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Boundary triples for integral systems
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Abstract. Let P, Q and W be real functions of bounded variation
on [0, l] and let W be nondecreasing. The following integral system

Jf⃗(x) − Ja⃗ =

x∫
0

(
λdW − dQ 0

0 dP

)
f⃗(t), J =

(
0 −1
1 0

)
(0.1)

on a finite compact interval [0, l] has been studied in [6]. A maximal and
a minimal linear relation Amax and Amin associated with the integral
system (9) are studied in the Hilbert space L2(W ). It is shown that the
linear relation Amin is symmetric with deficiency indices n±(Amin) = 2
and Amax = A∗

min. Boundary triples for Amax are constructed and the
corresponding Weyl functions are calculated.
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1. Introduction

This paper focuses on the following integral system

Jf⃗(x)− Ja⃗ =

x∫
0

dS(t) · f⃗(t) (1.1)

where J and dS are 2× 2 matrices of the form:

J =

(
0 −1
1 0

)
, dS =

(
λdW − dQ 0

0 dP

)
, (1.2)

Received 12.09.2017
The author is grateful to professor V. Derkach for constant attention to this work.

ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України



D. Strelnikov 419

λ ∈ C, all functions P, Q andW are real of bounded variation on [0, l] and
W is nondecreasing on [0, l]. Such systems were studied in [2,3,6]. System
(1.1) contains Sturm-Liouville systems, Stieltjes string and Krein-Feller
string [13,18] as special cases.

We associate with system (1.1) minimal Amin and maximal Amax
linear relations. In contrast to the Sturm–Liouville case Amin and Amax
may be multivalued, therefore we use for them a term linear relation
(see [1]). It turns out that the linear relation Amin is symmetric with
deficiency indices (2, 2).

The notions of the boundary triple and Weyl function introduced
in [7,8,19] and [10], respectively, were proved to be useful in the study of
spectral problems and extension theory problems for symmetric opera-
tors, see [11,12,14]. Boundary triples for various differential and difference
operators were constructed in [4, 10, 11,14,19,21,22].

A boundary triple for the linear relation Amax is constructed in the
paper and the corresponding matrix Weyl function is calculated. In a
similar way some intermediate extensions of the linear relation Amin with
deficiency indices (1, 1) are considered and their scalar Weyl functions are
found.

2. Preliminaries

2.1. Linear relations

Let H be a Hilbert space. Any linear supspace of H × H is called a
linear relation in H, [1].

The domain, the range, the kernel, and the multivalued part of a linear
relation T are defined by the following equalities (see [1, 5]):

domT :=

{
f :

(
f
g

)
∈ T

}
, ranT :=

{
g :

(
f
g

)
∈ T

}
, (2.1)

kerT :=

{
f :

(
f
0

)
∈ T

}
, mulT :=

{
g :

(
0
g

)
∈ T

}
. (2.2)

The adjoint linear relation T ∗ is defined by

T ∗ :=

{(
u
v

)
∈ H× H : (v, f)H = (u, g)H for some

(
f
g

)
∈ T

}
. (2.3)

A linear relation T in H is called closed if T is closed as a subspace of
H × H. The set of all closed linear operators (relations) is denoted by
C(H) (C̃(H)). Identifying a linear operator T ∈ C(H) with its graph one
can consider C(H) as a part of C̃(H).
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Definition 2.1. Suppose T is a linear relation, λ ∈ C then

T − λI :=

{(
f

g − λf

)
:

(
f
g

)
∈ T

}
. (2.4)

A point λ ∈ C such that ker (T − λI) = {0} and ran (T − λI) = H is
called a regular point of the linear relation T and is written λ ∈ ρ(T ).

The point spectrum and the continuous spectrum of the linear relation
T are defined by

σp(T ) := {λ ∈ C : ker(T − λI) ̸= {0}}, (2.5)

σc(T ) := {λ ∈ C : λ /∈ σp(T ), ran(T − λI) ̸= ran(T − λI) = H}. (2.6)

For λ ∈ C± let us set Nλ(T ) := ker(T ∗ − λI) and

N̂λ(T ) :=

{(
fλ
λfλ

)
: fλ ∈ Nλ

}
. (2.7)

A linear relation A is called symmetric if A ⊆ A∗. The deficiency
indices of a symmetric linear relation A are defined by

n±(A) := dimker(A∗ ∓ iI). (2.8)

2.2. Boundary triples

In the case of densely defined operators a boundary triple notion was
introduced in [7,8,14,19] (in different forms). Following the paper [21] we
shall give a general definition of a boundary triple for the linear relation T .

Definition 2.2. The tuple Π = {H,Γ0,Γ1}where H is a Hilbert space,
Γ0 and Γ1 are linear mappings from T to H is called a boundary triple
for linear relation T , if the following conditions hold:

(i) generalized Green’s identity

(g, u)H − (f, v)H =

(
Γ1

(
f
g

)
,Γ0

(
u
v

))
H
−
(
Γ0

(
f
g

)
,Γ1

(
u
v

))
H

(2.9)

holds for all

(
f
g

)
,

(
u
v

)
∈ T ;

(ii) the mapping Γ =

(
Γ0

Γ1

)
: T → H×H is surjective.
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If the linear relation T is adjoint to some symmetric linear relation
A then there exists a boundary triple for T if and only if the deficiency
indices of A coincide (n+(A) = n−(A)), see [11, 19,21].

An extension Ã of a symmetric linear relation A is called proper if
A ( Ã ( A∗. The class of all proper extensions of the linear relation A
completed with relations A and A∗ is denoted by Ext(A). Denote also

AΘ :=

{(
f
g

)
∈ A∗ : Γ

(
f
g

)
∈ Θ

}
. (2.10)

Proposition 2.3. [11] Let A be a symmetric linear relation,
Π = {H,Γ0,Γ1} be a boundary triple for the adjoint linear relation A∗.
Then the mapping Γ : Ã = AΘ → Θ = ΓÃ is a one-to-one mapping
from Ext(A) to C̃(H). Notice also that AΘ is selfadjoint if and only if
the linear relation Θ is selfadjoint.

In particular, linear relations

A0 := ker Γ0, A1 := ker Γ1 (2.11)

are disjoint, i.e. A0 ∩ A1 = A, and they are selfadjoint extensions of the
symmetric linear relation A (see [11]).

Suppose A is adjoint for the linear relation T from Definition 2.2 The
conditions ensuring the symmetry of A are provided by the next theorem.
In the case of single-valued linear operator T the corresponding theorem
was proved in [12].

Theorem 2.4. [12] Let T be a linear relation in the Hilbert space H,
Π = {H,Γ0,Γ1}be its boundary triple such that n := dimH < ∞ and
A = ker Γ. If the following conditions hold:

(i) ranT = H;

(ii) dimkerT = n and kerA = {0},

then linear relations A, T are closed, T = A∗ and n+(A) = n−(A) = n.

Definition 2.5. [10, 11] Let Π = {H,Γ0,Γ1} be a boundary triple for
linear relation A∗. Operator valued functions M(·), γ(·) defined by

M(λ)Γ0f̂λ = Γ1f̂λ, γ(λ)Γ0f̂λ = fλ, f̂λ ∈ N̂λ, λ ∈ ρ(A0) (2.12)

are called the Weyl function and the γ-field of the symmetric linear re-
lation A with respect to the boundary triple Π.

Definition 2.6. An operator valued function F : C+ ∪ C− → B(H) is
said to belong to the class R[H] if the following conditions hold:
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(i) F is holomorphic in C+ ∪ C−;

(ii) ImF (λ) ≥ 0 as λ ∈ C+;

(iii) F (λ) = F ∗(λ), λ ∈ C+ ∪ C−.

If H = C then R[H] is denoted by R.

It is known that the Weyl function M(λ) of a linear relation A from
Definition 2.5 belongs to the class R[H]. The next proposition gives a
description of the spectrum of a linear Ã ∈ Ext(A).

Proposition 2.7. [11] Let A be a symmetric linear relation in H, Π =
{H,Γ0,Γ1} be a boundary triple for A∗, M(λ) be the corresponding Weyl
function of A, Θ ∈ C̃(H), and λ ∈ ρ(A0). Then:

(i) λ ∈ ρ(ÃΘ) ⇐⇒ 0 ∈ ρ(Θ−M(λ));

(ii) λ ∈ σp(ÃΘ) ⇐⇒ 0 ∈ σp(Θ−M(λ)).

2.3. Integral systems

Let us consider on a compact interval [0, l] an integral system

Jf⃗(x)− Ja⃗(x) =

x∫
0

dS(t) · f⃗(t) (2.13)

where f⃗ is a n × 1 complex vector, a⃗ is a fixed complex vector valued
function of bounded variation, dS is a finite n × n measure, and J is a
constant n× n matrix such that J∗ = −J .

Definition 2.8. We say that a vector valued function f⃗ is a solution of
integral system (2.13) if (each component of) f⃗ is of bounded variation
and the equality (2.13) holds for every point of [0, l].

It is easy to see that if for some vector valued function f⃗ the right-
hand part of equality (2.13) exists for all x ∈ [0, l] then it is of bounded
variation on [0, l] and therefore inclusion f⃗ ∈ BV [0, l] is necessery for
(2.13). The same condition is also sufficient for existence of the integral
in the right-hand part of (2.13) (as a Lebesgue–Stietjes integral).

In general case measure dS is not supposed to be absolutely continu-
ous and may have mass points on [0, l]. Therefore in equality (2.13) and
in the following we should understand

∫ b
a fdµ as the Lebesgue–Stieltjes

integral
∫
fχ[a,b)dµ, where χ[a,b) is the characteristic function of the half-

open interval. Under this conventions integrals as functions of its limits
of integration are left-continuous.

The following theorem was proved in [6].
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Theorem 2.9. [6] For any left-continuous vector-function a⃗(x)∈BV [0, l]
there exists a unique solution of (2.13).

Further in this paper the integration by parts formula will be used in
the following form (see [15]). If u is a left-continuous function of bounded
variation then we denote by u+ the right-continuous function that coin-
cides with u in every continuity point. If v is another left-continuous
function of bounded variation then the following equality holds

x∫
y

vdu = v(x)u(x)− v(y)u(y)−
x∫
y

u+dv. (2.14)

Now suppose that n = 2, matrices J and dS have the following form

J =

(
0 −1
1 0

)
, dS =

(
λdW − dQ 0

0 dP

)
(2.15)

where λ is a complex parameter, P, Q and W are of bounded variation
and left-continuous on [0, l] functions that satisfy the condition

P (0) = Q(0) =W (0) = 0 (2.16)

and W is nondecreasing. We assume that functions P, Q and W are
defined on the whole real line and their values on the intervals (−∞, 0]
and [l,+∞) are constant.

In the remaining part of this paper attention will be restricted to
considering (2.13) when the matrices J and dS have the form (2.15).

Everywhere in the following we use

Assumption 2.10. Functions Q andW have no common discontinuities
with P .

3. Green’s identity and linear relation Amax

3.1. Green’s identity

Let L2(W ) be an inner product space, which consists of complex
valued functions f such that∫ l

0
|f(t)|2dW (t) <∞. (3.1)

The inner product in L2(W ) is defined by

(f, g)W =

∫ l

0
f(t)g(t)dW (t). (3.2)
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Denote by L2(W ) the corresponding quotient space, which consists of
equivalence classes with respect to the measure dW . To avoid confusion
we will denote elements of the space L2(W ) by gothic letters f, g etc.

Let us consider the inhomogeneous system

J

(
f

f [1]

)∣∣∣∣x
0

=

x∫
0

(
−dQ(t) 0

0 dP (t)

)(
f

f [1]

)
+

x∫
0

(
dW (t) 0

0 0

)(
g
0

)
.

(3.3)

Definition 3.1. A pair {f⃗ , g} that consists of a vector-function f⃗ =(
f

f [1]

)
and a scalar function g is said to satisfy system (3.3) (or that f⃗ is

a solution of this system with fixed g), if the following conditions hold:

(i) g ∈ L2(W );

(ii) f⃗ ∈ BV [0, l];

(iii) the equality (3.3) holds for each x ∈ [0, l].

Remark. It is clear that condition f⃗ ∈ BV [0, l] is automatically satisfied
as equality (3.3) holds. In this case it follows from f⃗ ∈ BV [0, l] that
f ∈ L2(W ).

The componentwise rewriting of system (3.3) gives
f(x)− f(0) =

x∫
0

f [1](t)dP (t),

f [1](x)− f [1](0) =
x∫
0

(f(t)dQ(t)− g(t)dW (t)) .
(3.4)

Theorem 3.2 (The first Green’s identity). Suppose that Assumption 2.10

holds and pairs
{
f⃗ , g
}
, {u⃗, v} satisfy system (3.3) (see Definition 3.1).

Then for any α, β ∈ [0, l] the next equality holds∫ β

α
gu dW =

∫ β

α
fu dQ+

∫ β

α
f [1]u[1] dP − f [1]u

∣∣∣β
α
. (3.5)

Proof. From (3.4) we have:

du = u[1]dP, df [1] = fdQ− gdW. (3.6)

It follows from Assumtion 2.10 that functions u and f [1] have no common
discontinuities. Consider the measure d

(
f [1]u

)
. Then

d
(
f [1]u

)
= df [1]u+ f [1]du = fu dQ+ f [1]u[1] dP − gu dW, (3.7)
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hence

gu dW = fu dQ+ f [1]u[1] dP − d
(
f [1]u

)
. (3.8)

To conclude the proof it remains to note that function f [1]u is left-
continuous and to integrate equality (3.8) over [α, β).

For a pair of vector valued functions f⃗ =

(
f

f [1]

)
and u⃗ =

(
u

u[1]

)
we

define the generalized Wronskian by[
f⃗ , u⃗

]
:=
(
fu[1] − f [1]u

)
. (3.9)

Theorem 3.3. Suppose Assumption 2.10 holds and pairs
{
f⃗ , g
}
, {u⃗, v}

satisfy system (3.3). Then for any α, β ∈ [0, l] the next equality holds∫ β

α
(gu− fv) dW =

[
f⃗ , u⃗

]∣∣∣β
α
. (3.10)

Proof. Application of Theorem 3.2 gives

gu dW = fu dQ+ f [1]u[1] dP − d
(
f [1]u

)
, (3.11)

fv dW = fu dQ+ f [1]u[1] dP − d
(
fu[1]

)
. (3.12)

Subtraction of (3.12) from (3.11) proves the statement.

Corollary 3.4 (The second Green’s identity). For any two pairs
{
f⃗ , g
}

and {u⃗, v} satisfying (3.3) the generalized Green’s identity holds

(g, u)W − (f, v)W =
(
f [1]u|0 − f [1]u|l

)
−
(
fu[1]|0 − fu[1]|l

)
. (3.13)

3.2. Linear relation Amax

Definition 3.5. We shall say that a pair of classes

(
f
g

)
∈ L2(W ) ×

L2(W ) belongs to the linear relation Amax if there exist functions f, f [1]

and g such that

(i) the pair
{
f⃗ , g
}
, where f⃗ =

(
f

f [1]

)
, satisfies (3.3) (in the sense of

Definition 3.1);

(ii) f ∈ f, g ∈ g.
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In the succeeding we require the following

Assumption 3.6. For any a, b, a1, b1 ∈ C there exists a pair
{
f⃗ , g
}

satisfying (3.3) such that

f(0) = a, f [1](0) = a1, f(l) = b, f [1](l) = b1. (3.14)

In particular, if dQ ≡ 0 then a sufficient condition for Assumption 3.6 to
hold is the next

Proposition 3.7. Suppose dQ ≡ 0. If there exist closed on the left and
disjoint intervals i1 and i2 on [0, l] such that

dimL2(ij ,W ) > 0 (j ∈ {1, 2}), (3.15)

1

dW (i2)

∫
i2

P (t)dW (t) >
1

dW (i1)

∫
i1

P (t)dW (t), (3.16)

then Assumption 3.6 holds.

Proof. Let (a b a1 b1)
T be an arbitrary vector from C4. It follows from

condition (3.15) that there exist functions uj that equal to one on interval
ij and equal zero on its complement, and ∥uj∥W = dW (ij) ̸= 0 (j ∈
{1, 2}).

Put g = c1u1+ c2u2, where c1 and c2 are some constants from C. We
shall define vector-function f⃗ by the next system

f(x) = a+
x∫
0

f [1](t)dP (t),

f [1](x) = a1 −
x∫
0

g(t)dW (t).
(3.17)

It is clear that for any c1, c2 ∈ C we have g ∈ L2(W ). Further, it
follows from system (3.17) that vector-function f⃗ is of bounded variation

on [0, l] and f⃗(0) = (a a1)
T , i.e. the pair

{
f⃗ , g
}

satisfies system (3.3)

with the initial conditions given in advance.
Let us show now that constants c1 and c2 may be chosen so that

equality f⃗(l) = (b b1)
T holds. It is true if and only if there exists a

solution of the next system (with respect to c1, c2)
c1dW (i1) + c2dW (i2) = a1 − b1,

c1
l∫
0

dP (t)
t∫
0

u1(s)dW (s) + c2
l∫
0

dP (t)
t∫
0

u2(s)dW (s) =

a− b+ a1P (l).

(3.18)
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By Assumption 2.10 functions P and W have no common disconti-
nuities, so using integration by parts formula (2.14) we get:

l∫
0

dP (t)

t∫
0

uj(s)dW (s) = P (l)dW (ij)−
l∫

0

P (t)uj(t)dW (t) (3.19)

where j ∈ {1, 2}. Multiplying the first equation of system (3.18) by
P (l) and subtracting it from the second one and combining the obtained
equation with (3.19) we will have a system (with respect to c1, c2), whose
determinant ∣∣∣∣ dW (i1) dW (i2)∫

i1
P (t)dW (t)

∫
i2
P (t)dW (t)

∣∣∣∣ (3.20)

is strictly positive due to (3.16). This ensures the solvability of sys-
tem (3.18).

Theorem 3.8. Let Assumption 2.10 and Assumption 3.6 be satisfied
and let the mappings Γ0,Γ1 : Amax → C2 be defined by

Γ0

(
f
g

)
:=

(
f(0)
f(l)

)
, Γ1

(
f
g

)
:=

(
f [1](0)

−f [1](l)

)
(3.21)

where the pair
{
f⃗ , g
}

satisfies system (3.3), f ∈ f, g ∈ g. Then:

(i) the mappings Γ0, Γ1 are well-defined;

(ii) the tuple {C2,Γ0,Γ1} is a boundary triple for the linear relation
Amax.

Proof. (i) Let us show first that the mappings Γ0,Γ1 from (3.21) are
independent of the choice of f, g from classes f, g respectively. It is clear

that if a pair
{
f⃗ , g1

}
satisfies system (3.3) then a pair

{
f⃗ , g2

}
also

satisfies (3.3) if g1 and g2 are equivalet with respect to the measure dW .
It means that the values of Γ0, Γ1 are independent of the choice of g ∈ g.

Further let us prove that the values of the mappings Γ0,Γ1 are in-

dependent of choosing an instance f from the class f. Let pairs
{
f⃗1, g

}
and

{
f⃗2, g

}
satisfy system (3.3) such that f1, f2 ∈ f. The application of

Green’s identity in the form (3.10) for both of the pairs on [0, l] gives us
two equalities. Subtracting one from the other gives

0 =

l∫
0

(f2 − f1)vdW =
[
f⃗1 − f⃗2, u⃗

]∣∣∣l
0
. (3.22)
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By Assumption 3.6 a pair of functions {u⃗, v} satisfying system (3.3) can
be chosen such that u(0), u(l), u[1](0) and u[1](l) may be arbitrary from
C. This means that we have

f1(0) = f2(0), f1(l) = f2(l), (3.23)

f
[1]
1 (0) = f

[1]
2 (0), f

[1]
1 (l) = f

[1]
2 (l) (3.24)

which proofs that the mappings Γ0,Γ1 are single-valued.
(ii) It follows directly from Corollary 3.4 and Assumption 3.6 that

the requirements of Definition 2.2 are satisfied.

Remark 3.9. Evidently, if Assumption 3.6 does not hold then the objects
Γ0 and Γ1, defined by (3.21), in general are not operators but linear
relations in L2(W )2 × C2. Such boundary triples were considered in [9].

It is also possible that if Assumption 3.6 does not hold then the
mapping Γ = (Γ0 Γ1)

T is not surjective. This happens, for example, if
dQ = 0, dP = dx, and W is piecewise with a single jump.

In the case of dQ ≡ 0 system (3.4) can be rewritten as follows

f(x) = f(0) + f [1](0)P (x)−
x∫

0


t∫

0

g(s)dW (s)

 dP (t). (3.25)

Function G(t) :=
∫ t
0 g(s)dW (s) is of bounded variation on [0, l] and the

set of its jumps is a subset of jumps of function W . Hence, functions G
and P have no common discontinuities. The application of integration by
parts formula (2.14) to equality (3.25) gives us (cf. [17, p. 650, equality
(1.1)])

f(x) = f(0) + f [1](0)P (x)−
x∫

0

{P (x)− P (t)} g(t)dW (t). (3.26)

This leads to the following

Proposition 3.10. Suppose Assumption 2.10 holds and dQ ≡ 0. Then
the kernel of the linear relation Amax ⊂ L2(W )2 is two-dimensional if
and only if function P is not equivalent to a constant in L2(W ) and
one-dimensional otherwise.

Proof. Let g be zero element of L2(W ). Then equality (3.26) takes the
form

f(x) = f(0) + f [1](0)P (x), (3.27)

which is equivalent to f ∈ span{1, P}.



D. Strelnikov 429

Remark. Further, in the proof of Theorem 3.12 it will be shown that the
kernel of linear relation Amax is always two-dimensional if in addition
Assumption 3.6 holds.

Definition 3.11. We shall say that an element

(
f
g

)
of the linear relation

Amax belongs to the linear relation Amin, if

f(0) = f [1](0) = f(l) = f [1](l) = 0. (3.28)

It follows from equality (3.13) that the linear relation Amin is sym-
metric.

Theorem 3.12. Linear relations Amin and Amax are closed, A∗
min =

Amax, and deficiency indices of Amin are (2, 2).

Proof. We shall check that for linear relations Amin and Amax condi-
tions of Theorem 2.4 are satisfied. It follows directly from Theorem 2.9
that ranAmax = L2(W ). Let g be an arbitrary class from L2(W ), g be
some instance of g. Then (for any fixed initial value) by Theorem 2.9

there exists a vector-function f⃗ =

(
f

f [1]

)
such that pair

{
f⃗ , g
}

satisfies

system (3.3) and, as a consequence,

(
f
g

)
∈ Amax.

Further, let us show that dimkerAmax = 2. By Theorem 2.9 if g = 0
then for any complex numbers a, a1 there exists a unique vector-function
f⃗ such that f(0) = a, f [1](0) = a1 and f ∈ kerAmax, where f is the class
from L2(W ) generated by f . If Assumption 3.6 holds then similarly to
the proof of Theorem 3.8 we get that dimkerAmax is isomorphic to C2.
By the same argument, we get kerAmin = {0}. Now the statement of
this theorem follows from Theorem 2.4.

Theorem 3.13. [25] The set of all self-adjoint extensions of the linear
relation Amin is described by the boundary conditions

Ã =

{(
f
g

)
∈ Amax : CΓ0

(
f
g

)
+DΓ1

(
f
g

)
= 0

}
(3.29)

where C,D are complex valued 2× 2 matrices such that

det(CC∗ +DD∗) ̸= 0, CD∗ = DC∗. (3.30)

In particular, linear relations A0 and A1 defined by equalities (2.11)
are self-adjoint extensions of the linear relation Amin. Extensions A0 and
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A1 corresponding to boundary triple (3.21) coincide with the Dirichlet
extension and the Neumann extension

AD :=

{(
f
g

)
∈ Amax : f(0) = f(l) = 0

}
, (3.31)

AN :=

{(
f
g

)
∈ Amax : f [1](0) = f [1](l) = 0

}
, (3.32)

respectively.

3.3. Functions c(x, λ) and s(x, λ). Weyl function of linear
relation Amax

Let Assumption 2.10 and Assumption 3.6 hold. It follows from The-
orem 2.9 that for each fixed λ ∈ C there exist unique vector-functions
c⃗(x, λ) and s⃗(x, λ) satisfying the initial conditions

c(0, λ) = 1, c[1](0, λ) = 0,

s(0, λ) = 0, s[1](0, λ) = 1,
(3.33)

such that the pairs {c⃗, λc} and {s⃗, λs} satisfy system (3.3). Here we
have inclusions c, s ∈ L2(W ). Let c(λ) and s(λ) be classes from L2(W )
generated by c(x, λ) and s(x, λ), respectively. Then(

c(λ)
λc(λ)

)
,

(
s(λ)
λs(λ)

)
∈ Amax. (3.34)

It is known (see [6]) that functions c(x, λ) and s(x, λ) are entire in λ
of order not greater that 1/2.

By conditions (3.33) functions c and s are linearly independent, and
it follows from Assumption 3.6 that classes c(λ) and s(λ) are linearly
independent too. Any element fλ from the defect subspace Nλ can be
represented as

fλ = a1c(λ) + a2s(λ), a1, a2 ∈ C. (3.35)

Theorem 3.14. The generalized Wronskian of the functions c⃗(x, λ) and
s⃗(x, λ) is a constant:

[⃗c, s⃗ ] = c(x, λ)s[1](x, λ)− c[1](x, λ)s(x, λ) = 1, x ∈ [0, l]. (3.36)

Proof. Note that both pairs

(
s
λs

)
and

(
s

λs

)
belong or do not belong

to the linear relation Amax simultaneously. The application of Green’s

identity in the form (3.10) to pairs

(
c
λc

)
and

(
s

λs

)
gives

[⃗c(t, λ), s⃗(t, λ)]|x0 = 0. (3.37)
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Theorem 3.15. The Weyl function and the γ-field of the linear relation
Amax corresponding to boundary triple {C2,Γ0,Γ1} from (3.21) have the
forms

M(λ) =
−1

s(l, λ)

(
c(l, λ) −1

−1 s[1](l, λ)

)
, (3.38)

γ(λ) =
1

s(l, λ)

(
c(λ)s(l, λ)− c(l, λ)s(λ) s(λ)

)
. (3.39)

Proof. Let fλ = a1c(λ) + a2s(λ). Then

Γ0

(
fλ
λfλ

)
=

(
1 0

c(l, λ) s(l, λ)

)(
a1
a2

)
=: Y0

(
a1
a2

)
,

Γ1

(
fλ
λfλ

)
=

(
0 1

−c[1](l, λ) −s[1](l, λ)

)(
a1
a2

)
=: Y1

(
a1
a2

)
.

(3.40)

It follows from Definition 2.5 of the Weyl function and equality (3.36)
that

M(λ) = Y1Y
−1
0 =

−1

s(l, λ)

(
c(l, λ) −1

c[1](l, λ)s(l, λ)− c(l, λ)s[1](l, λ) s[1](l, λ)

)
=

−1

s(l, λ)

(
c(l, λ) −1

−1 s[1](l, λ)

)
.

(3.41)
Finally, by definition of the γ-field we have

γ(λ) =
(
c(λ) s(λ)

)
Y −1
0

=
1

s(l, λ)

(
c(λ)s(l, λ)− c(l, λ)s(λ) s(λ)

)
.

(3.42)

4. Weyl functions of intermediate extensions of linear
relation Amin

In this section the boundary triples and the corresponding Weyl func-
tions for intermediate extensions of the linear relation Amin are con-
structed.

Definition 4.1. Let us set

AD0 :=

{(
f
g

)
∈ AD : f [1](0) = 0

}
, ADl :=

{(
f
g

)
∈ AD : f [1](l) = 0

}
,

AN0 :=

{(
f
g

)
∈ AN : f(0) = 0

}
, ANl :=

{(
f
g

)
∈ AN : f(l) = 0

}
.
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It follows from Definition 4.1, (3.31), and (3.32) that

AD0 :=

{(
f
g

)
∈ Amax : f(0) = f(l) = f [1](0) = 0

}
, (4.1)

ADl :=

{(
f
g

)
∈ Amax : f(0) = f(l) = f [1](l) = 0

}
, (4.2)

AN0 :=

{(
f
g

)
∈ Amax : f(0) = f [1](0) = f [1](l) = 0

}
, (4.3)

ANl :=

{(
f
g

)
∈ Amax : f(l) = f [1](0) = f [1](l) = 0

}
. (4.4)

Theorem 4.2. Linear relation AD0 is symmetric in L2(W ) with defi-
ciency indices (1, 1) and the following conditions hold:

(i) The adjoint linear relation A∗
D0 has the form

A∗
D0 =

{(
f
g

)
∈ Amax : f(l) = 0

}
. (4.5)

(ii) The tuple {C,ΓD0
0 ,ΓD0

1 }, where

ΓD0
0

(
f
g

)
= f [1](0), ΓD0

1

(
f
g

)
= −f(0), (4.6)

is a boundary triple for A∗
D0.

(iii) The corresponding Weyl function and the γ-field have the form

MD0(λ) =
s(l, λ)

c(l, λ)
, γD0(λ) = s(λ)− s(l, λ)

c(l, λ)
c(λ). (4.7)

Proof. (i) Suppose

(
f
g

)
∈ AD0. By definition

(
u
v

)
∈ A∗

D0 holds if and

only if
(g, u)L2(W ) = (f, v)L2(W ). (4.8)

The last equality is equivalent to(
Γ1

(
f
g

)
,Γ0

(
u
v

))
H
=

(
Γ0

(
f
g

)
,Γ1

(
u
v

))
H
. (4.9)
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Since f [1](l) is arbitrary, the last equality holds if and only if u(l) = 0.

(ii) Let us show that Green’s identity (in the sense of Definition 2.2)
holds for the mappings ΓD0

0 ,ΓD0
1 , which are defined on A∗

D0. It is clear

that A∗
D0 ⊂ Amax. Hence, for any

(
f
g

)
,

(
u
v

)
∈ A∗

D0 the equality (3.13)

holds and taking into account (4.5) we have

(g, u)L2(W ) − (f, v)L2(W ) = f [1](0)u(0)− f(0)u[1](0). (4.10)

It remains to check that the mapping ΓD0 =

(
ΓD0
0

ΓD0
1

)
: A∗

D0 → C⊕ C is

surjective, which follows directly from the subjectivity of the mapping Γ
on Amax.

(iii) The defect subspace of linear relation A∗
D0 has the form

Nλ(A
∗
D0) = span{c(λ) + ks(λ)} (4.11)

where the coefficient k is chosen to satisfy fλ(l) = 0. Further

ΓD0
0 f̂λ = k = −c(l, λ)

s(l, λ)
, ΓD0

1 f̂λ = −1, (4.12)

and finally

MD0(λ) =
s(l, λ)

c(l, λ)
, γD0(λ) = s(λ)− s(l, λ)

c(l, λ)
c(λ). (4.13)

Similar theorems for extensions ADl, AN0, and ANl are given below
without proofs.

Theorem 4.3. Linear relation ADl is symmetric in L2(W ) with defi-
ciency indices (1, 1), and the following conditions hold:

(i) The adjoint linear relation A∗
Dl has the form

A∗
Dl =

{(
f
g

)
∈ Amax : f(0) = 0

}
. (4.14)

(ii) The tuple {C,ΓDl0 ,ΓDl1 }, where

ΓDl0

(
f
g

)
= f [1](l), ΓDl1

(
f
g

)
= f(l), (4.15)

is a boundary triple for A∗
Dl.
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(iii) The corresponding Weyl function and the γ-field have the form

MDl(λ) =
s(l, λ)

s[1](l, λ)
, γDl(λ) =

s(λ)

s[1](l, λ)
. (4.16)

Theorem 4.4. Linear relation AN0 is symmetric in L2(W ) with defi-
ciency indices (1, 1) and the following conditions hold:

(i) The adjoint linear relation A∗
N0 has the form

A∗
N0 =

{(
f
g

)
∈ Amax : f [1](l) = 0

}
. (4.17)

(ii) The tuple {C,ΓDl0 ,ΓDl1 }, where

ΓN0
0

(
f
g

)
= f [1](0), ΓN0

1

(
f
g

)
= −f(0), (4.18)

is a boundary triple for A∗
N0.

(iii) The corresponding Weyl function and γ-field have the form

MN0(λ) =
s[1](l, λ)

c[1](l, λ)
, γN0(λ) = s(λ)− s[1](l, λ)

c[1](l, λ)
c(·, λ). (4.19)

Theorem 4.5. Linear relation ANl is symmetric in L2(W ) with defi-
ciency indices (1, 1) and the following conditions hold:

(i) The adjoint linear relation A∗
Nl has the form

A∗
N1 =

{(
f
g

)
∈ Amax : f [1](0) = 0

}
. (4.20)

(ii) The tuple {C,ΓNl0 ,ΓNl1 } where

ΓNl0

(
f
g

)
= f [1](l), ΓNl1

(
f
g

)
= f(l), (4.21)

is a boundary triple for A∗
Nl.

(iii) The corresponding Weyl function and γ-field have the form

MNl(λ) =
c(l, λ)

c[1](l, λ)
, γNl(λ) =

c(·, λ)
c[1](l, λ)

. (4.22)

Remark 4.6. The Weyl functionsMD0, MN0 in the case dQ ≡ 0 coincide
with the functions Ω0, Ω1, see [18, p. 666, (2.40–41)].
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5. Special cases

5.1. Absolutely continuous case. Sturm-Liouville operator

Let functions P, Q and W be absolutely continuous on [0, l], i.e. there
exist functions p, q and w from L1[0, l] such that

P (x) =

∫ x

0
p(t)dt, Q(x) =

∫ x

0
q(t)dt, W (t) =

∫ x

0
w(t)dt, (5.1)

p(t) ̸= 0 and w(t) ≥ 0 almost everywhere with respect to Lebesgue mea-
sure on [0, l]. In addition, we require that the space L2(W ) be nontrivial.
The last requirement is equivalent to W (l) > W (0).

In this special case system (1.1) can be written in the form

Jf⃗ ′(x) = λH(x)f⃗(x) + V (x)f⃗(x), f⃗(0) = a⃗(0), (5.2)

where

H(x) =

(
w(x) 0
0 0

)
, V (x) =

(
−q(x) 0

0 p(x)

)
, f⃗(x) =

(
f(x)

f [1](x)

)
or, equivalently,{

−(f [1])′(x) = λw(x)f(x)− q(x)f(x),

f ′(x) = p(x)f [1](x).
(5.3)

System (5.3) is equivalent to the Sturm–Liouville equation (see [26])

− d

dx

(
1

p(x)

d

dx
f(x)

)
+ q(x)f(x) = λw(x)f(x). (5.4)

with the initial conditions

f(0) = a1, f [1](0) = a2.

More general canonical systems (5.2) were studied in [16, 20, 24],
where, in particular, it was shown that the maximal and the minimal
operators associated with such canonical systems can be linear relations
with nontrivial multivalued part. In the 2-dimensional case the multi-
valued part of the maximal operator was calculated explicitly in terms
of the so called H-indivisible intervals, [16]. Actually in the absolutely
continuous case the results of the paper can be easily derived from the
results of [4] and [23].
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5.2. Discrete case. Stieltjes string

Let us consider system (3.4) in the case dQ ≡ 0, dP = dx, andW be a
left-continuous monotonically nondecreasing piecewise constant function
on [0, l] that has at least two growth points. Let {xj}n−1

j=0 be the growth
points of W such that

0 = x0 < x1 < . . . < xn−1 < xn := l. (5.5)

By wj denote

wj :=W (xj + 0)−W (xj) (j ∈ {1, 2, . . . , n− 1}). (5.6)

The distance between neighboring growth points is denoted by

lj := xj − xj−1 (j ∈ {1, 2, . . . , n}). (5.7)

Finally for convenience denote

fj := f(xj), gj := g(xj), hj := f [1](xj). (5.8)

With generating function W the space L2(W ) is isomorphic to Cn, and
each of its element is a vector [f0, f1, . . . , fn−1]

T .
It is easy to check that by the above assumptions one can choose

closed on the left intervals i1, i2 such that they satisfy Proposition 3.7.
For instance, it is sufficient to choose intervals ij with the only growth
point xj−1 (j ∈ {1, 2}). Theh the spaces L2(ij ,W ) obviously are non-
trivial and inequality (3.16) takes the following form

w1l1
w2

> 0. (5.9)

Combining (5.6), (5.7), and (5.8) we can rewrite system (3.4) as{
fj+1 − fj = hj+1lj+1,

hj+1 − hj = −wjgj
(5.10)

where j ∈ {0, 1, . . . , n− 1}.

Proposition 5.1. In the assumptions of case 5.2 the multivalued part
of the linear relation Amax has the form

{(c1, 0, 0, . . . , 0, c2)T : c1, c2 ∈ C} (5.11)

and the linear relation Amin is the graph of a single-valued linear opera-
tor.
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Proof. Let f be the zero element of L2(W ). Thus, in (5.10) we have
fj = 0 as j ∈ {0, 1, . . . , n− 1}, hence hj = 0 as j ∈ {1, 2, . . . , n− 1} and
gj = 0 as j ∈ {1, 2, . . . , n − 2}. The converse is also true: since we can
choose h0 = w0g0 then for each vector g ∈ L2(W ) of the form (5.11) the

pair

(
0
g

)
belongs to the linear relation Amax.

If, in addition, fn = h0 = hn = 0 then it follows from (5.10) that
gj = 0 as j ∈ {0, 1, . . . n− 1}.

5.3. Mixed case. Krein–Feller string

A more general case can be obtained if we suppose dQ ≡ 0, dP = dx
and W is an arbitrary mototonically nondecreasing function.

In this Proposition 3.7 holds if and only if W has at least two distinct
growth points on [0, l]:

0 < W (x0) < W (x1) ≤W (l). (5.12)

Now system (3.4) has the following form:
f(x)− f(0) =

x∫
0

f [1](t)dt,

f [1](x)− f [1](0) = −
x∫
0

g(t)dW (t).
(5.13)

In particular we have the next

Proposition 5.2. Suppose the assumptions of case 5.3 are satisfied. If a

pair

(
f
g

)
∈ L2(W )2 belongs to linear relation Amax then there exists f ∈ f

such that f is absolutely continuous with respect to Lebesgue measure and
its derivative coincides with f [1] almost everywhere.

Let us rewrite system (5.13) as

f(x) = f(0) + xf [1](0)−
x∫

0

 t∫
0

g(s)dW (s)

 dt. (5.14)

The function
t∫
0

g(s)dW (s) is left-continuous and of bounded variation on

[0, l]. It follows from (2.14) that equality (5.14) can be rewritten as

f(x) = f(0) + xf [1](0)−
x∫

0

(x− s)g(s)dW (s). (5.15)
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Definition 5.3. [17] A function f is said to belong to the Stieltjes class
S+ if f ∈R and f admits a holomorphic non-negative continuation to
(−∞, 0).

In the paper [18] the differential operation defined by (5.15) was in-
vestigated. I. S. Kats and M. G. Krein showed that under assumptions
of the case 5.2 the Weyl functions MD0,MN0 and MNl constructed in
section 4, belong to the Stieltjes class S+, see [18, p. 666, Lemma 2.3].

References

[1] R. Arens, Operational calculus of linear relations // Pacific Journal of Mathe-
matics, 11 (1961), No. 1, 9–23.

[2] D. Z. Arov, H. Dym, Bitangential Direct and Inverse Problems for Systems of
Integral and Differential Equations, 2012.

[3] F. V. Atkinson, Discrete and continuous boundary problems, Academic Press, New
York-London, Mathematics in Science and Engineering, Vol. 8, 1964.

[4] J. Behrndt, S. Hassi, H. de Snoo, R. Wietsma, Square-integrable solutions and
Weyl functions for singular canonical systems // Mathematische Nachrichten,
284 (2011), No. 11-12, 1334–1384.

[5] C. Bennewitz, Symmetric relations on a Hilbert space, Lecture Notes in Math.,
Springer, Berlin, Heidelberg, 280 (1972), 212–218.

[6] C. Bennewits, Spectral Asymptotics for Sturm-Liouville Equations // Proceedings
of the London Mathematical Society, (3) 59 (1989), No. 2, 294–338.

[7] V. M. Bruk, On a class of problems with the spectral parameter in the boundary
conditions // Mat. Sb., 100 (1976), 210–216.

[8] J. W. Calkin, Abstract symmetric boundary conditions // TAMS, 45 (1939),
No. 3, 369–442.

[9] V. Derkach, S. Hassi, M. Malamud, H. de Snoo, Boundary relations and their
Weyl families // Transactions of the American Mathematical Society, 358 (2006),
No. 12, 5351–5400.

[10] V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value
problems for hermitian operators with gaps // J. Funct. Anal., 95 (1991), 1–95.

[11] V. A. Derkach, M. M. Malamud, The extension theory of hermitian operators and
the moment problem // J. Math. Sciences, 73 (1995), 141–242.

[12] V. A. Derkach, M. M. Malamud, Extension theory of symmetric operators and
boundary value problems, Proceedings of Institute of Mathematics NAS of
Ukraine, Kyiv, 2017, 573 p. (2017)

[13] W. Feller, On Second Order Differential Operators // Annals of Mathematics, 61
(1955), No. 1, 90–105.



D. Strelnikov 439

[14] V. I. Gorbachuk, M. L. Gorbachuk, Boundary problems for differential operator
equations, Naukova Dumka, Kiev, 1984.

[15] E. Hewitt, Integration by Parts for Stieltjes Integrals // The American Mathe-
matical Monthly, 67 (1960), No. 5, 419–423.

[16] I. S. Kac, Linear relations generated by a canonical differential equation of phase
dimension 2 and decomposability in eigenfunctions // Algebra i analiz, 14 (2002),
No. 3, 86–120.

[17] I. S. Kac, M. G. Krein, R-functions – analytic functions mapping the upper half
plane into itself, Supplement I to the Russian translation of F. V. Atkinson, Dis-
crete and continuous boundary problems, Mir, Moscow, 1968, 629–647.

[18] I. S. Kac, M. G. Krein, On the spectral functions of the string, Supplement II
to the Russian translation of F. V. Atkinson, Discrete and continuous boundary
problems, Mir, Moscow, 1968, 648–737.

[19] A. N. Kochubey, On extensions of symmetric operators and symmetric binary
relations // Math. Notes, 17 (1975), No. 1, 41–48.

[20] M. Lesch, M. Malamud, On the deficiency indices and self-adjointness of sym-
metric Hamiltonian systems //, J. Differential Equations, 189 (2003), No. 2,
556-615

[21] M. M. Malamud, On the formula of generalized resolvents of a nondensely defined
Hermitian operator // Ukr. Mat. Zh., 44 (1992), No. 12, 1658–1688.

[22] V. Mogilevsky, Boundary triplets and Titchmarsh - Weyl functions of differential
operators with arbitrary deficiency indices // Methods of Funct. Anal. Topology,
15 (2009), No. 3, 280–300.

[23] V. I. Mogilevskii, Spectral and pseudospectral functions of Hamiltonian systems:
development of the results by Arov-Dym and Sakhnovich // Methods of Funct.
Anal. Topology, 21 (2015), No. 4, 370–402.

[24] B. Orcutt, Canonical differential equations, Ph.D. thesis, University of Virginia,
1969.

[25] F. S. Rofe-Beketov, On selfadjoint extensions of differential operators in a space
of vector-functions // Teor. Funkts., Funkts. Anal. i Prilozhen., 8 (1969), 3–24.

[26] E. C. Titchmarsh, Eigenfunction expansions associated with second order differ-
ential equations, Part I, 2nd edn (Oxford University Press, 1962).

Contact information

Dmytro Strelnikov Vasyl’ Stus Donetsk National University,
Vinnitsya, Ukraine
E-Mail: d.strelnikov@donnu.edu.ua


