Український математичний вісник Том 14 **(2017)**, № 4, 575 – 594

Factorization of generalized γ -generating matrices

Olena Sukhorukova

(Presented by V. O. Derkach)

Abstract. The class of γ -generating matrices and its subclasses of regular and singular γ -generating matrices were introduced by D. Z. Arov in [8], where it was shown that every γ -generating matrix admits an essentially unique regular-singular factorization. The class of generalized γ -generating matrices was introduced in [14, 20]. In the present paper subclasses of singular and regular generalized γ -generating matrices are introduced and studied. As the main result of the paper a theorem of existence of regular-singular factorization for rational generalized γ generating matrix is found.

Key words and phrases. γ -generating matrices, J-inner matrix valued function, denominator, associated pair, generalized Schur class, reproducing kernel space, Potapov–Ginzburg transform, Kreĭn–Langer factorization.

1. Introduction

The notion of a γ -generating matrix was introduced by D. Z. Arov in [8] in connection with the study of completely indeterminate Nehari problem on the unit circle \mathbb{T} (see [1,2,10]), and for a real line \mathbb{R} (see [10]).

Let $j_{pq} = \begin{bmatrix} I_p & 0\\ 0 & -I_q \end{bmatrix}$. We recall that a mvf (matrix valued function) $\mathfrak{A} = \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix}$, where a_{11} and a_{22} are $p \times p$ and $q \times q$ blocks, respectively,

is called a γ -generating matrix of the class $\mathfrak{M}^{r}(j_{pq})$, if:

(1) \mathfrak{A} is measurable on \mathbb{R} and takes j_{pq} -unitary values for a.e. $\mu \in \mathbb{R}$;

Received 14.10.2017

This work was supported by a Volkswagen Stiftung grant and grant of the Ministry of Education and Science of Ukraine (project 0115U000556).

- (2) $a_{22}(\mu)$ and $a_{11}^*(\mu)$ are boundary values of holomorphic mvf's $a_{22}(\lambda)$ and $a_{11}^{\#}(\lambda)$, such that a_{22}^{-1} and $(a_{11}^{\#})^{-1}$ are outer mvf's from the Schur classes $\mathcal{S}^{p \times p}$ and $\mathcal{S}^{q \times q}$, respectively;
- (3^r) $s_{21} := -a_{22}^{-1}a_{21}$ belongs to the Schur class $\mathcal{S}^{q \times p}$ of holomorphic in \mathbb{C}_+ with values in the set of contractive mvf's, i.e. $I_p s(\lambda)^* s(\lambda) \ge 0$ for every point $\lambda \in \mathbb{C}_+$.

The class $\mathfrak{M}^{\ell}(j_{pq})$ of left γ -generating matrices was introduced in [8] as the set of mvf's $\mathfrak{A}(\mu)$ which satisfies (1), (2) and

$$(3^{\ell}) \ s_{12} := a_{12} a_{22}^{-1} \in \mathcal{S}^{p \times q}$$

As was shown in [1,2], any solution of a completely indeterminate matrix Nehari problem can be represented in the form

$$f(\mu) = T_{\mathfrak{A}}[s] = (a_{11}(\mu)s(\mu) + a_{12}(\mu))(a_{21}(\mu)s(\mu) + a_{22}(\mu))^{-1}, \quad (1.1)$$

where $\mathfrak{A} \in \mathfrak{M}^r(j_{pq})$, and s is a mvf of the Schur class $\mathcal{S}^{p \times q}$.

A mvf $\mathfrak{A} \in \mathfrak{M}^r(j_{pq})$ is said to be right singular γ -generating matrix if $T_{\mathfrak{A}}[S^{p \times q}] \subset S^{p \times q}$. A mvf $\mathfrak{A} \in \mathfrak{M}^r(j_{pq})$ is said to be right regular γ -generating matrix if the factorization $\mathfrak{A} = \mathfrak{A}_1 \mathfrak{A}_2$ with a factor $\mathfrak{A}_1 \in \mathfrak{M}_r(j_{pq})$ and a right singular factor \mathfrak{A}_2 implies that \mathfrak{A}_2 is constant. These two subclasses of $\mathfrak{M}^r(j_{pq})$ will be designated $\mathfrak{M}^{r,S}(j_{pq})$ and $\mathfrak{M}^{r,R}(j_{pq})$, respectively.

Similarly, the classes $\mathfrak{M}^{\ell,S}(j_{pq})$ and $\mathfrak{M}^{\ell,R}(j_{pq})$ were introduced in [8, 10] and in fact the classes $\mathfrak{M}^{r,S}(j_{pq})$ and $\mathfrak{M}^{\ell,S}(j_{pq})$ coincide:

$$\mathfrak{M}^{S}(j_{pq}) := \mathfrak{M}^{r,S}(j_{pq}) = \mathfrak{M}^{\ell,S}(j_{pq}).$$

As was shown in [8] a resolvent matrix \mathfrak{A} which describes solutions of the Nehari problem is a right regular γ -generating matrix.

In [8] it was shown that any γ -generating matrix admits a factorization

$$\mathfrak{A} = \mathfrak{A}_1\mathfrak{A}_2, \quad \text{where} \quad \mathfrak{A}_1 \in \mathfrak{M}^{r,R}(j_{pq}), \, \mathfrak{A}_2 \in \mathfrak{M}^S(j_{pq}).$$

Classes $\mathfrak{M}_{\kappa}^{r}(j_{pq})$ and $\mathfrak{M}_{\kappa}^{\ell}(j_{pq})$ of generalized γ -generating matrices were introduced in [14,20], where also connections between generalized γ generating matrices of the class $\mathfrak{M}_{\kappa}^{r}(j_{pq})$ (resp. $\mathfrak{M}_{\kappa}^{\ell}(j_{pq})$) and generalized j_{pq} -inner mvf's of the class $\mathcal{U}_{\kappa}^{r}(j_{pq})$ (resp. $\mathcal{U}_{\kappa}^{\ell}(j_{pq})$) were established.

Sufficient conditions for regular-singular factorization of generalized j_{pq} -inner mvf were found in [15]. In the present paper the notions of singular and regular right and left generalized γ -generating mvf's are introduced and studied.

Sufficient conditions for existance of regular-singular factorization for right and left generalized γ -generating mvf's are also found.

1.1. The generalized Schur class

Let Ω_+ be equal to either $\mathbb{D} = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$ or $\mathbb{C}_+ = \{\lambda \in \mathbb{C} : -i(\lambda - \overline{\lambda}) > 0\}$. Let us set

$$\rho_{\omega}(\lambda) = \begin{cases} 1 - \lambda \overline{\omega}, & \text{if } \Omega_{+} = \mathbb{D}; \\ -2\pi i (\lambda - \overline{\omega}), & \text{if } \Omega_{+} = \mathbb{C}_{+}. \end{cases}$$

and let $\Omega_{-} := \{ \omega \in \mathbb{C} : \rho_{\omega}(\omega) < 0 \}$. Then $\Omega_{0} := \partial \Omega_{+}$ is either the unit circle \mathbb{T} , if $\Omega_{+} = \mathbb{D}$, or the real line \mathbb{R} , if $\Omega_{+} = \mathbb{C}_{+}$.

Let $\kappa \in \mathbb{Z}_+$. Recall [5], that a Hermitian kernel $\mathsf{K}_{\omega}(\lambda) : \Omega \times \Omega \to \mathbb{C}^{m \times m}$ is said to have κ negative squares, if for every positive integer n and every choice of $\omega_j \in \Omega$ and $u_j \in \mathbb{C}^m$ (j = 1, ..., n) the matrix

$$(u_k^*\mathsf{K}_{\omega_j}(\omega_k)u_j)_{j,k=1}^n$$

has at most κ , and for some choice of $n \in \mathbb{N}$, $\omega_j \in \Omega$ and $u_j \in \mathbb{C}^m$ exactly κ negative eigenvalues.

Denote by \mathfrak{h}_s the domain of holomorphy of the mvf $s(\lambda)$ and let us set $\mathfrak{h}_s^{\pm} := \mathfrak{h}_s \cap \Omega_{\pm}$.

Let $\mathcal{S}_{\kappa}^{q \times p}$ denote the generalized Schur class of $q \times p$ mvf's s that are meromorphic in Ω_{+} and for which the kernel

$$\Lambda_{\omega}^{s}(\lambda) = \frac{I_{p} - s(\lambda)s(\omega)^{*}}{\rho_{\omega}(\lambda)}$$
(1.2)

has κ negative squares on $\mathfrak{h}_s^+ \times \mathfrak{h}_s^+$ (see [17]). In the case where $\kappa = 0$ the class $\mathcal{S}_0^{q \times p}$ coincides with the Schur class $\mathcal{S}^{q \times p}$. A myf $s \in \mathcal{S}^{q \times p}$ is said to be inner $(s \in \mathcal{S}_{in}^{q \times p})$, if $I_p - s(\mu)^* s(\mu) = 0$ for a.e. point $\mu \in \Omega_0$. Myf $s \in \mathcal{S}^{q \times p}$ is said to be outer $(s \in \mathcal{S}_{out}^{q \times p})$, if $\overline{sH_2^p} = H_2^q$. As was shown in [17] every myf $s \in \mathcal{S}_{\kappa}^{q \times p}$ admits a factorization of

As was shown in [17] every mvf $s \in \mathcal{S}_{\kappa}^{q \times p}$ admits a factorization of the form

$$s(\lambda) = b_{\ell}(\lambda)^{-1} s_{\ell}(\lambda), \quad \lambda \in \mathfrak{h}_s^+, \tag{1.3}$$

where $b_{\ell} \in S_{in}^{q \times q}$ is a $q \times q$ BP (Blaschke–Potapov) product of degree κ (see. [10]), $s_{\ell} \in S^{q \times q}$ and

$$\operatorname{rank} \left[\begin{array}{cc} b_{\ell}(\lambda) & s_{\ell}(\lambda) \end{array} \right] = q \quad (\lambda \in \Omega_{+}).$$
(1.4)

The representation (1.3) is called a *left KL (Krein–Langer) factorization*. Similarly, every generalized Schur function $s \in S_{\kappa}^{q \times p}$ admits a *right KL-factorization*

$$s(\lambda) = s_r(\lambda)b_r(\lambda)^{-1}$$
 for $\lambda \in \mathfrak{h}_s^+$, (1.5)

where $b_r \in \mathcal{S}^{p \times p}$ is a BP-product of degree $\kappa, s_r \in \mathcal{S}^{q \times p}$ and

$$\operatorname{rank} \left[\begin{array}{cc} b_r(\lambda)^* & s_r(\lambda)^* \end{array} \right] = p \quad (\lambda \in \Omega_+).$$
(1.6)

Recall the notations (see [10]): $\mathcal{R}^{p \times q}$ – the class of rational $p \times q$ mvf's,

$$\mathcal{N}^{p\times q}_{\pm} = \{ f = h^{-1}g : g \in H^{p\times q}_{\infty}(\Omega_{\pm}), h \in \mathcal{S}^{1\times 1}_{out}(\Omega_{\pm}) \};$$
$$\mathcal{N}^{p\times q}_{out} = \{ f = h^{-1}g : g \in \mathcal{S}^{p\times q}_{out}, h \in \mathcal{S}^{1\times 1}_{out} \}.$$

The limit values $f(\mu)$ of mvf $f(\lambda) \in \mathcal{N}^{p \times q}(\mathbb{C}_+)$ $(\mathcal{N}^{p \times q}(\mathbb{D}))$ are defined a.e. on \mathbb{R} (\mathbb{T})

$$f(\mu) = \lim_{\nu \downarrow 0} f(\mu + i\nu) \quad (f(\mu) = \lim_{r \uparrow 1} f(r\mu)).$$
(1.7)

Similarly, the limit values of $f \in \mathcal{N}^{p \times q}(\Omega_{-})$ are defined a.e. on Ω_0 .

Definition 1.1. A $p \times q$ multiply f_{-} in Ω_{-} is said to be a pseudocontinuation of a multiply $f \in \mathcal{N}^{p \times q}$, if

(1)
$$f_{-}^{\#} \in \mathcal{N}^{p \times q};$$

(2)
$$f_{-}(\mu) = f(\mu)$$
 a.e. on Ω_0 .

The subclass of all mvf's $f \in \mathcal{N}^{p \times q}$ that admit pseudocontinuations f_{-} into Ω_{-} will be denoted $\Pi^{p \times q}$. Sometimes the superindex $p \times q$ is dropped and we denote this class by Π if it does not lead to confusion.

1.2. Generalized j_{pq} -inner mvf's

Definition 1.2. [4,13] An $m \times m$ mvf $W(\lambda)$ that is meromorphic in Ω_+ is said to belong to the class $\mathcal{U}_{\kappa}(j_{pq})$ of generalized j_{pq} -inner mvf's, if:

(i) the kernel

$$\mathsf{K}^{W}_{\omega}(\lambda) = \frac{j_{pq} - W(\lambda)j_{pq}W(\omega)^{*}}{\rho_{\omega}(\lambda)}$$
(1.8)

has κ negative squares in $\mathfrak{h}_W^+ \times \mathfrak{h}_W^+$, where \mathfrak{h}_W^+ denotes the domain of holomorphy of W in Ω_+ and

(ii) $j_{pq} - W(\mu)j_{pq}W(\mu)^* = 0$ a.e. on the boundary Ω_0 of Ω_+ .

Let us recall some facts concerning the PG (Potapov–Ginzburg) transform of generalized j_{pq} -inner mvf's. As is known [4, Theorem 6.8], for every $W \in \mathcal{U}_{\kappa}(j_{pq})$ the matrix $w_{22}(\lambda)$ is invertible for all $\lambda \in \mathfrak{h}_{W}^{+}$ except for at most κ point in Ω_{+} . The PG-transform S = PG(W) of W (see [3])

$$S(\lambda) := \begin{bmatrix} w_{11}(\lambda) & w_{12}(\lambda) \\ 0 & I_q \end{bmatrix} \begin{bmatrix} I_p & 0 \\ w_{21}(\lambda) & w_{22}(\lambda) \end{bmatrix}^{-1}$$
(1.9)

is well defined for those $\lambda \in \mathfrak{h}_W^+$, for which $w_{22}(\lambda)$ is invertible, $S(\lambda)$ belongs to the class $\mathcal{S}_{\kappa}^{m \times m}$ and $S(\mu)$ is unitary for a.e. $\mu \in \Omega_0$ (see [4,13]).

The formula (1.9) can be rewritten as

$$S = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} = \begin{bmatrix} w_{11} - w_{12}w_{22}^{-1}w_{21} & w_{12}w_{22}^{-1} \\ -w_{22}^{-1}w_{21} & w_{22}^{-1} \end{bmatrix}.$$
 (1.10)

Since the mvf $S(\lambda)$ has unitary nontangential boundary limits a.e. on Ω_0 , the pseudocontinuation of S to Ω_- can be defined by the formula $S(\lambda) = (S^{\#}(\lambda))^{-1}$, where the reflection function $S^{\#}(\lambda)$ is defined by

$$S^{\#}(\lambda) = S(\lambda^{\circ})^{*}, \quad \lambda^{\circ} = \begin{cases} 1/\overline{\lambda} & : \text{ if } \Omega_{+} = \mathbb{D}, \, \lambda \neq 0; \\ \overline{\lambda} & : \text{ if } \Omega_{+} = \mathbb{C}_{+}. \end{cases}$$
(1.11)

1.3. The class $\mathcal{U}_{\kappa}^{r}(j_{pq})$

Definition 1.3. [13] An $m \times m$ mvf $W(\lambda) \in \mathcal{U}_{\kappa}(j_{pq})$ is said to be in the class $\mathcal{U}_{\kappa}^{r}(j_{pq})$, if

$$s_{21} := -w_{22}^{-1} w_{21} \in \mathcal{S}_{\kappa}^{q \times p}.$$
(1.12)

Theorem 1.4. [13] Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ and let the BP-factors b_{ℓ} and b_{r} be defined by the KL-factorizations of s_{21} :

$$s_{21}(\lambda) := b_{\ell}(\lambda)^{-1} s_{\ell}(\lambda) = s_r(\lambda) b_r(\lambda)^{-1}, \quad \lambda \in \mathfrak{h}_{s_{21}}^+, \tag{1.13}$$

where $b_{\ell} \in S_{in}^{q \times q}$, $b_r \in S_{in}^{p \times p}$, $s_{\ell}, s_r \in S^{q \times p}$. Then the mvf's $b_{\ell}s_{22}$ and $s_{11}b_r$ are holomorphic in Ω_+ , and hence they admit the following innerouter and outer-inner factorizations

$$s_{11}b_r = b_1a_1, \qquad b_\ell s_{22} = a_2b_2, \tag{1.14}$$

where $b_1 \in \mathcal{S}_{in}^{p \times p}$, $b_2 \in \mathcal{S}_{in}^{q \times q}$, $a_1 \in \mathcal{S}_{out}^{p \times p}$, $a_2 \in \mathcal{S}_{out}^{q \times q}$.

The pair $\{b_1, b_2\}$ is called the *right associated pair* of the mvf $W \in \mathcal{U}_{\kappa}^r(j_{pq})$ and is written as $\{b_1, b_2\} \in \operatorname{ap}^r(W)$. In the case $\kappa = 0$ this notion was introduced in [6].

Proposition 1.5. [13,16] If $s \in S^{q \times p}$, then there exists a set of mvf's $c_{\ell} \in H_{\infty}^{q \times q}$, $d_{\ell} \in H_{\infty}^{p \times q}$, $c_{r} \in H_{\infty}^{p \times p}$ and $d_{r} \in H_{\infty}^{p \times q}$, such that

$$\begin{bmatrix} c_r & d_r \\ -s_\ell & b_\ell \end{bmatrix} \begin{bmatrix} b_r & -d_\ell \\ s_r & c_\ell \end{bmatrix} = \begin{bmatrix} I_p & 0 \\ 0 & I_q \end{bmatrix}.$$
 (1.15)

If, in addition, $s \in \Pi$, then $c_{\ell}, d_{\ell}, c_r, d_r$ can be chosen from Π .

Proof. The first statement was proved in [13, Theorem 4.9] (the rational case was treated in [16]).

Assume now that $s \in \Pi$ and hence also $s_{\ell} \in \Pi$. Let d_{ℓ} be a rational mvf's such that

$$b_{\ell}^{-1}(I_q - s_{\ell}d_{\ell}) \in H^{q \times q}_{\infty}.$$

Such a mvf can be chosen via matrix Lagrange–Silvester interpolation. Then by setting

$$c_\ell := b_\ell^{-1} (I_p - s_\ell d_\ell)$$

one obtains $c_{\ell} \in H^{q \times q}_{\infty} \cap \Pi^{q \times q}$, since $b_{\ell}, s_{\ell}, d_{\ell} \in \Pi$.

The inclusions $c_r, d_r \in \Pi$ are implied by (1.15).

By [13, Theorem 4.11] for every $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ and c_{ℓ} and d_{ℓ} as in (1.15) the mvf

$$K = (-w_{11}d_{\ell} + w_{12}c_{\ell})(-w_{21}d_{\ell} + w_{22}c_{\ell})^{-1}, \qquad (1.16)$$

belongs to $H^{p \times q}_{\infty}$ and admits the representations

$$K = (-w_{11}d_{\ell} + w_{12}c_{\ell})a_2b_2, \qquad (1.17)$$

where $\{b_1, b_2\} \in ap^r(W)$ and $a_2 \in \mathcal{S}_{out}^{q \times q}$ is determined by (1.14).

1.4. The class $\mathcal{U}^{\ell}_{\kappa}(j_{pq})$

The following definitions and statements concerning the dual class $\mathcal{U}_{\kappa}^{\ell}(j_{pq})$ are taken from [19].

Definition 1.6. An $m \times m$ mvf $W \in \mathcal{U}_{\kappa}(j_{pq})$ is said to be in the class $\mathcal{U}_{\kappa}^{\ell}(j_{pq})$, if

$$s_{12} := w_{12} w_{22}^{-1} \in \mathcal{S}_{\kappa}^{p \times q}.$$
(1.18)

If $W \in \mathcal{U}_{\kappa}(j_{pq})$ and the mvf \widetilde{W} is defined by

$$\widetilde{W}(\lambda) = \begin{cases} W(\overline{\lambda})^*, & \text{if } \Omega_+ = \mathbb{D}, \\ W(-\overline{\lambda})^* & \text{if } \Omega_+ = \mathbb{C}_+. \end{cases}$$
(1.19)

then, as was shown in [19], the following equivalence holds:

$$W \in \mathcal{U}_{\kappa}^{\ell}(j_{pq}) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{r}(j_{pq})$$
(1.20)

and as a corollary of Theorem 1.4 one can get the following statement.

Theorem 1.7. Let $W \in \mathcal{U}_{\kappa}^{\ell}(j_{pq})$ and let the BP-factors \mathfrak{b}_{ℓ} and \mathfrak{b}_r be defined by the KL-factorizations of s_{12} :

$$s_{12}(\lambda) = \mathfrak{b}_{\ell}(\lambda)^{-1}\mathfrak{s}_{\ell}(\lambda) = \mathfrak{s}_{r}(\lambda)\mathfrak{b}_{r}(\lambda)^{-1}, \quad (\lambda \in \mathfrak{h}_{s_{12}}^{+}),$$
(1.21)

where $\mathfrak{b}_{\ell} \in \mathcal{S}_{in}^{p \times p}$, $\mathfrak{b}_r \in \mathcal{S}_{in}^{q \times q}$, $\mathfrak{s}_{\ell}, \mathfrak{s}_r \in \mathcal{S}^{p \times q}$. Then

$$s_{22}\mathfrak{b}_r \in \mathcal{S}^{q \times q} \quad \text{and} \quad \mathfrak{b}_\ell s_{11} \in \mathcal{S}^{p \times p}.$$
 (1.22)

Definition 1.8. Consider inner-outer and outer-inner factorizations of $\mathfrak{b}_{\ell}s_{11}$ and $s_{22}\mathfrak{b}_r$

$$\mathfrak{b}_{\ell}s_{11} = \mathfrak{a}_1\mathfrak{b}_1, \qquad s_{22}\mathfrak{b}_r = \mathfrak{b}_2\mathfrak{a}_2, \tag{1.23}$$

where $\mathfrak{b}_1 \in \mathcal{S}_{in}^{p \times p}$, $\mathfrak{b}_2 \in \mathcal{S}_{in}^{q \times q}$, $\mathfrak{a}_1 \in \mathcal{S}_{out}^{p \times p}$, $\mathfrak{a}_2 \in \mathcal{S}_{out}^{q \times q}$. The pair $\mathfrak{b}_1, \mathfrak{b}_2$ of inner factors in the factorizations (1.23) is called the left associated pair of the mvf $W \in \mathcal{U}_{\kappa}^{\ell}(j_{pq})$ and is written as $\{\mathfrak{b}_1, \mathfrak{b}_2\} \in ap^{\ell}(W)$, for short.

Remark 1.9. As was shown in [19] (3.25) if $\{\mathfrak{b}_1, \mathfrak{b}_2\} \in ap^{\ell}(W)$, then $\widetilde{s}_{11}\widetilde{\mathfrak{b}}_{\ell} = \widetilde{\mathfrak{b}}_1\widetilde{\mathfrak{a}}_1, \quad \widetilde{\mathfrak{b}}_r\widetilde{s}_{22} = \widetilde{\mathfrak{a}}_2\widetilde{\mathfrak{b}}_2$, and, therefore, $\{\widetilde{\mathfrak{b}}_1, \widetilde{\mathfrak{b}}_2\} \in ap^r(\widetilde{W})$.

As was shown in [19], there exists a set of mvf's $\mathfrak{c}_{\ell} \in H^{p \times p}_{\infty}$, $\mathfrak{d}_{\ell} \in H^{q \times p}_{\infty}$, $\mathfrak{c}_{r} \in H^{q \times q}_{\infty}$ and $\mathfrak{d}_{r} \in H^{q \times p}_{\infty}$, such that

$$\begin{bmatrix} \mathbf{c}_{\ell} & \mathbf{s}_{r} \\ \mathbf{\partial}_{\ell} & \mathbf{b}_{r} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{\ell} & -\mathbf{s}_{\ell} \\ -\mathbf{\partial}_{r} & \mathbf{c}_{r} \end{bmatrix} = \begin{bmatrix} I_{p} & 0 \\ 0 & I_{q} \end{bmatrix}.$$
 (1.24)

1.5. Reproducing kernel Pontryagin spaces

In this subsection we review some facts and notation from [11–13] on the theory of indefinite inner product spaces for the convenience of the reader. A linear space \mathcal{K} equipped with a sesquilinear form $\langle \cdot, \cdot \rangle_{\mathcal{K}}$ on $\mathcal{K} \times \mathcal{K}$ is called an indefinite inner product space. A subspace \mathcal{F} of \mathcal{K} is called positive (resp. negative) if $\langle f, f \rangle_{\mathcal{K}} > 0$, (resp. < 0) for all $f \in \mathcal{F}$, $f \neq 0$.

An indefinite inner product space $(\mathcal{K}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ is called a Pontryagin space, if it can be decomposed as the orthogonal sum

$$\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_- \tag{1.25}$$

of a positive subspace \mathcal{K}_+ which is a Hilbert space with respect to the inner product $\langle \cdot, \cdot \rangle_{\mathcal{K}}$ and a negative subspace \mathcal{K}_- of finite dimension. The number $\operatorname{ind}_-\mathcal{K} := \dim \mathcal{K}_-$ is referred to as the negative index of \mathcal{K} .

The isotropic part of $\mathcal{L} \subset \mathcal{K}$ is defined by $\mathcal{L}_0 := \{x \in \mathcal{L} : \langle x, y \rangle_{\mathcal{L}} = 0, y \in \mathcal{L}\}$. The subspace \mathcal{L} is called nondegenerate iff $\mathcal{L}_0 = \{0\}$.

A Pontryagin space $(\mathcal{K}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ of \mathbb{C}^m -valued functions defined on a subset Ω of \mathbb{C} is called a *RKPS (reproducing kernel Pontryagin space)*, if there exists a Hermitian kernel $\mathsf{K}_{\omega}(\lambda) : \Omega \times \Omega \to \mathbb{C}^{m \times m}$, such that:

- (1) for every $\omega \in \Omega$ and every $u \in \mathbb{C}^m$ the vvf $\mathsf{K}_{\omega}(\lambda)u$ belongs to \mathcal{K} ;
- (2) for every $f \in \mathcal{K}$, $\omega \in \Omega$ and $u \in \mathbb{C}^m$ the following identity holds

$$\langle f, \mathsf{K}_{\omega} u \rangle_{\mathcal{K}} = u^* f(\omega).$$
 (1.26)

It is known (see [18]) that for every Hermitian kernel $\mathsf{K}_{\omega}(\lambda) : \Omega \times \Omega \to \mathbb{C}^{m \times m}$ with a finite number κ of negative squares on $\Omega \times \Omega$ there is a unique Pontryagin space \mathcal{K} with reproducing kernel $\mathsf{K}_{\omega}(\lambda)$, and that $\operatorname{ind}_{-\mathcal{K}} = \operatorname{sq}_{-\mathsf{K}} = \kappa$. In the case $\kappa = 0$ this fact is due to Aronszajn [5].

For $W \in \mathcal{U}_{\kappa}(j_{pq})$ we denote by $\mathcal{K}(W)$ the RKPS associated with the kernel $\mathsf{K}_{\omega}^{W}(\lambda)$ defined by (1.8).

2. A-regular–A-singular factorization of generalized J-inner mvf's

A mvf $W \in \mathcal{U}_{\kappa}(j_{pq})$ is called *A*-singular, if it is an outer mvf (see [6, 19]). The set of *A*-singular mvf's in $\mathcal{U}_{\kappa}(j_{pq})$ is denoted by $\mathcal{U}_{\kappa}^{S}(j_{pq})$.

We will be also using the following subclasses of the class $\mathcal{U}^{S}_{\kappa}(j_{pq})$:

$$\mathcal{U}_{\kappa}^{r,S}(j_{pq}) := \mathcal{U}_{\kappa}^{r}(j_{pq}) \cap \mathcal{N}_{out}^{m \times m}, \quad \mathcal{U}_{\kappa}^{\ell,S}(j_{pq}) := \mathcal{U}_{\kappa}^{\ell}(j_{pq}) \cap \mathcal{N}_{out}^{m \times m}.$$

In the case $\kappa = 0$ the class $\mathcal{U}^{S}(j_{pq}) := \mathcal{U}_{0}^{S}(j_{pq})$ was introduced and characterized in terms of associated pairs by D. Arov in [9]. For $\kappa \neq 0$ a definition of A-singular generalized j_{pq} -inner mvf and its characterization in terms of associated pairs was given in [19].

Theorem 2.1. [19] Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ and let $\{b_1, b_2\} \in ap^{r}(W)$. Then:

$$W \in \mathcal{U}_{\kappa}^{r,S}(j_{pq}) \iff b_1 \equiv \text{const}, \quad b_2 \equiv \text{const}.$$

Theorem 2.2. [19] Let $W \in \mathcal{U}^{\ell}_{\kappa}(j_{pq})$ and let $\{\mathfrak{b}_1, \mathfrak{b}_2\} \in ap^{\ell}(W)$. Then:

$$W \in \mathcal{U}_{\kappa}^{\ell,S}(j_{pq}) \iff \mathfrak{b}_1 \equiv \text{const}, \quad \mathfrak{b}_2 \equiv \text{const}.$$

Lemma 2.3. Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ and let $\{b_1, b_2\} \in ap^{r}(W)$. Then:

$$W \in \mathcal{U}_{\kappa}^{r,S}(j_{pq}) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{\ell,S}(j_{pq}).$$

Proof. Let $W \in \mathcal{U}_{\kappa}^{r,S}(j_{pq})$. Then by Theorem 2.1,

 $b_1 \equiv \text{const}, \quad b_2 \equiv \text{const}.$

Due to Remark 1.9 one obtains $\tilde{b}_1 \equiv \text{const}$, $\tilde{b}_2 \equiv \text{const}$ and hence $\widetilde{W} \in \mathcal{U}_{\kappa}^{\ell,S}(j_{pq})$ by Theorem 2.2. The proof of the converse is similar. \Box

Lemma 2.4. [15] Let a mult $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ admits a factorization

$$W = W^{(1)}W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_1}(j_{pq}), \quad W^{(2)} \in \mathcal{U}_{\kappa_2}(j_{pq}),$$
(2.1)

where $\kappa_1 + \kappa_2 = \kappa$. Then:

- (i) $W^{(1)} \in \mathcal{U}^r_{\kappa_1}(j_{pq});$
- (*ii*) For $\{b_1, b_2\} \in \operatorname{ap}^r(W)$ and $\{b_1^{(1)}, b_2^{(1)}\} \in \operatorname{ap}^r(W^{(1)})$ one has $\theta_1 := (b_1^{(1)})^{-1} b_1 \in S_{in}^{p \times p}, \quad \theta_2 := b_2 (b_2^{(1)})^{-1} \in S_{in}^{q \times q}.$ (2.2)

Definition 2.5. [15] A mult $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ is called right A-regular, if for any factorization

$$W = W^{(1)}W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_1}^r(j_{pq}), \quad W^{(2)} \in \mathcal{U}_{\kappa_2}^\ell(j_{pq}),$$
(2.3)

with $\kappa_1 + \kappa_2 = \kappa$ the assumption $W^{(2)} \in \mathcal{U}_{\kappa_2}^{\ell,S}(j_{pq})$ implies $W^{(2)}(\lambda) \equiv \text{const.}$

Similarly, a mult $W \in \mathcal{U}_{\kappa}^{\ell}(j_{pq})$ is called left A-regular, if for any factorization (2.3) with $\kappa_1 + \kappa_2 = \kappa$ the assumption $W^{(1)} \in \mathcal{U}_{\kappa_1}^S(j_{pq})$ implies $W^{(1)}(\lambda) \equiv \text{const.}$

In the case $\kappa = 0$ Definition 2.5 is simplified since $\mathcal{U}_0^r(j_{pq}) = \mathcal{U}_0^\ell(j_{pq}) = \mathcal{U}(j_{pq})$ (see [7]).

In the next lemma we present one necessary and one sufficient condition for a mvf $W(\lambda) \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ to be regular. Let us set

$$\mathcal{L}_W := \mathcal{K}(W) \cap L_2^m. \tag{2.4}$$

Lemma 2.6. [15] Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$, let $\mathcal{K}(W)$ be the RKPS with the kernel $\mathsf{K}_{\omega}^{W}(\lambda)$, defined by (1.8), let $\operatorname{ind}_{-}\mathcal{L}_{W} = \kappa$ and let $\kappa_{1} = \operatorname{ind}_{-}(\mathcal{L}_{W})$, $\kappa_{2} = \kappa - \kappa_{1}$. Assume that:

(A1) $\mathfrak{h}_W \cap \Omega_0 \neq \emptyset$;

(A2) The closure $\overline{\mathcal{L}_W}$ of \mathcal{L}_W is nondegenerate in $\mathcal{K}(W)$.

Then the following implications hold:

(1) $W \in \mathcal{U}_{\kappa}^{r,R}(j_{pq}) \Longrightarrow \overline{\mathcal{L}_W} = \mathcal{K}(W);$

(2) $\mathcal{K}(\widetilde{W}) \subset L_2^{m \times m} \Longrightarrow W \in \mathcal{U}_{\kappa}^{r,R}(j_{pq}).$

Denote by $\mathcal{R}^{m \times m}$ the set of rational $m \times m$ -mvf's. The following criterion for a rational mvf $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ to be right A-regular is given in [15]. We will present here a simpler proof of this result.

Theorem 2.7. Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ be a rational mvf. Then

(1)
$$W \in \mathcal{U}_{\kappa}^{r,R}(j_{pq}) \iff \mathcal{L}_W = \mathcal{K}(W).$$

(2) $W \in \mathcal{U}_{\kappa}^{r,R}(j_{pq}) \Longleftrightarrow W \in \widetilde{L}_{2}^{m \times m}$.

Proof. Let $W \in \mathcal{U}_{\kappa}^{r,R}(j_{pq}) \cap \mathcal{R}^{m \times m}$. Then by Lemma 2.6 $\overline{\mathcal{L}_W} = \mathcal{K}(W)$, and since W is rational, $\mathcal{L}_W = \overline{\mathcal{L}_W} = \mathcal{K}(W)$. Therefore, $\mathcal{K}(W) \subset L_2^{m \times m}$. Hence $W \in \widetilde{L}_2^{m \times m}$. The converse is immediate from Lemma 3.19(3) in [15].

Lemma 2.8. Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$. Then:

$$W \in \mathcal{U}_{\kappa}^{r,R}(j_{pq}) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{\ell,R}(j_{pq}).$$

Proof. Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ and assume that $\widetilde{W} = \widetilde{W}^{(1)}\widetilde{W}^{(2)}$, where $\widetilde{W}^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r,S}(j_{pq}), \ \widetilde{W}^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}(j_{pq})$. Then

$$W = W^{(2)}W^{(1)}, \text{ where } W^{(1)} \in \mathcal{U}_{\kappa_1}^{\ell,S}(j_{pq}), W^{(2)} \in \mathcal{U}_{\kappa_2}^r(j_{pq}).$$

By the regularity of W, $W^{(1)} \equiv const$. Hence $\widetilde{W}^{(1)} \equiv const$ and thus $\widetilde{W} \in \mathcal{U}_{\kappa}^{\ell,R}(j_{pq})$. The converse implication is obtained similarly. \Box

The following theorem was proved in [15].

Theorem 2.9. Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq}) \cap \mathcal{U}_{\kappa}^{\ell}(j_{pq}) \cap \mathcal{R}^{m \times m}$. Then the following statements are equivalent:

(1) W admits the factorization

 $W = W^{(1)}W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_1}^{r,R}(j_{pq}), \quad W^{(2)} \in \mathcal{U}_{\kappa_2}^{\ell,S}(j_{pq})$ (2.5)

with $\kappa = \kappa_1 + \kappa_2$;

(2) \mathcal{L}_W is a nondegenerate subspace of $\mathcal{K}(W)$, $ind_-\mathcal{L}_W = \kappa_1$.

Moreover, if (2) is the case then the factors $W^{(1)}$ and $W^{(2)}$ in (2.5) are uniquely determined up to j_{pq} -unitary factors.

In the classical case ($\kappa = 0$) this result coincides with the factorization Theorem in [10].

Let us present now an analog of Theorem 2.9 for A-singular-A-regular factorizations.

Corollary 2.10. Let $W \in \mathcal{U}_{\kappa}^{r}(j_{pq}) \cap \mathcal{U}_{\kappa}^{\ell}(j_{pq}) \cap \mathcal{R}^{m \times m}$. Then the following statements are equivalent:

(1) W admits the factorization

$$W = W^{(2)}W^{(1)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_1}^{\ell,R}(j_{pq}), \quad W^{(2)} \in \mathcal{U}_{\kappa_2}^{r,S}(j_{pq})$$
(2.6)

with $\kappa = \kappa_1 + \kappa_2$;

(2) $\mathcal{L}_{\widetilde{W}}$ is a nondegenerate subspace of $\mathcal{K}(\widetilde{W})$, $ind_{-}\mathcal{L}_{\widetilde{W}} = \kappa_1$.

Moreover, if (2) is the case then the factors $W^{(1)}$ and $W^{(2)}$ in (2.5) are uniquely determined up to j_{pq} -unitary factors.

Proof. Assume that (2) holds and consider the mvf $\widetilde{W} \in \mathcal{U}_{\kappa}^{r}(j_{pq}) \cap \mathcal{U}_{\kappa}^{\ell}(j_{pq}) \cap \mathcal{R}^{m \times m}$ see (1.20). By Theorem 2.9

$$\widetilde{W} = \widetilde{W}^{(1)}\widetilde{W}^{(2)}, \quad \text{where} \quad \widetilde{W}^{(1)} \in \mathcal{U}_{\kappa_1}^{r,R}(j_{pq}), \ \widetilde{W}^{(2)} \in \mathcal{U}_{\kappa_2}^{\ell,S}(j_{pq}), \quad (2.7)$$

with $\kappa_1 + \kappa_2 = \kappa$. Hence by Lemma 2.3 and 2.8 W admits the factorization (2.6). Conversely, let (1) holds. Then by (1.20), Lemma 2.3 and 2.8 the mvf \widetilde{W} admits the factorization (2.7) and hence by Theorem 2.9 the statement (2) holds.

The following example illustrates importance of the condition (2) of Theorem 2.9.

Example 2.11. Let

$$W_1(\lambda) = \frac{1}{2\lambda - 2} \begin{bmatrix} \lambda^2 - 3\lambda + 1 & \lambda^2 - \lambda + 1 \\ \lambda^2 - \lambda + 1 & \lambda^2 - 3\lambda + 1 \end{bmatrix}$$

As was shown in [15], this mvf W_1 belongs to $\mathcal{U}_1^r(j_{11}) \cap \mathcal{U}_1^\ell(j_{11})$ and it does not admit the A-regular –A-singular factorization.

The RKPS $\mathcal{K}(W_1)$ and the subspace \mathcal{L}_{W_1} take the form

$$\mathcal{K}(W_1) = \operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \frac{1}{\lambda - 1} \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}, \quad \mathcal{L}_{W_1} = \operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}.$$

and \mathcal{L}_{W_1} is a degenerate subspace of $\mathcal{K}(W_1)$ see [15]. Therefore, condition (2) of Theorem 2.9 does not holds. By Corollary 2.10 W_1 does not admit an A-singular–A-regular factorization.

3. Generalized γ -generating matrices

Definition 3.1. Let $\mathfrak{M}^r_{\kappa}(j_{pq})$ denote the class of $m \times m$ mvf's

$$\mathfrak{A}(\mu) = \begin{bmatrix} a_{11}(\mu) & a_{12}(\mu) \\ a_{21}(\mu) & a_{22}(\mu) \end{bmatrix}, \qquad (3.1)$$

with blocks a_{11} of size $p \times p$ and a_{22} of size $q \times q$ such that:

- (1) $\mathfrak{A}(\mu)$ is a measurable on Ω_0 multiply that is j_{pq} -unitary a.e. on Ω_0 ;
- (2) $s_{21} = -a_{22}^{-1}a_{21} \in \mathcal{S}_{\kappa}^{q \times p};$
- (3) $(a_{11}^{\#})^{-1}b_r = a_1 \in \mathcal{S}_{out}^{p \times p}, \ b_\ell a_{22}^{-1} = a_2 \in \mathcal{S}_{out}^{q \times q}, \ where \ b_\ell, \ b_r \ are \ BP-products \ of \ degree \ \kappa \ which \ are \ determined \ by \ KL-factorizations \ of \ s_{21}.$

The multiply in the class $\mathfrak{M}_{\kappa}^{r}(j_{pq})$ are called generalized right γ -generating matrices.

Definition 3.2. Let $\mathfrak{M}^{\ell}_{\kappa}(j_{pq})$ denote the class of $m \times m$ mvf's $\mathfrak{A}(\mu)$ of the form (3.1), such that:

(1) $\mathfrak{A}(\mu)$ is a measurable on Ω_0 must that is j_{pq} -unitary a.e. on Ω_0 ;

(2)
$$s_{12} = a_{12}a_{22}^{-1} \in \mathcal{S}_{\kappa}^{p \times q}$$
,

(3) $\mathfrak{b}_{\ell}(a_{11}^{\#})^{-1} = \mathfrak{a}_1 \in \mathcal{S}_{out}^{p \times p}$, $a_{22}^{-1}\mathfrak{b}_r = \mathfrak{a}_2 \in \mathcal{S}_{out}^{q \times q}$, where \mathfrak{b}_{ℓ} , \mathfrak{b}_r are BP-product of degree κ which are determined by KL-factorizations of s_{12} .

The mvf's in the class $\mathfrak{M}^{\ell}_{\kappa}(j_{pq})$ are called generalized left γ -generating matrices.

Definition 3.3. An ordered pair $\{b_1, b_2\}$ of inner mvf's $b_1 \in \mathcal{N}^{p \times p}$, $b_2 \in \mathcal{N}^{q \times q}$ is called a denominator of the mvf $f \in \mathcal{N}^{p \times q}$, if $b_1 f b_2 \in \mathcal{N}^{p \times q}_+$. The set of denominators of f will be denoted by den(f).

Theorem 3.4. Let $\mathfrak{A} \in \mathfrak{M}^r_{\kappa}(j_{pq})$, let $b_{\ell}, s_{\ell}, b_r, s_r$ be defined by KL-factorization of $s_{21} \in \mathcal{S}_{\kappa}^{q \times p}$. Let $c_{\ell}, d_{\ell}, c_r, d_r$ be defined by (1.15) and let

$$f_0^r := (-a_{11}d_\ell + a_{12}c_\ell)(-a_{21}d_\ell + a_{22}c_\ell)^{-1} = (-a_{11}d_\ell + a_{12}c_\ell)a_2.$$
(3.2)

Then:

(i) if $den(f_0^r) \neq \emptyset$ and $\{b_1, b_2\} \in den(f_0^r)$ then

$$W(z) = \begin{bmatrix} b_1 & 0\\ 0 & b_2^{-1} \end{bmatrix} \mathfrak{A}(z) \in \mathcal{U}_{\kappa}^r(j_{pq}), \quad \{b_1, b_2\} \in ap^r(W)$$
(3.3)

and hence $\mathfrak{A} \in \Pi^{m \times m}$. Conversely, if

$$W \in \mathcal{U}_{\kappa}^{r}(j_{pq}) \quad and \quad \{b_1, b_2\} \in ap^{r}(W).$$
(3.4)

then

$$\mathfrak{A}(z) = \begin{bmatrix} b_1^{-1} & 0\\ 0 & b_2 \end{bmatrix} W(z) \in \Pi^{m \times m} \cap \mathfrak{M}^r_{\kappa}(j_{pq}) \text{ and } \{b_1, b_2\} \in den(f_0^r).$$

- (ii) if $\mathfrak{A} \in \Pi^{m \times m}$ then $den(f_0^r) \neq \emptyset$ and, moreover, for some choice of mvf's $c_{\ell}, d_{\ell}, c_r, d_r$ in (1.15) one gets $f_0^r \in \Pi$.
- (iii) if $\{c_{\ell}^{(i)}, d_{\ell}^{(i)}, c_{r}^{(i)}, d_{r}^{(i)}\}$ (i = 1, 2) are two sets of mvf's satisfying (1.15) and

$$f_0^{r,i} = (-a_{11}d_\ell^{(i)} + a_{12}c_\ell^{(i)})a_2, \quad i \in \{1,2\}$$
(3.5)

then $den(f_0^{r,1}) = den(f_0^{r,2}).$

Proof. (i) The first implication holds by Theorem 4.3 from [14]. The converse implication follows from Theorem 4.3 and from the fact that $W \in \Pi^{m \times m}$ since W is j_{pq} -unitary. By virtue of $\begin{bmatrix} b_1^{-1} & 0 \\ 0 & b_2 \end{bmatrix} \in \Pi^{m \times m}$, this implies $\mathfrak{A} \in \Pi^{m \times m}$.

(ii) Since $\mathfrak{A} \in \Pi^{m \times m}$ one has $a_{11}, a_{12}, a_2 \in \Pi$. By Proposition 1.5 the mvf's c_{ℓ} and d_{ℓ} can be chosen from Π . Therefore, $f_0^r \in \Pi$. (iii) Let $\{b_1, b_2\} \in den(f_0^{r,1})$ and let W(z) be given by (3.3). Then by

item (i) $W \in \mathcal{U}_{\kappa}^{r}(j_{pq})$ and $\{b_1, b_2\} \in ap^{r}(W)$. Let us set

$$K^{(i)} = (-w_{11}d_{\ell}^{(i)} + w_{12}c_{\ell}^{(i)})a_2b_2, \quad i = \{1, 2\}.$$

Then by [13, Theorem 4.11]

$$(b_1a_1)^{-1}(K^{(1)} - K^{(2)})(a_2b_2)^{(-1)} \in H^{p \times q}_{\infty}.$$
(3.6)

Since $K^{(i)} = b_1 f_0^{r,i} b_2$ (i = 1, 2) one gets from (3.6)

$$f_0^{r,1} - f_0^{r,2} \in H^{p \times q}_{\infty}.$$

Therefore, $\{b_1, b_2\} \in den(f_0^{r,2})$. Clearly, the converse implication is also true.

Remark 3.5. A similar assertion also holds for the class of generalized left γ -generating matrices. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}(j_{pq}), \mathfrak{b}_{\ell}, \mathfrak{s}_{\ell}, \mathfrak{b}_r, \mathfrak{s}_r$ be defined by KL-factorization of $s_{12} \in \mathcal{S}_{\kappa}^{q \times p}$. Let $\mathfrak{c}_{\ell}, \mathfrak{d}_{\ell}, \mathfrak{c}_r, \mathfrak{d}_r$ defined by (1.24) and let

$$f_0^{\ell} := \mathfrak{a}_2(-\mathfrak{d}_r a_{11} + \mathfrak{c}_r a_{21}) = (-\mathfrak{d}_r a_{12} + \mathfrak{c}_r a_{22})^{-1}(-\mathfrak{d}_r a_{11} + \mathfrak{c}_r a_{21}).$$
(3.7)

Then:

(i) if $den(f_0^{\ell}) \neq \emptyset$ and $\{\mathfrak{b}_1, \mathfrak{b}_2\} \in den(f_0^{\ell})$ then

$$W(z) = \mathfrak{A}(z) \begin{bmatrix} \mathfrak{b}_1 & 0\\ 0 & \mathfrak{b}_2^{-1} \end{bmatrix} \in \mathcal{U}_{\kappa}^{\ell}(j_{pq})$$
(3.8)

and $\{\mathfrak{b}_1, \mathfrak{b}_2\} \in ap^{\ell}(W)$. Conversely, if

$$W \in \mathcal{U}^{\ell}_{\kappa}(j_{pq}) \quad \text{and} \quad \{\mathfrak{b}_1, \mathfrak{b}_2\} \in ap^{\ell}(W),$$
(3.9)

then

$$\mathfrak{A}(z) = W(z) \begin{bmatrix} \mathfrak{b}_1^{-1} & 0\\ 0 & \mathfrak{b}_2 \end{bmatrix} \in \Pi^{m \times m} \cap \mathfrak{M}_{\kappa}^{\ell}(j_{pq}) \text{ and } \{\mathfrak{b}_1, \mathfrak{b}_2\} \in den(f_0^{\ell}).$$

(ii) if $\mathfrak{A} \in \Pi^{m \times m}$ then $den f_0^{\ell} \neq \emptyset$ and, moreover, the mvf's $\mathfrak{c}_{\ell}, \mathfrak{d}_{\ell}, \mathfrak{c}_r, \mathfrak{d}_r$ in (1.24) can be chosen from Π and then $f_0^{\ell} \in \Pi$.

(iii)
$$\{\mathbf{c}_{\ell}^{(i)}, \mathbf{d}_{\ell}^{(i)}, \mathbf{c}_{r}^{(i)}, \mathbf{d}_{r}^{(i)}\}\ (i = 1, 2)$$
 two sets of mvf's defined by (1.24)
 $f_{0}^{\ell, i} = \mathfrak{a}_{2}(-\mathfrak{d}_{r}a_{11} + \mathfrak{c}_{r}a_{21}), \quad \{\mathfrak{b}_{1}, \mathfrak{b}_{2}\}\alpha_{2}(-\mathfrak{d}_{r}^{(i)}a_{11} + \mathfrak{c}_{r}^{(i)}a_{21}), \\ \{\mathfrak{b}_{1}, \mathfrak{b}_{2}\} \in denf_{0}^{\ell, i}, \quad i = \{1, 2\},$
then $denf_{0}^{\ell, 1} = denf_{0}^{\ell, 2}.$

Definition 3.6. We define the denominator of generalized right γ -generating multiply $\mathfrak{A} \in \Pi^{m \times m} \cap \mathfrak{M}^{r}_{\kappa}(j_{pq})$ as

$$den^{r}(\mathfrak{A}) := denf_{0}^{r},$$

and the denominator of left generalized γ -generating mult $\mathfrak{A} \in \Pi^{m \times m} \cap \mathfrak{M}^{\ell}_{\kappa}(j_{pq})$ as

$$den^{\ell}(\mathfrak{A}) := den f_0^{\ell}.$$

Definition 3.7. Let a mult $\mathfrak{A} \in \mathfrak{M}^r_{\kappa}(j_{pq})$ is said to be

- (1) right singular and is written as $\mathfrak{A} \in \mathfrak{M}^{r,S}_{\kappa}$ if $f_0^r = (-a_{11}d_\ell + a_{12}c_\ell)a_2 \in H^{p \times q}_{\infty}$,
- (2) right regular and is written as $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r,R}$ if the factorization $\mathfrak{A} = \mathfrak{A}_{1}\mathfrak{A}_{2}$, with $\mathfrak{A}_{1} \in \mathfrak{M}_{\kappa_{1}}^{r}(j_{pq})$ and $\mathfrak{A}_{2} \in \mathfrak{M}_{\kappa_{2}}^{\ell,S}(j_{pq})$, $\kappa_{1} + \kappa_{2} = \kappa$ implies that $\mathfrak{A}_{2} \equiv const$.

Definition 3.8. Let a mult $\mathfrak{A} \in \mathfrak{M}^{\ell}_{\kappa}(j_{pq})$ is said to be

- (1) left singular and is written as $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell,S}$ if $f_0^{\ell} = \mathfrak{a}_2(-\mathfrak{d}_r a_{11} + \mathfrak{c}_r a_{21}) \in H_{\infty}^{p \times q}$,
- (2) left regular and is written as $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell,R}$ if the factorization $\mathfrak{A} = \mathfrak{A}_{2}\mathfrak{A}_{1}$, with $\mathfrak{A}_{1} \in \mathfrak{M}_{\kappa_{1}}^{\ell}(j_{pq})$ and $\mathfrak{A}_{2} \in \mathfrak{M}_{\kappa_{2}}^{rS}(j_{pq})$, $\kappa_{1} + \kappa_{2} = \kappa$ implies that $\mathfrak{A}_{2} \equiv const$.

In the case $\kappa = 0$, the left singularity coincides with the right singularity, therefore our definition coincides with the definition in [8].

4. Fatorization of γ -generating matrices

Lemma 4.1. Let $\mathfrak{A} \in \mathfrak{M}^r_{\kappa}(j_{pq}) \cap \Pi^{m \times m}$. Then:

$$\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r,S}(j_{pq}) \Longleftrightarrow \mathfrak{A} \in \mathcal{U}_{\kappa}^{r,S}(j_{pq}).$$

Proof. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r,S}(j_{pq})$, then $f_0 = (-a_{11}d_{\ell} + a_{12}c_{\ell})a_2 \in H_{\infty}^{p \times p}$, therefore $\{I_p, I_q\} \in den f_0^r$. In view of Theorem 3.4 this implies $\mathfrak{A} \in \mathcal{U}_{\kappa}^r(j_{pq})$ and $\{I_p, I_q\} \in ap^r(\mathfrak{A})$. Hence by Theorem 2.1 $\mathfrak{A} \in \mathcal{U}_{\kappa}^{r,S}(j_{pq})$.

Conversely, if $\mathfrak{A} \in \mathcal{U}_{\kappa}^{r,S}(j_{pq})$ and $\{b_1, b_2\} \in ap^r(\mathfrak{A})$, then $b_i \equiv const$, $i = \{1, 2\}$. Hence by Theorem 3.4 $\mathfrak{A} \in \mathfrak{M}_{\kappa}^r(j_{pq}), \{b_1, b_2\} \in denf_0^r$, i.e. $f_0^r \in H_{\infty}^{p \times q}$, and thus $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r,S}(j_{pq})$

Corollary 4.2. Let $\mathfrak{A} \in \mathfrak{M}^{\ell}_{\kappa}(j_{pq}) \cap \Pi^{m \times m}$. Then:

$$\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell,S}(j_{pq}) \Longleftrightarrow \mathfrak{A} \in \mathcal{U}_{\kappa}^{\ell,S}(j_{pq}).$$

Proof. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell,S}(j_{pq})$, then $\widetilde{\mathfrak{A}} \in \mathfrak{M}_{\kappa}^{r,S}(j_{pq})$, hence by Lemma 4.1 $\widetilde{\mathfrak{A}} \in \mathcal{U}_{\kappa}^{r,S}(j_{pq})$, and thus $\mathfrak{A} \in \mathcal{U}_{\kappa}^{\ell,S}(j_{pq})$. Analogously, the assumption $\mathfrak{A} \in \mathcal{U}_{\kappa}^{\ell,S}$ implies $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell,S}$.

Lemma 4.3. Let $\mathfrak{A}', \mathfrak{A} \in \mathfrak{M}^{r}_{\kappa}(j_{pq})$ and $\mathfrak{A}' = \begin{bmatrix} \theta_{1}^{-1} & 0 \\ 0 & \theta_{2} \end{bmatrix} \mathfrak{A}, \ \theta_{1} \in \mathcal{S}_{in}^{p \times p}, \\ \theta_{2} \in \mathcal{S}_{in}^{q \times q}.$ Then $\theta_{1} \equiv const, \ \theta_{2} \equiv const.$

Proof. Let $\mathfrak{A}'(\mu) = \begin{bmatrix} a'_{11}(\mu) & a'_{12}(\mu) \\ a'_{21}(\mu) & a'_{22}(\mu) \end{bmatrix}$ and let the mvf $\mathfrak{A}(\mu)$ has block representation (3.1). Then

$$\mathfrak{A}' = \begin{bmatrix} \theta_1^{-1} & 0\\ 0 & \theta_2 \end{bmatrix} \mathfrak{A} = \begin{bmatrix} \theta_1^{-1}a_{11} & \theta_1^{-1}a_{12}\\ \theta_2a_{21} & \theta_2a_{22} \end{bmatrix},$$

and hence by Definition 3.1

$$s'_{21} := -(a'_{22})^{-1}a'_{21} = -a_{22}^{-1}\theta_2^{-1}\theta_2 a_{21} = -a_{22}^{-1}a_{21} = s_{21} \in \mathcal{S}_{\kappa}^{q \times p}.$$

This means that the Krein-Langer factorizations of s_{21} and s'_{21} coincide

$$s_{21}' = s_{21} = b_{\ell}^{-1} s_{\ell} = s_r b_r^{-1},$$

where $b_{\ell} \in \mathcal{S}_{in}^{q \times q}$, $b_r \in \mathcal{S}_{in}^{q \times q}$, $s_{\ell}, s_r \in \mathcal{S}^{q \times p}$. Hence

$$a'_1 = (a'_{11})^{-\#} b_r = \theta_1^{\#}(a_{11})^{-\#} b_r \in \mathcal{S}_{out}^{p \times p}$$
, and $a_1 = a_{11}^{-\#} b_r \in \mathcal{S}_{out}^{q \times p}$.

This is possible only when $\theta_1 \equiv const$. Analogously,

$$a'_{2} = b_{\ell}(a'_{22})^{-1} = b_{\ell}a_{22}^{-1}\theta_{2}^{-1} \in \mathcal{S}_{out}^{q \times q}$$
 and $a_{2} = b_{\ell}a_{22}^{-1} \in \mathcal{S}_{out}^{q \times q}$

consequently $\theta_2 \equiv const.$

Lemma 4.4. Let a mult $\mathfrak{A} \in \mathfrak{M}^r_{\kappa}(j_{pq}) \cap \Pi^{m \times m}$ admits the factorization

$$\mathfrak{A} = \mathfrak{A}^{(1)}\mathfrak{A}^{(2)}, \quad where \quad \mathfrak{A}^{(1)} \in \mathfrak{M}^{r}_{\kappa_{1}}(j_{pq}), \quad \mathfrak{A}^{(2)} \in \mathfrak{M}^{\ell,S}_{\kappa_{2}}(j_{pq}), \quad (4.1)$$

with
$$\kappa_1 + \kappa_2 = \kappa$$
. Then $den^r(\mathfrak{A}^{(1)}) \subset den^r(\mathfrak{A})$.

Proof. Let a mvf $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}(j_{pq}) \cap \Pi^{m \times m}$ admits the factorization (4.1). Since $\mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{\ell,S}$, then $f_{0} \in H_{\infty}$ and then $\mathfrak{A}^{(2)} \in \Pi^{m \times m}$. Therefore $\mathfrak{A}^{(1)} = \mathfrak{A}(\mathfrak{A}^{(2)})^{-1}$ and thus $\mathfrak{A}^{(1)} \in \Pi$. Let $\{b_{1}^{(1)}, b_{2}^{(1)}\} \in den^{r}(\mathfrak{A}^{(1)})$ and $\kappa_{1} + \kappa_{2} = \kappa$. By Theorem 3.4

$$W^{(1)} = \begin{bmatrix} b_1^{(1)} & 0\\ 0 & (b_2^{(1)})^{-1} \end{bmatrix} \mathfrak{A}^{(1)} \in \mathcal{U}_{\kappa_1}^r(j_{pq}), \quad \{b_1^{(1)}, b_2^{(2)}\} \in ap^r W^{(1)},$$

$$W^{(2)} = \mathfrak{A}^{(2)} \in \mathcal{U}_{\kappa_2}^{\ell,S}(j_{pq}).$$

Let us set

$$W' := \begin{bmatrix} b_1^{(1)} & 0\\ 0 & (b_2^{(1)})^{-1} \end{bmatrix} \mathfrak{A} = \begin{bmatrix} b_1^{(1)} & 0\\ 0 & (b_2^{(1)})^{-1} \end{bmatrix} \mathfrak{A}^{(1)} \mathfrak{A}^{(2)} = W^{(1)} W^{(2)}.$$

Then $W' \in \mathcal{U}_{\kappa'}, \, \kappa' \leq \kappa_1 + \kappa_2 = \kappa \text{ (see [4] or [13])}.$

On the other hand, $s_{21} = -(w'_{22})^{-1}w'_{21} = -a_{22}^{-1}a_{21} \in \mathcal{S}_{\kappa}^{p \times q}$, hence $\kappa' \geq \kappa$ and therefore $\kappa' = \kappa$. Then $W' \in \mathcal{U}_{\kappa}^{r}(j_{pq})$.

Let $\{b'_1, b'_2\} \in ap^r(W')$, hence, in view of Lemma 2.4 $b'_1 = b_1^{(1)}\theta_1$, $b'_2 = \theta_2 b_2^{(1)}$. By Theorem 3.4

$$\begin{aligned} \mathfrak{A}' &= \begin{bmatrix} b'_1^{-1} & 0\\ 0 & b'_2 \end{bmatrix} W' = \begin{bmatrix} b'_1^{-1} & 0\\ 0 & b'_2 \end{bmatrix} W^{(1)} W^{(2)} \\ &= \begin{bmatrix} b'_1^{-1} & 0\\ 0 & b'_2 \end{bmatrix} \begin{bmatrix} b_1^{(1)} & 0\\ 0 & (b_2^{(2)})^{-1} \end{bmatrix} \mathfrak{A}^{(1)} \mathfrak{A}^{(2)} = \begin{bmatrix} \theta_1^{-1} & 0\\ 0 & \theta_2 \end{bmatrix} \mathfrak{A} \in \mathfrak{M}_{\kappa}^r(j_{pq}), \end{aligned}$$

Hence, by Lemma 4.3 $\theta_1 \equiv const$, $\theta_2 \equiv const$. Consequently $\{b_1^{(1)}, b_2^{(1)}\} \in ap^r(W')$. Thus by Theorem 3.4 $\{b_1^{(1)}, b_2^{(1)}\} \in den^r(\mathfrak{A})$.

Lemma 4.5. Let a mult $\mathfrak{A} \in \mathfrak{M}^r_{\kappa}(j_{pq}) \cap \widetilde{L}_2^{p \times q} \cap \mathcal{R}^{m \times m}$. Then $\mathfrak{A} \in \mathfrak{M}^{r,R}_{\kappa}(j_{pq})$.

Proof. Let $\mathfrak{A} = \mathfrak{A}^{(1)}\mathfrak{A}^{(2)}$, where $\mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_1}^r(j_{pq}), \ \mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_2}^{\ell,S}(j_{pq}), \\ \kappa_1 + \kappa_2 = \kappa.$ Let $\{b_1^{(1)}, b_2^{(1)}\} \in den^r(\mathfrak{A}^{(1)})$, then by Lemma 4.4 the pair $\{b_1^{(1)}, b_2^{(2)}\} \in den^r(\mathfrak{A})$. By Theorem 3.4

$$W^{(1)} = \begin{bmatrix} b_1^{(1)} & 0\\ 0 & (b_2^{(1)})^{-1} \end{bmatrix} \mathfrak{A}^{(1)} \in \mathcal{U}_{\kappa_1}^r(j_{pq}) \quad W^{(2)} = \mathfrak{A}^{(2)} \in \mathcal{U}_{\kappa_2}^{\ell,S}(j_{pq}),$$

and

$$W = \begin{bmatrix} b_1^{(1)} & 0\\ 0 & (b_2^{(1)})^{-1} \end{bmatrix} \mathfrak{A} = \begin{bmatrix} b_1^{(1)} & 0\\ 0 & (b_2^{(1)})^{-1} \end{bmatrix} \mathfrak{A}^{(1)} \mathfrak{A}^{(2)}$$
$$= W^{(1)} W^{(2)} \in \mathcal{U}_{\kappa}(j_{pq}).$$

Since $W \in \mathcal{U}_{\kappa}(j_{pq}) \cap \widetilde{L}_{2}^{m \times m}$, then by Theorem 2.7(2) $W \in \mathcal{U}_{\kappa}^{r,R}(j_{pq})$.

By this condition $\mathfrak{A}^{(2)} = W^{(2)} \equiv const.$ This implies $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r,R}(j_{pq}).$

An analogous statement for the left class $\mathfrak{M}^{\ell}_{\kappa}(j_{pq})$ can be easily obtained with the help of the transformation (1.19).

Lemma 4.6. Let a mult $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}(j_{pq}) \cap \widetilde{L}_{2}^{p \times q} \cap \mathcal{R}^{m \times m}$. Then $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell,R}(j_{pq})$.

Theorem 4.7. Let a mult $\mathfrak{A} \in \mathfrak{M}^r_{\kappa}(j_{pq}) \cap \mathcal{R}^{m \times m}$, $\{b_1, b_2\} \in den^r(\mathfrak{A})$, let W be given by (3.3) and let:

- (1) $W(z) \in \mathcal{U}^{\ell}_{\kappa}(j_{pq}),$
- (2) \mathcal{L}_W be a nondegenerate subspace of $\mathcal{K}(W)$.

Then the muf \mathfrak{A} admits regular-singular factorization

$$\mathfrak{A} = \mathfrak{A}^{(1)}\mathfrak{A}^{(2)}, \quad \mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_1}^{r,R}(j_{pq}), \quad \mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_2}^{\ell,S}(j_{pq}), \qquad (4.2)$$

where $\kappa_1 = ind_-\mathcal{L}_W$ and $\kappa_2 = \kappa - \kappa_1$.

Proof. Let condition (1) holds and let $\{b_1, b_2\} \in ap(W)$. Then by Theorem 2.9, W admits the factorization $W = W^{(1)}W^{(2)}$, where $W^{(1)} \in \mathcal{U}_{\kappa_1}^{r,R}(j_{pq})$ and $W^{(2)} \in \mathcal{U}_{\kappa_2}^{\ell,S}(j_{pq})$, $\kappa = \kappa_1 + \kappa_2$. By Theorem 3.4 $W \in \mathcal{U}_{\kappa}^r(j_{pq})$ and $\{b_1, b_2\} \in ap^r(W)$. By Theorem 2.7 (2) and hence by Lemma 3.12 [15] $ap^r(W) = ap^r(W^{(1)})$.

Hence, upon applying $\begin{bmatrix} b_1^{-1} & 0 \\ 0 & b_2 \end{bmatrix}$ to the mvf W and by Theorem 3.4 and Lemma 4.1 we obtain

and Lemma 4.1 we obtain

 $\mathfrak{A} = \mathfrak{A}^{(1)}\mathfrak{A}^{(2)}, \text{ where } \mathfrak{A}^{(1)} \in \mathfrak{M}^{r}_{\kappa_{1}}(j_{pq}), \ \mathfrak{A}^{(2)} \in \mathfrak{M}^{\ell,S}_{\kappa_{2}}(j_{pq}), \ \kappa_{1} + \kappa_{2} = \kappa.$

Since $W^{(1)} \in \widetilde{L}_2^{m \times m}$, then $\mathfrak{A}^{(1)} \in \widetilde{L}_2^{m \times m}$, and thus by Lemma 4.5 $\mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa}^{r,R}(j_{pq})$.

Theorem 4.8. Let a mult $\mathfrak{A} \in \mathfrak{M}^{\ell}_{\kappa}(j_{pq}) \cap \mathcal{R}$, $\{\mathfrak{b}_1, \mathfrak{b}_2\} \in den^{\ell}(\mathfrak{A})$, let W be given by (3.8) and let:

- (1) $W(z) \in \mathcal{U}_{\kappa}^{r}(j_{pq}),$
- (2) $\mathcal{L}_{\widetilde{W}}$ be a nondegenerate of $\mathcal{K}(\widetilde{W})$, with negative index $\operatorname{ind}_{-}\mathcal{L}_{\widetilde{W}} = \kappa_1$.

Then \mathfrak{A} admits regular-singular factivization

$$\mathfrak{A} = \mathfrak{A}^{(2)}\mathfrak{A}^{(1)}, \quad \mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_1}^{\ell, R}(j_{pq}), \quad \mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_2}^{r, S}(j_{pq}), \qquad (4.3)$$

where $\kappa_1 = ind_-\mathcal{L}_{\widetilde{W}}$ and $\kappa_2 = \kappa - \kappa_1$.

Proof. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}(j_{pq})$, then $\widetilde{\mathfrak{A}} \in \mathfrak{M}_{\kappa}^{r}(j_{pq})$ and the mvf's $\widetilde{W}(z)$ and $\widetilde{\mathfrak{A}}(z)$ satisfy the assumptions of Theorem 4.7. By Theorem 4.7 $\widetilde{\mathfrak{A}}$ admits a factorization

$$\widetilde{\mathfrak{A}} = \widetilde{\mathfrak{A}}^{(1)} \widetilde{\mathfrak{A}}^{(2)}, \quad \widetilde{\mathfrak{A}}^{(1)} \in \mathfrak{M}_{\kappa_1}^{r,R}(j_{pq}), \quad \widetilde{\mathfrak{A}}^{(2)} \in \mathfrak{M}_{\kappa_2}^{\ell,S}(j_{pq}), \qquad (4.4)$$

where $\kappa_1 + \kappa_2 = \kappa$.

Using the transformation (1.19) again, we obtain (4.3). \Box

References

- V. M. Adamjan, D. Z. Arov, M. G. Krein, Infinite Hankel matrices and generalized problems of Carathodory-Fejer and I. Schur problems // Funktsional. Anal. i Prilozhen, 2 (1968), No. 4, 1–17.
- [2] V. M. Adamjan, Nondegenerate unitary couplings of semiunitary operators // Funktsional. Anal. i Prilozhen., 7 (1973), No. 4, 1–16.
- [3] D. Alpay, A. Dijksma, J. Rovnyak, H. S. V. de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces // Oper. Theory: Adv. Appl., 96, (1997), 229.
- [4] D. Alpay, H. Dym, On applications of reproducing kernel spaces to the Schur algorithm and rational J unitary factorization. I. Schur methods in operator theory and signal processing // Oper. Theory Adv. Appl., 18 (1986), 89–159.
- [5] N. Aronszajn, Theory of reproducing kernels // Trans. Amer. Math. Soc., 68 (1950), 337–404.
- [6] D.Z. Arov, Realization of matrix-valued functions according to Darlington // Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 1299–1331.
- [7] D. Z. Arov, Regular and singular J-inner matrix functions and corresponding extrapolation problems // Funktsional. Anal. i Prilozhen., 22 (1988), No. 1, 57– 59 [in Russian]; transl. in Funct. Anal. Appl., 22 (1988), No. 1, 46–48.
- [8] D. Z. Arov, γ-generating matrices, j-inner matrix-functions and related extrapolation problems // Teor. Funktsii Funktsional. Anal. i Prilozhen, I, **51** (1989), 61–67; II, **52** (1989), 103–109 [in Russian]; transl. in J. Soviet Math. I, **52** (1990), 3487–3491; II, **52** (1990), 3421–3425.
- [9] D. Z. Arov, H. Dym, J-inner matrix function, interpolation and inverse problems for canonical system, I: foundation, Integral Equations // Operator Theory, 28 (1997), 1–16.
- [10] D. Z. Arov, H. Dym, J-Contractive Matrix Valued Functions and Related Topics, Cambridge University Press, Cambridge, 2008.
- [11] T. Ya. Azizov, I. S. Iokhvidov, Foundations of the theory of linear operators in spaces with an indefinite metric, Nauka, Moscow, 1986.
- [12] J. Bognar, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York-Heidelberg, 78, 1974.
- [13] V. A. Derkach, H. Dym, On linear fractional transformations associated with generalized J-inner matrix functions // Integ. Eq. Oper. Th., 65 (2009), 1–50.
- [14] V. A. Derkach, O. Sukhorukova, Generalized γ-generating matrices and Nehari-Takagi problem // Oper. Matrices, 10 (2016), No. 4, 1073–1091.

- [15] V. Derkach, O. Sukhorukova, A-regular–A-singular factorizations of generalized J-inner matrix functions //Journal of Mathematical Sciences, 23 (2017), No. 3, 231–251.
- [16] B. Francis, A Cource in H_{∞} Control Theory, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, **88**, 1987.
- [17] M. G. Krein, H. Langer, Über die verallgemeinerten Resolventen und die characteristische Function eines isometrischen Operators im Raume Π_κ // Hilbert space Operators and Operator Algebras (Proc. Intern. Conf., Tihany, 1970); Colloq. Math. Soc. Janos Bolyai, 5, (1972), 353–399.
- [18] L. Schwartz, Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associes // J. Analyse Math., 13 (1964), 115–256.
- [19] O. Sukhorukova, Factorization formulas for some classes of generalized J-inner matrix valued functions // Methods Funct. Anal. Topology, 20 (2014), No. 4, 365–378.
- [20] O. Sukhorukova, Generalized γ -generating matrices // Ukr. Mat. Visn, **12** (2015), No.4, 539–558 [in Russian]; transl. in J. of Math. Sci., **218**, (2016) No. 1, 89–104.

CONTACT INFORMATION

Olena Sukhorukova National Pedagogical Dragomanov University, Kiev, Ukraine *E-Mail:* sukhorukova.elena.ua@gmail.com