-1}\right)-2\right)$. By Theorem 3.2, the function $f_{N-1}(z)$ can be represented as

$$
\begin{equation*}
f_{N-1}(z)=\frac{1}{-z m_{N}(z)+\frac{1}{f_{N}(z)}}=T_{M_{N}(z)}\left[f_{N}(z)\right] \tag{4.14}
\end{equation*}
$$

where the polynomial $m_{N}(z)$ is defined by (4.10) and $f_{N}(z)$ is a function from $\mathbf{N}_{\kappa-\kappa_{N}}^{k-k_{N}}$, such that $f_{N}(z)^{(-1)}=o(z)$ as $z \widehat{\rightarrow} \infty$ and

$$
\begin{equation*}
\kappa_{N}=\kappa_{N-1}^{+}+\kappa_{-}\left(z m_{N}\right) \leq \kappa \quad \text { and } \quad k_{N}=k_{N-1}^{+}+\kappa_{-}\left(m_{N}\right) \leq k \tag{4.15}
\end{equation*}
$$

Now (4.2) is implied by (4.8) and (4.15).
The converse statements of Theorem 4.1 are also implied by Theorem 3.2 and Theorem 3.4. Replacing $f_{N}(z)$ by $\tau(z)$, we get (2) and (3). Combining (4.9), (4.13) and Lemmas 2.4-2.5, we obtain the statement (4).

4.2. Even moment problem

Let $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \mu_{N}-1} \in \mathcal{H}_{\kappa, 2 \mu_{N}-1}^{k}$, let the set of normal indices $\mathcal{N}(\mathbf{s})=$ $\left\{\nu_{j}\right\}_{j=1}^{N} \cup\left\{\mu_{j}\right\}_{j=1}^{N}$ and let $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{N}-1\right)$ be a nondegenerate even moment problem, i.e.

$$
\begin{equation*}
D_{\mu_{N}} \neq 0 \quad \text { and } \quad D_{\mu_{N}}^{+} \neq 0 \tag{4.16}
\end{equation*}
$$

Theorem 4.2. Let $\mathbf{s}=\left\{s_{i}\right\}_{i=0}^{2 \mu_{N}-1} \in \mathcal{H}_{\kappa, 2 \mu_{N}-1}^{k}$ and let $\mathcal{N}(\mathbf{s})=\left\{\nu_{j}\right\}_{j=1}^{N} \cup$ $\left\{\mu_{j}\right\}_{j=1}^{N}$.
(1) A nondegenerate odd moment problem $M P_{\kappa}^{k}\left(s, 2 \mu_{N}-1\right)$ is solvable, if and only if

$$
\begin{equation*}
\kappa_{N}^{+}:=\nu_{-}\left(S_{\mu_{N}}\right) \leq \kappa \quad \text { and } \quad k_{N}^{+}:=\nu_{-}\left(S_{\mu_{N}}^{+}\right) \leq k \tag{4.17}
\end{equation*}
$$

(2) $f \in \mathcal{M}_{\kappa}^{k}\left(s, 2 \mu_{N}-1\right)$ if and only if f admits the representation

$$
\begin{equation*}
f=T_{W_{2 N}}[\tau] \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{2 N}(z):=W_{2 N-1}(z) L_{N}(z)=M_{1}(z) L_{1}(z) \ldots M_{N}(z) L_{N}(z) \tag{4.19}
\end{equation*}
$$

and $\tau(z)$ satisfies the following conditions

$$
\begin{equation*}
\tau \in \mathbf{N}_{\kappa-\kappa_{N}^{+}}^{k-k_{N}^{+}} \quad \text { and } \quad \frac{1}{\tau(z)}=o(1), \quad z \widehat{\rightarrow} \infty \tag{4.20}
\end{equation*}
$$

(3) The representation (4.18) can be rewritten as the continued fraction expansion

$$
\begin{equation*}
f(z)=\frac{1}{-z m_{1}(z)+\frac{1}{l_{1}(z)+\cdots+\frac{1}{-z m_{N}(z)+\frac{1}{l_{N}(z)+\tau(z)}}}} \tag{4.21}
\end{equation*}
$$

where $m_{j}(z)$ and $l_{j}(z)$ are defined by (3.6) and (4.11), respectively;
(4) The indices κ_{N}^{+}and k_{N}^{+}can be found by
$\kappa_{N}^{+}=\sum_{j=1}^{N} \kappa_{-}\left(z m_{j}\right)+\sum_{j=1}^{N} \kappa_{-}\left(l_{j}\right), \quad k_{N}^{+}=\sum_{j=1}^{N} k_{-}\left(m_{j}\right)+\sum_{j=1}^{N} \kappa_{-}\left(z l_{j}\right)$.

Proof. Applying Theorem 3.4 N-1 times in the same way as in the odd case one obtains the sequence of $f_{j} \in \mathbf{N}_{\kappa-\kappa_{j}^{+}}^{k-k_{j}^{+}}$and polynomials m_{j} and l_{j} defined by (4.10) and (4.11), respectively, such that (4.8) and (4.9) hold. On the last step we obtain the function $f_{N-1}(z)$, which is a solution of the basic even moment problem $M P_{\kappa-\kappa_{N-1}^{+}}^{k-k^{+}}\left(\mathbf{s}^{(N-1)}, 2\left(\mu_{N}-\mu_{N-1}\right)-1\right)$. By Theorem 3.4, the function f_{N-1} can be represented as follows:

$$
\begin{equation*}
f_{N-1}(z)=\frac{1}{-z m_{N}(z)+\frac{1}{l_{N}(z)+f_{N}(z)}} \tag{4.22}
\end{equation*}
$$

the inequalities

$$
\begin{gather*}
\kappa_{N}^{+}=\kappa_{N-1}^{+}+\kappa_{-}\left(z m_{N}\right)+\kappa_{-1}\left(l_{N}\right) \leq \kappa \tag{4.23}\\
k_{N}^{+}=k_{N-1}^{+}+\kappa_{-}\left(m_{N}\right)+\kappa_{-}\left(z l_{N}\right) \leq k
\end{gather*}
$$

hold and $f_{N}(z)$ is a function from $\mathbf{N}_{\kappa-\kappa_{N}^{+}}^{k-k_{N}^{+}}$, such that $f_{N}(z)=o(1)$ as $z \widehat{\rightarrow} \infty$.

Replacing f_{N} by τ and combining the statements (4.9) and (4.22) one obtains (2)-(4).

By (4.9) and (4.22) the inequality (4.17) is implied by (4.8), (4.23). Conversely, if (4.17) holds, one can apply Theorem 3.2 N-1 times and then Theorem 3.4. By these theorems the function f determined by (4.18) belongs to $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{N}-1\right)$. This completes the proof.

5. Resolvent matrices in odd and even cases

5.1. Odd moment problem

In the present section resolvent matrices $W_{2 N-1}$ and $W_{2 N}$ for odd and even moment problem will be studied.

Recall some facts concerning continued fractions
Proposition 5.1. ([24, Chapter I]) Let $a_{1}, a_{2}, \ldots, a_{n}, \omega \in \mathbb{C}$ and let

$$
\begin{equation*}
f_{n}=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots \frac{1}{a_{n}+\omega}}} \tag{5.1}
\end{equation*}
$$

Then f_{n} can be represented as follows

$$
\begin{equation*}
\frac{A_{n-1} \omega+A_{n}}{B_{n-1} \omega+B_{n}} \tag{5.2}
\end{equation*}
$$

where the quantities $A_{i}, B_{i}(i \in \mathbb{N})$ are solutions of the following recurrence system

$$
\begin{equation*}
y_{i+1}-y_{i}=a_{i+1} y_{i-1}, \quad i=\overline{0, n-1} \tag{5.3}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
A_{-1}=1, \quad A_{0}=0, \quad B_{-1}=0, \quad B_{0}=1 \tag{5.4}
\end{equation*}
$$

Continued fractions (4.6) and (4.21) have partial denominators of two types

$$
\begin{equation*}
a_{2 i-1}=-z m_{i}(z) \quad \text { and } \quad a_{2 i}=l_{i}(z), \quad i=\overline{1, N} \tag{5.5}
\end{equation*}
$$

Therefore, it is reasonable to write (5.3) separately for odd and even indices. The numerator and denominator of the n-th convergent of (5.1) will be denoted by

$$
\begin{equation*}
Q_{i}^{+}(z)=A_{i} \quad \text { and } \quad P_{i}^{+}(z)=B_{i} \tag{5.6}
\end{equation*}
$$

Then the equality (5.3) takes the form

$$
\begin{align*}
y_{2 i+1}-y_{2 i-1} & =-z m_{i+1}(z) y_{2 i} \tag{5.7}\\
y_{2 i+2}-y_{2 i} & =l_{i+1}(z) y_{2 i+1}
\end{align*}
$$

By Proposition 5.1 $P_{i}^{+}(z)$ and $Q_{i}^{+}(z)$ are solutions of the system(5.7) subject to the initial conditions

$$
\begin{equation*}
P_{-1}^{+}(z) \equiv 0, \quad P_{0}^{+}(z) \equiv 1, \quad Q_{-1}^{+}(z) \equiv 1, \quad Q_{0}^{+}(z) \equiv 0 \tag{5.8}
\end{equation*}
$$

Polynomials $P_{i}^{+}(z)$ and $Q_{i}^{+}(z)$ will be called generalized Stieltjes polyno-mials of the first and the second kind, respectively. In the case of a regular sequence $\left\{s_{i}\right\}_{i=0}^{\ell} \in \mathcal{H}_{\kappa}^{k, \text { reg }}$ explicit formulas for $P_{i}^{+}(z)$ and $Q_{i}^{+}(z)$ were found in [10]. In the definite case (i.e. $\mathbf{s} \in \mathcal{H}_{0}^{0}$) see [22, v.4.2] and [11], [12, (10.29)].

The results of Theorems 4.1 and 4.2 can be reformulated in terms of generalized Stieltjes polynomials.

Theorem 5.2. Let $\mathbf{s} \in \mathcal{H}_{\kappa, 2 \nu_{N}-2}^{k}$, let (4.2) hold and let polynomials $m_{j}(z)(1 \leq j \leq N)$ and $l_{j}(z)(1 \leq j \leq N-1)$ be defined by (4.10) and (4.11), respectively. Let $P_{i}^{+}(z)$ and $Q_{i}^{+}(z)$ be generalized Stieltjes polynomials of the first and the second kind, respectively. Then any solution of the moment problem $M P_{\kappa}^{k}\left(s, 2 \nu_{N}-2\right)$ admits the following representation

$$
\begin{equation*}
f(z)=\frac{Q_{2 N-1}^{+}(z) \tau(z)+Q_{2 N-2}^{+}(z)}{P_{2 N-1}^{+}(z) \tau(z)+P_{2 N-2}^{+}(z)} \tag{5.9}
\end{equation*}
$$

where τ satisfies the conditions

$$
\begin{equation*}
\tau(z) \in \mathbf{N}_{\kappa-\kappa_{N}}^{k-k_{N}} \quad \text { and } \quad \frac{1}{\tau(z)}=o(z), \quad(z \widehat{\rightarrow} \infty) \tag{5.10}
\end{equation*}
$$

Furthermore, the resolvent matrix of the odd moment problem $M P_{\kappa}^{k}\left(s, 2 \nu_{N}-2\right)$

$$
W_{2 N-1}(z)=\left(\begin{array}{ll}
Q_{2 N-1}^{+} & Q_{2 N-2}^{+} \tag{5.11}\\
P_{2 N-1}^{+} & P_{2 N-2}^{+}
\end{array}\right)
$$

belongs to the $\mathcal{U}_{\kappa_{N}}(J)$ and admits the following factorization

$$
\begin{equation*}
W_{2 N-1}(z)=M_{1}(z) L_{1}(z) \ldots L_{N-1}(z) M_{N}(z) \tag{5.12}
\end{equation*}
$$

where the matrices $M_{j}(z)$ and $L_{j}(z)$ are defined by (4.12).
Proof. Assume f belongs to the Nevanlinna class \mathbf{N}_{κ}^{k} and f has the asymptotic expansion

$$
f(z)=-\frac{s_{0}}{z}-\cdots-\frac{s_{2 \nu_{N}-2}}{z^{2 \nu_{N}-1}}+o\left(\frac{1}{z^{2 \nu_{N}-1}}\right), \quad z \widehat{\rightarrow} \infty .
$$

Then, by Proposition 4.1, the function f takes the following form

$$
\begin{equation*}
f(z)=\frac{1}{-z m_{1}(z)+\frac{1}{l_{1}(z)+\cdots+\frac{1}{l_{N-1}(z)+\frac{1}{-z m_{N}(z)+\frac{1}{\tau(z)}}}}} \tag{5.13}
\end{equation*}
$$

where (5.10) holds and by Proposition 5.1, we can rewrite f as follows

$$
\begin{equation*}
f(z)=\frac{Q_{2 N-1}^{+}(z) \tau(z)+Q_{2 N-2}^{+}(z)}{P_{2 N-1}^{+}(z) \tau(z)+P_{2 N-2}^{+}(z)} \tag{5.14}
\end{equation*}
$$

where the polynomials $Q_{2 N-2}^{+}, Q_{2 N-1}^{+}$and $P_{2 N-2}^{+}, P_{2 N-1}^{+}$are defined by the recurrence relations (5.7)-(5.8).

Hence, the solution matrix $W_{2 N-1}(z)$ is well defined by (5.11). Applying the induction, we show that $W_{2 N-1}(z)$ admits the factorization (5.12), i.e.
(i) if $i=1$, then $W_{1}(z)=M_{1}(z)$ and

$$
W_{1}(z)=\left(\begin{array}{ll}
Q_{1}^{+}(z) & Q_{0}^{+}(z) \tag{5.15}\\
P_{1}^{+}(z) & P_{0}^{+}(z)
\end{array}\right)
$$

(ii) if $i=N-1$, then (4.12) and (5.12) hold (assumption of induction);
(iii) if $i=N$, then

$$
\begin{gather*}
W_{2 N-1}(z)=M_{1}(z) L_{1}(z) \ldots L_{N-1}(z) M_{N}(z)=W_{2 N-3}(z) L_{N-1} M_{N}(z) \\
=\left(\begin{array}{cc}
Q_{2 N-3}^{+}(z) & Q_{2 N-4}^{+}(z) \\
P_{2 N-3}^{+}(z) & P_{2 N-4}^{+}(z)
\end{array}\right)\left(\begin{array}{cc}
1 & l_{N-1}(z) \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-z m_{N}(z) & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
Q_{2 N-3}^{+}(z) & l_{N-1}(z) Q_{2 N-3}^{+}(z)+Q_{2 N-4}^{+}(z) \\
P_{2 N-3}^{+}(z) & l_{N-1}(z) P_{2 N-3}^{+}(z)+P_{2 N-4}^{+}(z)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-z m_{N}(z) & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
Q_{2 N-3}^{+}(z) & Q_{2 N-2}^{+}(z) \\
P_{2 N-3}^{+}(z) & P_{2 N-2}^{+}(z)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-z m_{N}(z) & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
Q_{2 N-3}^{+}(z)-z m_{N}(z) Q_{2 N-2}^{+}(z) & Q_{2 N-2}^{+}(z) \\
P_{2 N-3}^{+}(z)-z m_{N}(z) P_{2 N-2}^{+}(z) & P_{2 N-2}^{+}(z)
\end{array}\right) \\
=\left(\begin{array}{cc}
Q_{2 N-1}^{+}(z) & Q_{2 N-2}^{+}(z) \\
P_{2 N-1}^{+}(z) & P_{2 N-2}^{+}(z)
\end{array}\right) . \tag{5.16}
\end{gather*}
$$

So, (5.12) is proved.
By Lemmas 2.4 and 2.5 the matrices valued function $M_{i}(z)$ and $L_{i}(z)$ belong to the classes

$$
M_{i}(z) \in \mathcal{U}_{\kappa_{-}\left(z m_{i}\right)}(J) \quad \text { and } \quad L_{i}(z) \in \mathcal{U}_{\kappa_{-}\left(l_{i}\right)}(J), \quad i=\overline{1, N}
$$

As is known the product of mvf's from the classes $\mathcal{U}_{\kappa_{1}}(J)$ and $\mathcal{U}_{\kappa_{2}}(J)$ belongs to the class $\mathcal{U}_{\kappa^{\prime}}(J)$, where $\kappa^{\prime} \leq \kappa_{1}+\kappa_{2}$.

Therefore

$$
W_{2 N-1}(z)=M_{1}(z) L_{1}(z) \ldots L_{N-1}(z) M_{N}(z) \in \mathcal{U}_{\kappa^{\prime}}(J)
$$

where

$$
\begin{equation*}
\kappa^{\prime} \leq \sum_{j=1}^{N} \kappa_{-}\left(z m_{j}\right)+\sum_{j=1}^{N-1} \kappa_{-}\left(l_{j}\right)=\kappa_{N} \tag{5.17}
\end{equation*}
$$

By [8, Lemma 3.4] the function $f=T_{W_{2 N-1}}[1]$, corresponding to the parameter $\tau(z) \equiv 1$, belongs to the class $\mathbf{N}_{\kappa^{\prime \prime}}$, with

$$
\begin{equation*}
\kappa^{\prime \prime} \leq \kappa^{\prime} \tag{5.18}
\end{equation*}
$$

On the other hand, by Theorem $4.1 f=T_{W_{2 N-1}}[1] \in \mathbf{N}_{\kappa_{N}}$, i.e.

$$
\begin{equation*}
\kappa^{\prime \prime}=\kappa_{N} \tag{5.19}
\end{equation*}
$$

Comparing (5.17), (5.18) and (5.19) yields

$$
\kappa^{\prime}=\kappa^{\prime \prime}=\kappa_{N}
$$

and thus $W_{2 N-1} \in \mathcal{U}_{\kappa_{N}}(J)$. This completes the proof.

Remark 5.3. In the case, where $\mathbf{s} \in \mathcal{H}_{\kappa}^{+}, \operatorname{deg}\left(m_{i}\right) \leq 1$ and $l_{i}=$ const >0 in (4.6), the moment problem $M P_{\kappa}^{+}\left(\mathbf{s}, 2 \nu_{N}-2\right)$ was studied in [21] and these results are the special case of Theorem 5.2.

Remark 5.4. In the case. where $f \in \mathbf{N}_{\kappa}^{k, r e g}$, the odd moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 n_{N}-2\right)$ was studied in [10]. These results are contained in previous Theorem. Moreover, the polynomials $l_{j}(z)$ are non-zero constants in (5.13), such that

$$
\begin{equation*}
l_{j}(z)=\frac{1}{s_{-1}^{(j)}} \tag{5.20}
\end{equation*}
$$

5.2. Even moment problem

Now we study the even moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{N}-1\right)$. In this case we also find all solutions of $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{N}-1\right)$ by the following statement

Theorem 5.5. Let $\mathbf{s} \in \mathcal{H}_{\kappa, 2 \mu_{N}-1}^{k}$, let (4.17) hold and let polynomials $m_{j}(z)$ and $l_{j}(z)(1 \leq j \leq N)$ be defined by (4.10) and (4.11), respectively. Let $P_{i}^{+}(z)$ and $Q_{i}^{+}(z)$ be generalized Stieltjes polynomials of the first and the second kind, respectively. Then any solution of the moment problem $M P_{\kappa}^{k}\left(s, 2 \mu_{N}-1\right)$ admits the following representation

$$
\begin{equation*}
f(z)=\frac{Q_{2 N-1}^{+}(z) \tau(z)+Q_{2 N}^{+}(z)}{P_{2 N-1}^{+}(z) \tau(z)+Q_{2 N}^{+}(z)} \tag{5.21}
\end{equation*}
$$

where τ satisfies the following conditions

$$
\begin{equation*}
\tau(z) \in \mathbf{N}_{\kappa-\kappa_{N}^{+}}^{k-k_{N}^{+}} \quad \text { and } \quad \tau(z)=o(1), \quad z \widehat{\rightarrow} \infty \tag{5.22}
\end{equation*}
$$

Furthermore, the resolvent matrix of the even moment problem $M P_{\kappa}^{k}\left(s, 2 \mu_{N}-1\right)$

$$
W_{2 N}(z)=\left(\begin{array}{ll}
Q_{2 N-1}^{+}(z) & Q_{2 N}^{+}(z) \tag{5.23}\\
P_{2 N-1}^{+}(z) & P_{2 N}^{+}(z)
\end{array}\right)
$$

belongs to the $\mathcal{U}_{\kappa_{N}^{+}}(J)$ and admits the following factorization

$$
\begin{equation*}
W_{2 N}(z)=M_{1}(z) L_{1}(z) \ldots M_{N}(z) L_{N}(z) \tag{5.24}
\end{equation*}
$$

where the matrices $M_{j}(z)$ and $L_{j}(z)$ are defined by (4.12).

Proof. Suppose f belongs to the Nevanlinna class \mathbf{N}_{κ}^{k} and f has the asymptotic expansion

$$
f(z)=-\frac{s_{0}}{z}-\cdots-\frac{s_{2 \mu_{N}-1}}{z^{2 \mu_{N}}}+o\left(\frac{1}{z^{2 \mu_{N}}}\right), \quad z \widehat{\rightarrow} \infty .
$$

By Proposition 4.2, the function f takes the form (4.21), where (5.22) holds. By [24, chapter I], the function f can be rewritten in the form (5.21), where the polynomials $P_{i}^{+}(z)$ and $Q_{i}^{+}(z)$ can be found as the solutions of the recurrence relations (5.7)-(5.8).

Hence, the resolvent matrix of the even moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 \mu_{N}-1\right)$ takes the form (5.23). By Theorem 5.2 (see (5.11) and (5.12)), we obtain

$$
\begin{gathered}
M_{1}(z) L_{1}(z) \ldots L_{N-1}(z) M_{N}(z) L_{N}(z)=\left(\begin{array}{cc}
Q_{2 N-1}^{+} & Q_{2 N-2}^{+} \\
P_{2 N-1}^{+} & P_{2 N-2}^{+}
\end{array}\right)\left(\begin{array}{cc}
1 & l_{N}(z) \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
Q_{2 N-1}^{+}(z) & l_{N} Q_{2 N-1}^{+}(z)+Q_{2 N-2}^{+}(z) \\
P_{2 N-1}^{+}(z) & l_{N} P_{2 N-1}^{+}(z)+P_{2 N-2}^{+}(z)
\end{array}\right) \\
=\left(\begin{array}{ll}
Q_{2 N-1}^{+}(z) & Q_{2 N}^{+}(z) \\
P_{2 N-1}^{+}(z) & P_{2 N}^{+}(z)
\end{array}\right)=W_{2 N}^{+}(z) .
\end{gathered}
$$

By Lemmas 2.4 and 2.5 the mvf's $M_{i}(z)$ and $L_{i}(z)$ belong to the classes

$$
M_{i}(z) \in \mathcal{U}_{\kappa_{-}\left(z m_{i}\right)}(J) \quad \text { and } \quad L_{i}(z) \in \mathcal{U}_{\kappa_{-}\left(l_{i}\right)}(J), \quad i=\overline{1, N}
$$

As is known the product of mvf's from the classes $\mathcal{U}_{\kappa_{1}}(J)$ and $\mathcal{U}_{\kappa_{2}}(J)$ belongs to the class $\mathcal{U}_{\kappa^{\prime}}(J)$, where $\kappa^{\prime} \leq \kappa_{1}+\kappa_{2}$. Hence

$$
W_{2 N}(z)=M_{1}(z) L_{1}(z) \ldots L_{N-1}(z) M_{N}(z) L_{N}(z) \in \mathcal{U}_{\kappa^{\prime}}(J)
$$

where

$$
\begin{equation*}
\kappa^{\prime} \leq \sum_{j=1}^{N} \kappa_{-}\left(z m_{j}\right)+\sum_{j=1}^{N} \kappa_{-}\left(l_{j}\right)=\kappa_{N}^{+} \tag{5.25}
\end{equation*}
$$

By [8, Lemma 3.4] the function $f=T_{W_{2 N}}[z]$, corresponding to the parameter $\tau(z)=z$, belongs to the class $\mathbf{N}_{\kappa^{\prime \prime}}$, with

$$
\begin{equation*}
\kappa^{\prime \prime} \leq \kappa^{\prime} \tag{5.26}
\end{equation*}
$$

On the other hand, by Theorem $4.2 f=T_{W_{2 N}}[z] \in \mathbf{N}_{\kappa_{N}^{+}}$, i.e.

$$
\begin{equation*}
\kappa^{\prime \prime}=\kappa_{N}^{+} . \tag{5.27}
\end{equation*}
$$

Comparing (5.25), (5.26) and (5.27) yields

$$
\kappa^{\prime}=\kappa^{\prime \prime}=\kappa_{N}^{+}
$$

and thus $W_{2 N} \in \mathcal{U}_{\kappa_{N}^{+}}(J)$. This completes the proof.

Remark 5.6. The even moment problem $M P_{\kappa}^{k}\left(\mathbf{s}, 2 n_{N}-1\right)$ in the class $\mathbf{N}_{\kappa}^{k, \text { reg }}$ was studied in [10] and the results in [10, Theorem 5.9] is the special case of Theorem 5.5.

Acknowledgements

This work is supported by the grant of Volkswagen Foundation and by Ministry of Education and Science of Ukraine (project number 0115U000556).

References

[1] N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
[2] D. Alpay and H. Dym, On applications of reproducing kernel spaces to the Schur algorithm and rational J unitary factorization. Gohberg, I. (ed.) I. Schur Methods in Operator and Signal Processing. Operator Theory: Advances and Applications, 18 (1986), 89-159.
[3] R. E. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math., 17 (1991), 603-635.
[4] M. Derevyagin, On the Schur algorithm for indefinite moment problem, Methods Functional Anal. Topol., 9(2) (2003), 133-145.
[5] V. Derkach, Generalized resolvents of a class of Hermitian operators in a Kreĭn space, Dokl. Akad. Nauk SSSR, 317(4) (1991), 807-812.
[6] V. Derkach, On Weyl function and generalized resolvents of a Hermitian operator in a Krein space, Integral Equations Operator Theory, 23 (1995), 387-415.
[7] V. Derkach, On indefinite moment problem and resolvent matrices of Hermitian operators in Krein spaces, Math.Nachr., 184 (1997), 135-166.
[8] V. Derkach and H. Dym, On linear fractional transformations associated with generalized J-inner matrix functions, Integral Equations and Operator Theory, 65 (2009), 1-50.
[9] V. Derkach and I. Kovalyov, On a class of generalized Stieltjes continued fractions, Methods of Funct. Anal. and Topology, 21(4) (2015), 315-335.
[10] V. Derkach and I. Kovalyov, Schur algorithm for Stieltjes indefinite moment problem, Mathematische Nachrichten (to appear).
[11] V. Derkach and M. Malamud, On Weyl function and Hermitian operators with gaps, Doklady Akad. Nauk SSSR, 293(5) (1987), 1041-1046.
[12] V.A. Derkach and M.M. Malamud, The extension theory of Hermitian operators and the moment problem, J.of Math.Sci., 73 (1995), 141-242.
[13] V. A. Derkach and M. M. Malamud, On some classes of holomorphic operator functions with nonnegative imaginary part, 16th OT Conference Proceedings, Operator theory, operator algebras and related topics, Timisoara (1997), 113-147.
[14] H. Dym, On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy, Int. Equation and Operator Theory, 112 (1989),
[15] M. G. Krein, On resolvents of Hermitian operator with deficiency index (m, m), Doklady Akad. Nauk SSSR (N.S.), 52 (1946), 657-660.
[16] M. G. Krein, Description of solutions of the truncated moment problem, Mat. Issledovanija, 2 (1967), 114-132.
[17] M. G. Krein and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie Hermitscher Operatoren in Raume π_{κ} zusammenhangen, I. Einige Fuktionenklassen und ihre Dahrstellungen, Math. Nachr., 77 (1977), 187-236.
[18] M. G. Kreĭn and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie Hermitscher Operatoren in Raume π_{κ} zusammenhangen, II. Verallgemeinerte Resolventen u-Resolventen und ganze Operatoren, J.Funct.Anal., 30, 390-447 (1978).
[19] M. G. Kreĭn and H. Langer, On some extension problems which are closely connected with the theory of Hermitian operators in a space Π_{κ} III. Indefinite analogues of the Hamburger and Stieltjes moment problems, Part I, Beiträge zur Anal., 14 (1979), 25-40.
[20] M. G. Krein and H. Langer, On some extension problems which are closely connected with the theory of hermitian operators in a space Π_{κ} III. Indefinite analogues of the Hamburger and Stieltjes moment problems Part II, Beiträge zur Anal., 15 (1981), 27-45.
[21] M. G. Krein and H. Langer, Some propositions of analytic matrix functions related to the theory of operators in the space π_{κ}, Acta Sci.Math.Szeged, 43 (1981), 181205.
[22] M. G. Krein and A. A. Nudelman, The Markov moment problem and extremal problems, V. 50, Transl.Math. Monographs Amer. Math. Soc., Providence, 1977.
[23] T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. de Toulouse, 8 (1894), 1-122.
[24] H. S. Wall, Analytic theory of continued fractions, Chelsey, New York, 1967.

Contact information

Ivan Kovalyov
Dragomanov National
Pedagogical University,
Kiev, Ukraine
E-Mail: i.m.kovalyov@gmail.com

