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Factorization of generalized
γ-generating matrices

Olena Sukhorukova

(Presented by V. O. Derkach)

Abstract. The class of γ–generating matrices and its subclasses of reg-
ular and singular γ–generating matrices were introduced by D. Z. Arov
in [8], where it was shown that every γ-generating matrix admits an es-
sentially unique regular–singular factorization. The class of generalized
γ-generating matrices was introduced in [14, 20]. In the present paper
subclasses of singular and regular generalized γ-generating matrices are
introduced and studied. As the main result of the paper a theorem
of existence of regular–singular factorization for rational generalized γ-
generating matrix is found.
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1. Introduction

The notion of a γ–generating matrix was introduced by D. Z. Arov
in [8] in connection with the study of completely indeterminate Nehari
problem on the unit circle T (see [1,2,10]), and for a real line R (see [10]).

Let jpq =

[
Ip 0

0 −Iq

]
. We recall that a mvf (matrix valued function)

A =

[
a11 a12

a21 a22

]
, where a11 and a22 are p×p and q×q blocks, respectively,

is called a γ-generating matrix of the class Mr(jpq), if:

(1) A is measurable on R and takes jpq-unitary values for a.e. µ ∈ R;
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(2) a22(µ) and a∗11(µ) are boundary values of holomorphic mvf’s a22(λ)
and a#11(λ), such that a−1

22 and (a#11)
−1 are outer mvf’s from the

Schur classes Sp×p and Sq×q, respectively;

(3r) s21 := −a−1
22 a21 belongs to the Schur class Sq×p of holomorphic in

C+ with values in the set of contractive mvf’s, i.e. Ip−s(λ)∗s(λ) ≥ 0
for every point λ ∈ C+.

The class Mℓ(jpq) of left γ-generating matrices was introduced in [8] as
the set of mvf’s A(µ) which satisfies (1), (2) and

(3ℓ) s12 := a12a
−1
22 ∈ Sp×q.

As was shown in [1,2], any solution of a completely indeterminate matrix
Nehari problem can be represented in the form

f(µ) = TA[s] = (a11(µ)s(µ) + a12(µ))(a21(µ)s(µ) + a22(µ))
−1, (1.1)

where A ∈ Mr(jpq), and s is a mvf of the Schur class Sp×q.
A mvf A ∈ Mr(jpq) is said to be right singular γ-generating matrix

if TA[Sp×q] ⊂ Sp×q. A mvf A ∈ Mr(jpq) is said to be right regular
γ-generating matrix if the factorization A = A1A2 with a factor A1 ∈
Mr(jpq) and a right singular factor A2 implies that A2 is constant. These
two subclasses of Mr(jpq) will be designated Mr,S(jpq) and Mr,R(jpq),
respectively.

Similarly, the classes Mℓ,S(jpq) and Mℓ,R(jpq) were introduced in [8,
10] and in fact the classes Mr,S(jpq) and Mℓ,S(jpq) coincide:

MS(jpq) := Mr,S(jpq) = Mℓ,S(jpq).

As was shown in [8] a resolvent matrix A which describes solutions of
the Nehari problem is a right regular γ-generating matrix.

In [8] it was shown that any γ-generating matrix admits a factoriza-
tion

A = A1A2, where A1 ∈ Mr,R(jpq), A2 ∈ MS(jpq).

Classes Mr
κ(jpq) and Mℓ

κ(jpq) of generalized γ-generating matrices
were introduced in [14,20], where also connections between generalized γ-
generating matrices of the class Mr

κ(jpq) (resp. Mℓ
κ(jpq)) and generalized

jpq-inner mvf’s of the class Ur
κ(jpq) (resp. U ℓ

κ(jpq)) were established.
Sufficient conditions for regular–singular factorization of generalized

jpq-inner mvf were found in [15]. In the present paper the notions of
singular and regular right and left generalized γ-generating mvf’s are
introduced and studied.

Sufficient conditions for existance of regular-singular factorization for
right and left generalized γ-generating mvf’s are also found.
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1.1. The generalized Schur class

Let Ω+ be equal to either D = {λ ∈ C : |λ| < 1} or C+ = {λ ∈ C :
−i(λ− λ̄) > 0}. Let us set

ρω(λ) =

{
1− λω, if Ω+ = D;
−2πi(λ− ω), if Ω+ = C+.

and let Ω− := {ω ∈ C : ρω(ω) < 0}. Then Ω0 := ∂Ω+ is either the unit
circle T, if Ω+ = D, or the real line R, if Ω+ = C+.

Let κ ∈ Z+. Recall [5], that a Hermitian kernel Kω(λ) : Ω × Ω →
Cm×m is said to have κ negative squares, if for every positive integer n
and every choice of ωj ∈ Ω and uj ∈ Cm (j = 1, . . . , n) the matrix

(u∗kKωj (ωk)uj)
n
j,k=1

has at most κ, and for some choice of n ∈ N, ωj ∈ Ω and uj ∈ Cm exactly
κ negative eigenvalues.

Denote by hs the domain of holomorphy of the mvf s(λ) and let us
set h±s := hs ∩ Ω±.

Let Sq×p
κ denote the generalized Schur class of q × p mvf’s s that are

meromorphic in Ω+ and for which the kernel

Λs
ω(λ) =

Ip − s(λ)s(ω)∗

ρω(λ)
(1.2)

has κ negative squares on h+s × h+s (see [17]). In the case where κ = 0
the class Sq×p

0 coincides with the Schur class Sq×p. A mvf s ∈ Sq×p is
said to be inner (s ∈ Sq×p

in ), if Ip − s(µ)∗s(µ) = 0 for a.e. point µ ∈ Ω0.
Mvf s ∈ Sq×p is said to be outer (s ∈ Sq×p

out ), if sHp
2 = Hq

2 .
As was shown in [17] every mvf s ∈ Sq×p

κ admits a factorization of
the form

s(λ) = bℓ(λ)
−1sℓ(λ), λ ∈ h+s , (1.3)

where bℓ ∈ Sq×q
in is a q × q BP (Blaschke–Potapov) product of degree κ

(see. [10]), sℓ ∈ Sq×q and

rank
[
bℓ(λ) sℓ(λ)

]
= q (λ ∈ Ω+). (1.4)

The representation (1.3) is called a left KL (Krein–Langer) factorization.
Similarly, every generalized Schur function s ∈ Sq×p

κ admits a right KL-
factorization

s(λ) = sr(λ)br(λ)
−1 for λ ∈ h+s , (1.5)
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where br ∈ Sp×p is a BP-product of degree κ, sr ∈ Sq×p and

rank
[
br(λ)

∗ sr(λ)
∗
]
= p (λ ∈ Ω+). (1.6)

Recall the notations (see [10]): Rp×q – the class of rational p× q mvf’s,

N p×q
± = {f = h−1g : g ∈ Hp×q

∞ (Ω±), h ∈ S1×1
out (Ω±)};

N p×q
out = {f = h−1g : g ∈ Sp×q

out , h ∈ S1×1
out }.

The limit values f(µ) of mvf f(λ) ∈ N p×q(C+) (N p×q(D)) are defined
a.e. on R (T)

f(µ) = lim
ν↓0

f(µ+ iν) (f(µ) = lim
r↑1

f(rµ)). (1.7)

Similarly, the limit values of f ∈ N p×q(Ω−) are defined a.e. on Ω0.

Definition 1.1. A p×q mvf f− in Ω− is said to be a pseudocontinuation
of a mvf f ∈ N p×q, if

(1) f#− ∈ N p×q;

(2) f−(µ) = f(µ) a.e. on Ω0.

The subclass of all mvf’s f ∈ N p×q that admit pseudocontinuations f−
into Ω− will be denoted Πp×q. Sometimes the superindex p× q is dropped
and we denote this class by Π if it does not lead to confusion.

1.2. Generalized jpq-inner mvf’s

Definition 1.2. [4,13] An m×m mvf W (λ) that is meromorphic in Ω+

is said to belong to the class Uκ(jpq) of generalized jpq-inner mvf’s, if:

(i) the kernel

KW
ω (λ) =

jpq −W (λ)jpqW (ω)∗

ρω(λ)
(1.8)

has κ negative squares in h+W × h+W , where h+W denotes the domain
of holomorphy of W in Ω+ and

(ii) jpq −W (µ)jpqW (µ)∗ = 0 a.e. on the boundary Ω0 of Ω+.

Let us recall some facts concerning the PG (Potapov–Ginzburg) trans-
form of generalized jpq-inner mvf’s. As is known [4, Theorem 6.8], for
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every W ∈ Uκ(jpq) the matrix w22(λ) is invertible for all λ ∈ h+W except
for at most κ point in Ω+. The PG-transform S = PG(W ) of W (see [3])

S(λ) :=

[
w11(λ) w12(λ)

0 Iq

][
Ip 0

w21(λ) w22(λ)

]−1

(1.9)

is well defined for those λ ∈ h+W , for which w22(λ) is invertible, S(λ)
belongs to the class Sm×m

κ and S(µ) is unitary for a.e. µ ∈ Ω0 (see [4,13]).
The formula (1.9) can be rewritten as

S =

[
s11 s12

s21 s22

]
=

[
w11 − w12w

−1
22 w21 w12w

−1
22

−w−1
22 w21 w−1

22

]
. (1.10)

Since the mvf S(λ) has unitary nontangential boundary limits a.e. on
Ω0, the pseudocontinuation of S to Ω− can be defined by the formula
S(λ) = (S#(λ))−1, where the reflection function S#(λ) is defined by

S#(λ) = S(λ◦)∗, λ◦ =

{
1/λ : if Ω+ = D, λ ̸= 0;

λ : if Ω+ = C+.
(1.11)

1.3. The class Ur
κ(jpq)

Definition 1.3. [13] An m×m mvf W (λ) ∈ Uκ(jpq) is said to be in the
class Ur

κ(jpq), if

s21 := −w−1
22 w21 ∈ Sq×p

κ . (1.12)

Theorem 1.4. [13] Let W ∈ Ur
κ(jpq) and let the BP-factors bℓ and br be

defined by the KL-factorizations of s21:

s21(λ) := bℓ(λ)
−1sℓ(λ) = sr(λ)br(λ)

−1, λ ∈ h+s21 , (1.13)

where bℓ ∈ Sq×q
in , br ∈ Sp×p

in , sℓ, sr ∈ Sq×p. Then the mvf’s bℓs22 and
s11br are holomorphic in Ω+, and hence they admit the following inner-
outer and outer-inner factorizations

s11br = b1a1, bℓs22 = a2b2, (1.14)

where b1 ∈ Sp×p
in , b2 ∈ Sq×q

in , a1 ∈ Sp×p
out , a2 ∈ Sq×q

out .

The pair {b1, b2} is called the right associated pair of the mvf W ∈
Ur
κ(jpq) and is written as {b1, b2} ∈ apr(W ). In the case κ = 0 this notion

was introduced in [6].
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Proposition 1.5. [13, 16] If s ∈ Sq×p, then there exists a set of mvf’s
cℓ ∈ Hq×q

∞ , dℓ ∈ Hp×q
∞ , cr ∈ Hp×p

∞ and dr ∈ Hp×q
∞ , such that[

cr dr

−sℓ bℓ

][
br −dℓ
sr cℓ

]
=

[
Ip 0

0 Iq

]
. (1.15)

If, in addition, s ∈ Π, then cℓ, dℓ, cr, dr can be chosen from Π.

Proof. The first statement was proved in [13, Theorem 4.9] (the rational
case was treated in [16]).

Assume now that s ∈ Π and hence also sℓ ∈ Π. Let dℓ be a rational
mvf’s such that

b−1
ℓ (Iq − sℓdℓ) ∈ Hq×q

∞ .

Such a mvf can be chosen via matrix Lagrange–Silvester interpolation.
Then by setting

cℓ := b−1
ℓ (Ip − sℓdℓ)

one obtains cℓ ∈ Hq×q
∞ ∩Πq×q, since bℓ, sℓ, dℓ ∈ Π.

The inclusions cr, dr ∈ Π are implied by (1.15).

By [13, Theorem 4.11] for everyW ∈ Ur
κ(jpq) and cℓ and dℓ as in (1.15)

the mvf
K = (−w11dℓ + w12cℓ)(−w21dℓ + w22cℓ)

−1, (1.16)

belongs to Hp×q
∞ and admits the representations

K = (−w11dℓ + w12cℓ)a2b2, (1.17)

where {b1, b2} ∈ apr(W ) and a2 ∈ Sq×q
out is determined by (1.14).

1.4. The class U ℓ
κ(jpq)

The following definitions and statements concerning the dual class
U ℓ
κ(jpq) are taken from [19].

Definition 1.6. An m ×m mvf W ∈ Uκ(jpq) is said to be in the class
U ℓ
κ(jpq), if

s12 := w12w
−1
22 ∈ Sp×q

κ . (1.18)

If W ∈ Uκ(jpq) and the mvf W̃ is defined by

W̃ (λ) =

{
W (λ)∗, if Ω+ = D,
W (−λ)∗ if Ω+ = C+.

(1.19)
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then, as was shown in [19], the following equivalence holds:

W ∈ U ℓ
κ(jpq) ⇐⇒ W̃ ∈ Ur

κ(jpq) (1.20)

and as a corollary of Theorem 1.4 one can get the following statement.

Theorem 1.7. Let W ∈ U ℓ
κ(jpq) and let the BP-factors bℓ and br be

defined by the KL-factorizations of s12:

s12(λ) = bℓ(λ)
−1sℓ(λ) = sr(λ)br(λ)

−1, (λ ∈ h+s12), (1.21)

where bℓ ∈ Sp×p
in , br ∈ Sq×q

in , sℓ, sr ∈ Sp×q. Then

s22br ∈ Sq×q and bℓs11 ∈ Sp×p. (1.22)

Definition 1.8. Consider inner-outer and outer-inner factorizations of
bℓs11 and s22br

bℓs11 = a1b1, s22br = b2a2, (1.23)

where b1 ∈ Sp×p
in , b2 ∈ Sq×q

in , a1 ∈ Sp×p
out , a2 ∈ Sq×q

out . The pair b1, b2 of
inner factors in the factorizations (1.23) is called the left associated pair
of the mvf W ∈ U ℓ

κ(jpq) and is written as {b1, b2} ∈ apℓ(W ), for short.

Remark 1.9. As was shown in [19] (3.25) if {b1, b2} ∈ apℓ(W ), then

s̃11b̃ℓ = b̃1ã1, b̃rs̃22 = ã2b̃2, and, therefore, {b̃1, b̃2} ∈ apr(W̃ ).

As was shown in [19], there exists a set of mvf’s cℓ ∈ Hp×p
∞ , dℓ ∈ Hq×p

∞ ,
cr ∈ Hq×q

∞ and dr ∈ Hq×p
∞ , such that[

cℓ sr

dℓ br

][
bℓ −sℓ

−dr cr

]
=

[
Ip 0

0 Iq

]
. (1.24)

1.5. Reproducing kernel Pontryagin spaces

In this subsection we review some facts and notation from [11–13]
on the theory of indefinite inner product spaces for the convenience of
the reader. A linear space K equipped with a sesquilinear form ⟨·, ·⟩K on
K ×K is called an indefinite inner product space. A subspace F of K is
called positive (resp. negative) if ⟨f, f⟩K > 0, (resp. < 0) for all f ∈ F ,
f ̸= 0.

An indefinite inner product space (K, ⟨·, ·⟩K) is called a Pontryagin
space, if it can be decomposed as the orthogonal sum

K = K+ ⊕K− (1.25)
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of a positive subspace K+ which is a Hilbert space with respect to the
inner product ⟨·, ·⟩K and a negative subspace K− of finite dimension. The
number ind−K := dimK− is referred to as the negative index of K.

The isotropic part of L ⊂ K is defined by L0 := {x ∈ L : ⟨x, y⟩L =
0, y ∈ L}. The subspace L is called nondegenerate iff L0 = {0}.

A Pontryagin space (K, ⟨·, ·⟩K) of Cm-valued functions defined on a
subset Ω of C is called a RKPS (reproducing kernel Pontryagin space),
if there exists a Hermitian kernel Kω(λ) : Ω× Ω → Cm×m, such that:

(1) for every ω ∈ Ω and every u ∈ Cm the vvf Kω(λ)u belongs to K;

(2) for every f ∈ K, ω ∈ Ω and u ∈ Cm the following identity holds

⟨f,Kωu⟩K = u∗f(ω). (1.26)

It is known (see [18]) that for every Hermitian kernel Kω(λ) : Ω×Ω →
Cm×m with a finite number κ of negative squares on Ω × Ω there is
a unique Pontryagin space K with reproducing kernel Kω(λ), and that
ind−K = sq−K = κ. In the case κ = 0 this fact is due to Aronszajn [5].

For W ∈ Uκ(jpq) we denote by K(W ) the RKPS associated with the
kernel KW

ω (λ) defined by (1.8).

2. A-regular–A-singular factorization of generalized
J-inner mvf’s

A mvf W ∈ Uκ(jpq) is called A-singular, if it is an outer mvf (see [6,
19]). The set of A-singular mvf’s in Uκ(jpq) is denoted by US

κ (jpq).
We will be also using the following subclasses of the class US

κ (jpq):

Ur,S
κ (jpq) := Ur

κ(jpq) ∩Nm×m
out , U ℓ,S

κ (jpq) := U ℓ
κ(jpq) ∩Nm×m

out .

In the case κ = 0 the class US(jpq) := US
0 (jpq) was introduced and

characterized in terms of associated pairs by D. Arov in [9]. For κ ̸= 0 a
definition of A-singular generalized jpq-inner mvf and its characterization
in terms of associated pairs was given in [19].

Theorem 2.1. [19] Let W ∈ Ur
κ(jpq) and let {b1, b2} ∈ apr(W ). Then:

W ∈ Ur,S
κ (jpq) ⇐⇒ b1 ≡ const, b2 ≡ const.

Theorem 2.2. [19] Let W ∈ U ℓ
κ(jpq) and let {b1, b2} ∈ apℓ(W ). Then:

W ∈ U ℓ,S
κ (jpq) ⇐⇒ b1 ≡ const, b2 ≡ const.
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Lemma 2.3. Let W ∈ Ur
κ(jpq) and let {b1, b2} ∈ apr(W ). Then:

W ∈ Ur,S
κ (jpq) ⇐⇒ W̃ ∈ U ℓ,S

κ (jpq).

Proof. Let W ∈ Ur,S
κ (jpq). Then by Theorem 2.1,

b1 ≡ const, b2 ≡ const.

Due to Remark 1.9 one obtains b̃1 ≡ const, b̃2 ≡ const and hence W̃ ∈
U ℓ,S
κ (jpq) by Theorem 2.2. The proof of the converse is similar.

Lemma 2.4. [15] Let a mvf W ∈ Ur
κ(jpq) admits a factorization

W =W (1)W (2), W (1) ∈ Uκ1(jpq), W (2) ∈ Uκ2(jpq), (2.1)

where κ1 + κ2 = κ. Then:

(i) W (1) ∈ Ur
κ1
(jpq);

(ii) For {b1, b2} ∈ apr(W ) and {b(1)1 , b
(1)
2 } ∈ apr(W (1)) one has

θ1 := (b
(1)
1 )−1b1 ∈ Sp×p

in , θ2 := b2(b
(1)
2 )−1 ∈ Sq×q

in . (2.2)

Definition 2.5. [15] A mvf W ∈ Ur
κ(jpq) is called right A-regular, if for

any factorization

W =W (1)W (2), W (1) ∈ Ur
κ1
(jpq), W (2) ∈ U ℓ

κ2
(jpq), (2.3)

with κ1 + κ2 = κ the assumption W (2) ∈ U ℓ,S
κ2 (jpq) implies W (2)(λ) ≡

const.

Similarly, a mvf W ∈ U ℓ
κ(jpq) is called left A-regular, if for any

factorization (2.3) with κ1 + κ2 = κ the assumption W (1) ∈ US
κ1
(jpq)

implies W (1)(λ) ≡ const.

In the case κ = 0 Definition 2.5 is simplified since Ur
0 (jpq) = U ℓ

0(jpq) =
U(jpq) (see [7]).

In the next lemma we present one necessary and one sufficient condi-
tion for a mvf W (λ) ∈ Ur

κ(jpq) to be regular. Let us set

LW := K(W ) ∩ Lm
2 . (2.4)

Lemma 2.6. [15] Let W ∈ Ur
κ(jpq), let K(W ) be the RKPS with the

kernel KW
ω (λ), defined by (1.8), let ind−LW = κ and let κ1 = ind−(LW ),

κ2 = κ− κ1. Assume that:
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(A1) hW ∩ Ω0 ̸= ∅;

(A2) The closure LW of LW is nondegenerate in K(W ).

Then the following implications hold:

(1) W ∈ Ur,R
κ (jpq) =⇒ LW = K(W );

(2) K(W̃ ) ⊂ Lm×m
2 =⇒W ∈ Ur,R

κ (jpq).

Denote by Rm×m the set of rational m×m-mvf’s. The following
criterion for a rational mvf W ∈ Ur

κ(jpq) to be right A-regular is given
in [15]. We will present here a simpler proof of this result.

Theorem 2.7. Let W ∈ Ur
κ(jpq) be a rational mvf. Then

(1) W ∈ Ur,R
κ (jpq) ⇐⇒ LW = K(W ).

(2) W ∈ Ur,R
κ (jpq) ⇐⇒W ∈ L̃m×m

2 .

Proof. Let W ∈ Ur,R
κ (jpq) ∩ Rm×m. Then by Lemma 2.6 LW = K(W ),

and sinceW is rational, LW = LW = K(W ). Therefore, K(W ) ⊂ Lm×m
2 .

Hence W ∈ L̃m×m
2 . The converse is immediate from Lemma 3.19(3)

in [15].

Lemma 2.8. Let W ∈ Ur
κ(jpq). Then:

W ∈ Ur,R
κ (jpq) ⇐⇒ W̃ ∈ U ℓ,R

κ (jpq).

Proof. Let W ∈ Ur
κ(jpq) and assume that W̃ = W̃ (1)W̃ (2), where W̃ (1) ∈

Ur,S
κ1 (jpq), W̃

(2) ∈ U ℓ
κ2
(jpq). Then

W =W (2)W (1), where W (1) ∈ U ℓ,S
κ1

(jpq), W (2) ∈ Ur
κ2
(jpq).

By the regularity of W , W (1) ≡ const. Hence W̃ (1) ≡ const and thus
W̃ ∈ U ℓ,R

κ (jpq). The converse implication is obtained similarly.

The following theorem was proved in [15].

Theorem 2.9. Let W ∈ Ur
κ(jpq) ∩ U ℓ

κ(jpq) ∩Rm×m. Then the following
statements are equivalent:

(1) W admits the factorization

W =W (1)W (2), W (1) ∈ Ur,R
κ1

(jpq), W (2) ∈ U ℓ,S
κ2

(jpq) (2.5)

with κ = κ1 + κ2;
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(2) LW is a nondegenerate subspace of K(W ), ind−LW = κ1.

Moreover, if (2) is the case then the factors W (1) and W (2) in (2.5) are
uniquely determined up to jpq-unitary factors.

In the classical case (κ = 0) this result coincides with the factorization
Theorem in [10].

Let us present now an analog of Theorem 2.9 for A-singular-A-regular
factorizations.

Corollary 2.10. Let W ∈ Ur
κ(jpq)∩U ℓ

κ(jpq)∩Rm×m. Then the following
statements are equivalent:

(1) W admits the factorization

W =W (2)W (1), W (1) ∈ U ℓ,R
κ1

(jpq), W (2) ∈ Ur,S
κ2

(jpq) (2.6)

with κ = κ1 + κ2;

(2) L
W̃

is a nondegenerate subspace of K(W̃ ), ind−LW̃
= κ1.

Moreover, if (2) is the case then the factors W (1) and W (2) in (2.5) are
uniquely determined up to jpq-unitary factors.

Proof. Assume that (2) holds and consider the mvf W̃ ∈ Ur
κ(jpq) ∩

U ℓ
κ(jpq) ∩Rm×m see (1.20). By Theorem 2.9

W̃ = W̃ (1)W̃ (2), where W̃ (1) ∈ Ur,R
κ1

(jpq), W̃
(2) ∈ U ℓ,S

κ2
(jpq), (2.7)

with κ1 + κ2 = κ. Hence by Lemma 2.3 and 2.8 W admits the factoriza-
tion (2.6). Conversely, let (1) holds. Then by (1.20), Lemma 2.3 and 2.8

the mvf W̃ admits the factorization (2.7) and hence by Theorem 2.9 the
statement (2) holds.

The following example illustrates importance of the condition (2) of
Theorem 2.9.

Example 2.11. Let

W1(λ) =
1

2λ− 2

[
λ2 − 3λ+ 1 λ2 − λ+ 1

λ2 − λ+ 1 λ2 − 3λ+ 1

]
.

As was shown in [15], this mvf W1 belongs to Ur
1 (j11) ∩ U ℓ

1(j11) and it
does not admit the A-regular –A-singular factorization.

The RKPS K(W1) and the subspace LW1 take the form
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K(W1) = span

{[
1

1

]
,

1

λ− 1

[
1

−1

]}
, LW1 = span

{[
1

1

]}
.

and LW1 is a degenerate subspace of K(W1) see [15]. Therefore, condition
(2) of Theorem 2.9 does not holds. By Corollary 2.10 W1 does not admit
an A-singular–A-regular factorization.

3. Generalized γ-generating matrices

Definition 3.1. Let Mr
κ(jpq) denote the class of m×m mvf’s

A(µ) =

[
a11(µ) a12(µ)

a21(µ) a22(µ)

]
, (3.1)

with blocks a11 of size p× p and a22 of size q × q such that:

(1) A(µ) is a measurable on Ω0 mvf that is jpq-unitary a.e. on Ω0;

(2) s21 = −a−1
22 a21 ∈ Sq×p

κ ;

(3) (a#11)
−1br = a1 ∈ Sp×p

out , bℓa
−1
22 = a2 ∈ Sq×q

out , where bℓ, br are BP-
products of degree κ which are determined by KL-factorizations of
s21.

The mvf’s in the class Mr
κ(jpq) are called generalized right γ-generating

matrices.

Definition 3.2. Let Mℓ
κ(jpq) denote the class of m ×m mvf’s A(µ) of

the form (3.1), such that:

(1) A(µ) is a measurable on Ω0 mvf that is jpq-unitary a.e. on Ω0;

(2) s12 = a12a
−1
22 ∈ Sp×q

κ ;

(3) bℓ(a
#
11)

−1 = a1 ∈ Sp×p
out , a

−1
22 br = a2 ∈ Sq×q

out , where bℓ, br are BP-
product of degree κ which are determined by KL-factorizations of
s12.

The mvf’s in the class Mℓ
κ(jpq) are called generalized left γ-generating

matrices.

Definition 3.3. An ordered pair {b1, b2} of inner mvf’s b1 ∈ N p×p,
b2 ∈ N q×q is called a denominator of the mvf f ∈ N p×q, if b1fb2 ∈ N p×q

+ .
The set of denominators of f will be denoted by den(f).
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Theorem 3.4. Let A ∈ Mr
κ(jpq), let bℓ, sℓ, br, sr be defined by KL-facto-

rization of s21 ∈ Sq×p
κ . Let cℓ, dℓ, cr, dr be defined by (1.15) and let

f r0 := (−a11dℓ + a12cℓ)(−a21dℓ + a22cℓ)
−1 = (−a11dℓ + a12cℓ)a2. (3.2)

Then:

(i) if den(f r0 ) ̸= ∅ and {b1, b2} ∈ den(f r0 ) then

W (z) =

[
b1 0

0 b−1
2

]
A(z) ∈ Ur

κ(jpq), {b1, b2} ∈ apr(W ) (3.3)

and hence A ∈ Πm×m. Conversely, if

W ∈ Ur
κ(jpq) and {b1, b2} ∈ apr(W ). (3.4)

then

A(z) =

[
b−1
1 0

0 b2

]
W (z) ∈ Πm×m∩Mr

κ(jpq) and {b1, b2} ∈ den(f r0 ).

(ii) if A ∈ Πm×m then den(f r0 ) ̸= ∅ and, moreover, for some choice of
mvf’s cℓ, dℓ, cr, dr in (1.15) one gets f r0 ∈ Π.

(iii) if {c(i)ℓ , d
(i)
ℓ , c

(i)
r , d

(i)
r } (i = 1, 2) are two sets of mvf’s satisfying

(1.15) and

f r,i0 = (−a11d(i)ℓ + a12c
(i)
ℓ )a2, i ∈ {1, 2} (3.5)

then den(f r,10 ) = den(f r,20 ).

Proof. (i) The first implication holds by Theorem 4.3 from [14]. The
converse implication follows from Theorem 4.3 and from the fact that

W ∈ Πm×m since W is jpq-unitary. By virtue of

[
b−1
1 0

0 b2

]
∈ Πm×m,

this implies A ∈ Πm×m.
(ii) Since A ∈ Πm×m one has a11, a12, a2 ∈ Π. By Proposition 1.5 the
mvf’s cℓ and dℓ can be chosen from Π. Therefore, f r0 ∈ Π.
(iii) Let {b1, b2} ∈ den(f r,10 ) and let W (z) be given by (3.3). Then by
item (i) W ∈ Ur

κ(jpq) and {b1, b2} ∈ apr(W ). Let us set

K(i) = (−w11d
(i)
ℓ + w12c

(i)
ℓ )a2b2, i = {1, 2}.
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Then by [13, Theorem 4.11]

(b1a1)
−1(K(1) −K(2))(a2b2)

(−1) ∈ Hp×q
∞ . (3.6)

Since K(i) = b1f
r,i
0 b2 (i = 1, 2) one gets from (3.6)

f r,10 − f r,20 ∈ Hp×q
∞ .

Therefore, {b1, b2} ∈ den(f r,20 ). Clearly, the converse implication is also
true.

Remark 3.5. A similar assertion also holds for the class of generalized
left γ-generating matrices. Let A ∈ Mℓ

κ(jpq), bℓ, sℓ, br, sr be defined by
KL-factorization of s12 ∈ Sq×p

κ . Let cℓ, dℓ, cr, dr defined by (1.24) and let

f ℓ0 := a2(−dra11 + cra21) = (−dra12 + cra22)
−1(−dra11 + cra21). (3.7)

Then:

(i) if den(f ℓ0) ̸= ∅ and {b1, b2} ∈ den(f ℓ0) then

W (z) = A(z)

[
b1 0

0 b−1
2

]
∈ U ℓ

κ(jpq) (3.8)

and {b1, b2} ∈ apℓ(W ). Conversely, if

W ∈ U ℓ
κ(jpq) and {b1, b2} ∈ apℓ(W ), (3.9)

then

A(z) =W (z)

[
b−1
1 0

0 b2

]
∈ Πm×m∩Mℓ

κ(jpq) and {b1, b2} ∈ den(f ℓ0).

(ii) if A ∈ Πm×m then denf ℓ0 ̸= ∅ and, moreover, the mvf’s cℓ, dℓ, cr, dr
in (1.24) can be chosen from Π and then f ℓ0 ∈ Π.

(iii) {c(i)ℓ , d
(i)
ℓ , c

(i)
r , d

(i)
r } (i = 1, 2) two sets of mvf’s defined by (1.24)

f ℓ,i0 = a2(−dra11 + cra21), {b1, b2}α2(−d(i)r a11 + c(i)r a21),

{b1, b2} ∈ denf ℓ,i0 , i = {1, 2},

then denf ℓ,10 = denf ℓ,20 .
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Definition 3.6. We define the denominator of generalized right γ-gene-
rating mvf A ∈ Πm×m ∩Mr

κ(jpq) as

denr(A) := denf r0 ,

and the denominator of left generalized γ-generating mvf A ∈ Πm×m ∩
Mℓ

κ(jpq) as
denℓ(A) := denf ℓ0.

Definition 3.7. Let a mvf A ∈ Mr
κ(jpq) is said to be

(1) right singular and is written as A ∈ Mr,S
κ if f r0 = (−a11dℓ +

a12cℓ)a2 ∈ Hp×q
∞ ,

(2) right regular and is written as A ∈ Mr,R
κ if the factorization A =

A1A2, with A1 ∈ Mr
κ1
(jpq) and A2 ∈ Mℓ,S

κ2 (jpq), κ1+κ2 = κ implies
that A2 ≡ const.

Definition 3.8. Let a mvf A ∈ Mℓ
κ(jpq) is said to be

(1) left singular and is written as A ∈ Mℓ,S
κ if f ℓ0 = a2(−dra11+cra21) ∈

Hp×q
∞ ,

(2) left regular and is written as A ∈ Mℓ,R
κ if the factorization A =

A2A1, with A1 ∈ Mℓ
κ1
(jpq) and A2 ∈ MrS

κ2
(jpq), κ1+κ2 = κ implies

that A2 ≡ const.

In the case κ = 0, the left singularity coincides with the right singu-
larity, therefore our definition coincides with the definition in [8].

4. Fatorization of γ-generating matrices

Lemma 4.1. Let A ∈ Mr
κ(jpq) ∩Πm×m. Then:

A ∈ Mr,S
κ (jpq) ⇐⇒ A ∈ Ur,S

κ (jpq).

Proof. Let A ∈ Mr,S
κ (jpq), then f0 = (−a11dℓ + a12cℓ)a2 ∈ Hp×p

∞ , there-
fore {Ip, Iq} ∈ denf r0 . In view of Theorem 3.4 this implies A ∈ Ur

κ(jpq)

and {Ip, Iq} ∈ apr(A). Hence by Theorem 2.1 A ∈ Ur,S
κ (jpq).

Conversely, if A ∈ Ur,S
κ (jpq) and {b1, b2} ∈ apr(A), then bi ≡ const,

i = {1, 2}. Hence by Theorem 3.4 A ∈ Mr
κ(jpq), {b1, b2} ∈ denf r0 , i.e.

f r0 ∈ Hp×q
∞ , and thus A ∈ Mr,S

κ (jpq)

Corollary 4.2. Let A ∈ Mℓ
κ(jpq) ∩Πm×m. Then:

A ∈ Mℓ,S
κ (jpq) ⇐⇒ A ∈ U ℓ,S

κ (jpq).
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Proof. Let A ∈ Mℓ,S
κ (jpq), then Ã ∈ Mr,S

κ (jpq), hence by Lemma 4.1

Ã ∈ Ur,S
κ (jpq), and thus A ∈ U ℓ,S

κ (jpq). Analogously, the assumption

A ∈ U ℓ,S
κ implies A ∈ Mℓ,S

κ .

Lemma 4.3. Let A′,A ∈ Mr
κ(jpq) and A′ =

[
θ−1
1 0

0 θ2

]
A, θ1 ∈ Sp×p

in ,

θ2 ∈ Sq×q
in . Then θ1 ≡ const, θ2 ≡ const.

Proof. Let A′(µ) =

[
a′11(µ) a′12(µ)

a′21(µ) a′22(µ)

]
and let the mvf A(µ) has block

representation (3.1). Then

A′ =

[
θ−1
1 0

0 θ2

]
A =

[
θ−1
1 a11 θ−1

1 a12

θ2a21 θ2a22

]
,

and hence by Definition 3.1

s′21 := −(a′22)
−1a′21 = −a−1

22 θ
−1
2 θ2a21 = −a−1

22 a21 = s21 ∈ Sq×p
κ .

This means that the Krein-Langer factorizations of s21 and s′21 coincide

s′21 = s21 = b−1
ℓ sℓ = srb

−1
r ,

where bℓ ∈ Sq×q
in , br ∈ Sq×q

in , sℓ, sr ∈ Sq×p. Hence

a′1 = (a′11)
−#br = θ#1 (a11)

−#br ∈ Sp×p
out , and a1 = a−#

11 br ∈ Sq×p
out .

This is possible only when θ1 ≡ const. Analogously,

a′2 = bℓ(a
′
22)

−1 = bℓa
−1
22 θ

−1
2 ∈ Sq×q

out and a2 = bℓa
−1
22 ∈ Sq×q

out

consequently θ2 ≡ const.

Lemma 4.4. Let a mvf A ∈ Mr
κ(jpq) ∩Πm×m admits the factorization

A = A(1)A(2), where A(1) ∈ Mr
κ1
(jpq), A(2) ∈ Mℓ,S

κ2
(jpq), (4.1)

with κ1 + κ2 = κ. Then denr(A(1)) ⊂ denr(A).

Proof. Let a mvf A ∈ Mr
κ(jpq) ∩ Πm×m admits the factorization (4.1).

Since A(2) ∈ Mℓ,S
κ2 , then f0 ∈ H∞ and then A(2) ∈ Πm×m. Therefore

A(1) = A(A(2))−1 and thus A(1) ∈ Π. Let {b(1)1 , b
(1)
2 } ∈ denr(A(1)) and

κ1 + κ2 = κ. By Theorem 3.4

W (1) =

[
b
(1)
1 0

0 (b
(1)
2 )−1

]
A(1) ∈ Ur

κ1
(jpq), {b(1)1 , b

(2)
2 } ∈ aprW (1),
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W (2) = A(2) ∈ U ℓ,S
κ2

(jpq).

Let us set

W ′ :=

[
b
(1)
1 0

0 (b
(1)
2 )−1

]
A =

[
b
(1)
1 0

0 (b
(1)
2 )−1

]
A(1)A(2) =W (1)W (2).

Then W ′ ∈ Uκ′ , κ′ ≤ κ1 + κ2 = κ (see [4] or [13]).
On the other hand, s21 = −(w′

22)
−1w′

21 = −a−1
22 a21 ∈ Sp×q

κ , hence
κ′ ≥ κ and therefore κ′ = κ. Then W ′ ∈ Ur

κ(jpq).

Let {b′1, b′2} ∈ apr(W ′), hence, in view of Lemma 2.4 b′1 = b
(1)
1 θ1,

b′2 = θ2b
(1)
2 . By Theorem 3.4

A′ =

[
b′−1
1 0

0 b′2

]
W ′ =

[
b′−1
1 0

0 b′2

]
W (1)W (2)

=

[
b′−1
1 0

0 b′2

][
b
(1)
1 0

0 (b
(2)
2 )−1

]
A(1)A(2) =

[
θ−1
1 0

0 θ2

]
A ∈ Mr

κ(jpq),

Hence, by Lemma 4.3 θ1 ≡ const, θ2 ≡ const. Consequently {b(1)1 , b
(1)
2 } ∈

apr(W ′). Thus by Theorem 3.4 {b(1)1 , b
(1)
2 } ∈ denr(A).

Lemma 4.5. Let a mvf A ∈ Mr
κ(jpq) ∩ L̃p×q

2 ∩ Rm×m. Then A ∈
Mr,R

κ (jpq).

Proof. Let A = A(1)A(2), where A(1) ∈ Mr
κ1
(jpq), A(2) ∈ Mℓ,S

κ2 (jpq),

κ1 + κ2 = κ. Let {b(1)1 , b
(1)
2 } ∈ denr(A(1)), then by Lemma 4.4 the pair

{b(1)1 , b
(2)
2 } ∈ denr(A). By Theorem 3.4

W (1) =

[
b
(1)
1 0

0 (b
(1)
2 )−1

]
A(1) ∈ Ur

κ1
(jpq) W (2) = A(2) ∈ U ℓ,S

κ2
(jpq),

and

W =

[
b
(1)
1 0

0 (b
(1)
2 )−1

]
A =

[
b
(1)
1 0

0 (b
(1)
2 )−1

]
A(1)A(2)

=W (1)W (2) ∈ Uκ(jpq).

Since W ∈ Uκ(jpq) ∩ L̃m×m
2 , then by Theorem 2.7(2) W ∈ Ur,R

κ (jpq).

By this condition A(2) = W (2) ≡ const. This implies A ∈ Mr,R
κ (jpq).
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An analogous statement for the left class Mℓ
κ(jpq) can be easily ob-

tained with the help of the transformation (1.19).

Lemma 4.6. Let a mvf A ∈ Mℓ
κ(jpq) ∩ L̃p×q

2 ∩ Rm×m. Then A ∈
Mℓ,R

κ (jpq).

Theorem 4.7. Let a mvf A ∈ Mr
κ(jpq) ∩Rm×m, {b1, b2} ∈ denr(A), let

W be given by (3.3) and let:

(1) W (z) ∈ U ℓ
κ(jpq),

(2) LW be a nondegenerate subspace of K(W ).

Then the mvf A admits regular–singular factorization

A = A(1)A(2), A(1) ∈ Mr,R
κ1

(jpq), A(2) ∈ Mℓ,S
κ2

(jpq), (4.2)

where κ1 = ind−LW and κ2 = κ− κ1.

Proof. Let condition (1) holds and let {b1, b2} ∈ ap(W ). Then by The-
orem 2.9, W admits the factorization W = W (1)W (2), where W (1) ∈
Ur,R
κ1 (jpq) and W (2) ∈ U ℓ,S

κ2 (jpq), κ = κ1 + κ2. By Theorem 3.4 W ∈
Ur
κ(jpq) and {b1, b2} ∈ apr(W ). By Theorem 2.7 (2) and hence by Lemma

3.12 [15] apr(W ) = apr(W (1)).

Hence, upon applying

[
b−1
1 0

0 b2

]
to the mvfW and by Theorem 3.4

and Lemma 4.1 we obtain

A = A(1)A(2), where A(1) ∈ Mr
κ1
(jpq), A

(2) ∈ Mℓ,S
κ2

(jpq), κ1 + κ2 = κ.

Since W (1) ∈ L̃m×m
2 , then A(1) ∈ L̃m×m

2 , and thus by Lemma 4.5 A(1) ∈
Mr,R

κ (jpq).

Theorem 4.8. Let a mvf A ∈ Mℓ
κ(jpq) ∩ R, {b1, b2} ∈ denℓ(A), let W

be given by (3.8) and let:

(1) W (z) ∈ Ur
κ(jpq),

(2) L
W̃

be a nondegenerate of K(W̃ ), with negative index ind−LW̃
=

κ1.

Then A admits regular–singular factirization

A = A(2)A(1), A(1) ∈ Mℓ,R
κ1

(jpq), A(2) ∈ Mr,S
κ2

(jpq), (4.3)

where κ1 = ind−LW̃
and κ2 = κ− κ1.
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Proof. Let A ∈ Mℓ
κ(jpq), then Ã ∈ Mr

κ(jpq) and the mvf’s W̃ (z) and

Ã(z) satisfy the assumptions of Theorem 4.7. By Theorem 4.7 Ã admits
a factorization

Ã = Ã(1)Ã(2), Ã(1) ∈ Mr,R
κ1

(jpq), Ã(2) ∈ Mℓ,S
κ2

(jpq), (4.4)

where κ1 + κ2 = κ.
Using the transformation (1.19) again, we obtain (4.3).
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