Factorization of generalized γ-generating matrices

Olena Sukhorukova

(Presented by V. O. Derkach)

Abstract

The class of γ-generating matrices and its subclasses of regular and singular γ-generating matrices were introduced by D. Z. Arov in [8], where it was shown that every γ-generating matrix admits an essentially unique regular-singular factorization. The class of generalized γ-generating matrices was introduced in [14, 20]. In the present paper subclasses of singular and regular generalized γ-generating matrices are introduced and studied. As the main result of the paper a theorem of existence of regular-singular factorization for rational generalized γ generating matrix is found.

Key words and phrases. γ-generating matrices, J-inner matrix valued function, denominator, associated pair, generalized Schur class, reproducing kernel space, Potapov-Ginzburg transform, Krĕ̆n-Langer factorization.

1. Introduction

The notion of a γ-generating matrix was introduced by D. Z. Arov in [8] in connection with the study of completely indeterminate Nehari problem on the unit circle \mathbb{T} (see $[1,2,10]$), and for a real line \mathbb{R} (see [10]). Let $j_{p q}=\left[\begin{array}{cc}I_{p} & 0 \\ 0 & -I_{q}\end{array}\right]$. We recall that a mvf (matrix valued function) $\mathfrak{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, where a_{11} and a_{22} are $p \times p$ and $q \times q$ blocks, respectively, is called a γ-generating matrix of the class $\mathfrak{M}^{r}\left(j_{p q}\right)$, if:
(1) \mathfrak{A} is measurable on \mathbb{R} and takes $j_{p q}$-unitary values for a.e. $\mu \in \mathbb{R}$;

Received 14.10.2017

This work was supported by a Volkswagen Stiftung grant and grant of the Ministry of Education and Science of Ukraine (project 0115U000556).
(2) $a_{22}(\mu)$ and $a_{11}^{*}(\mu)$ are boundary values of holomorphic mvf's $a_{22}(\lambda)$ and $a_{11}^{\#}(\lambda)$, such that a_{22}^{-1} and $\left(a_{11}^{\#}\right)^{-1}$ are outer mvf's from the Schur classes $\mathcal{S}^{p \times p}$ and $\mathcal{S}^{q \times q}$, respectively;
$\left(3^{r}\right) s_{21}:=-a_{22}^{-1} a_{21}$ belongs to the Schur class $\mathcal{S}^{q \times p}$ of holomorphic in \mathbb{C}_{+}with values in the set of contractive mvf's, i.e. $I_{p}-s(\lambda)^{*} s(\lambda) \geq 0$ for every point $\lambda \in \mathbb{C}_{+}$.

The class $\mathfrak{M}^{\ell}\left(j_{p q}\right)$ of left γ-generating matrices was introduced in [8] as the set of mvf's $\mathfrak{A}(\mu)$ which satisfies (1), (2) and

$$
\left(3^{\ell}\right) s_{12}:=a_{12} a_{22}^{-1} \in \mathcal{S}^{p \times q} .
$$

As was shown in $[1,2]$, any solution of a completely indeterminate matrix Nehari problem can be represented in the form

$$
\begin{equation*}
f(\mu)=T_{\mathfrak{A}}[s]=\left(a_{11}(\mu) s(\mu)+a_{12}(\mu)\right)\left(a_{21}(\mu) s(\mu)+a_{22}(\mu)\right)^{-1} \tag{1.1}
\end{equation*}
$$

where $\mathfrak{A} \in \mathfrak{M}^{r}\left(j_{p q}\right)$, and s is a mvf of the Schur class $\mathcal{S}^{p \times q}$.
A mvf $\mathfrak{A} \in \mathfrak{M}^{r}\left(j_{p q}\right)$ is said to be right singular γ-generating matrix if $T_{\mathfrak{A}}\left[\mathcal{S}^{p \times q}\right] \subset \mathcal{S}^{p \times q}$. A mvf $\mathfrak{A} \in \mathfrak{M}^{r}\left(j_{p q}\right)$ is said to be right regular γ-generating matrix if the factorization $\mathfrak{A}=\mathfrak{A}_{1} \mathfrak{A}_{2}$ with a factor $\mathfrak{A}_{1} \in$ $\mathfrak{M}_{r}\left(j_{p q}\right)$ and a right singular factor \mathfrak{A}_{2} implies that \mathfrak{A}_{2} is constant. These two subclasses of $\mathfrak{M}^{r}\left(j_{p q}\right)$ will be designated $\mathfrak{M}^{r, S}\left(j_{p q}\right)$ and $\mathfrak{M}^{r, R}\left(j_{p q}\right)$, respectively.

Similarly, the classes $\mathfrak{M}^{\ell, S}\left(j_{p q}\right)$ and $\mathfrak{M}^{\ell, R}\left(j_{p q}\right)$ were introduced in $[8$, 10] and in fact the classes $\mathfrak{M}^{r, S}\left(j_{p q}\right)$ and $\mathfrak{M}^{\ell, S}\left(j_{p q}\right)$ coincide:

$$
\mathfrak{M}^{S}\left(j_{p q}\right):=\mathfrak{M}^{r, S}\left(j_{p q}\right)=\mathfrak{M}^{\ell, S}\left(j_{p q}\right)
$$

As was shown in [8] a resolvent matrix \mathfrak{A} which describes solutions of the Nehari problem is a right regular γ-generating matrix.

In [8] it was shown that any γ-generating matrix admits a factorization

$$
\mathfrak{A}=\mathfrak{A}_{1} \mathfrak{A}_{2}, \quad \text { where } \quad \mathfrak{A}_{1} \in \mathfrak{M}^{r, R}\left(j_{p q}\right), \mathfrak{A}_{2} \in \mathfrak{M}^{S}\left(j_{p q}\right)
$$

Classes $\mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ and $\mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)$ of generalized γ-generating matrices were introduced in $[14,20]$, where also connections between generalized γ generating matrices of the class $\mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ (resp. $\left.\mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)\right)$ and generalized $j_{p q}$-inner mvf's of the class $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ (resp. $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$) were established.

Sufficient conditions for regular-singular factorization of generalized $j_{p q}$-inner mvf were found in [15]. In the present paper the notions of singular and regular right and left generalized γ-generating mvf's are introduced and studied.

Sufficient conditions for existance of regular-singular factorization for right and left generalized γ-generating mvf's are also found.

1.1. The generalized Schur class

Let Ω_{+}be equal to either $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$ or $\mathbb{C}_{+}=\{\lambda \in \mathbb{C}$: $-i(\lambda-\bar{\lambda})>0\}$. Let us set

$$
\rho_{\omega}(\lambda)= \begin{cases}1-\lambda \bar{\omega}, & \text { if } \Omega_{+}=\mathbb{D} \\ -2 \pi i(\lambda-\bar{\omega}), & \text { if } \Omega_{+}=\mathbb{C}_{+}\end{cases}
$$

and let $\Omega_{-}:=\left\{\omega \in \mathbb{C}: \rho_{\omega}(\omega)<0\right\}$. Then $\Omega_{0}:=\partial \Omega_{+}$is either the unit circle \mathbb{T}, if $\Omega_{+}=\mathbb{D}$, or the real line \mathbb{R}, if $\Omega_{+}=\mathbb{C}_{+}$.

Let $\kappa \in \mathbb{Z}_{+}$. Recall [5], that a Hermitian kernel $\mathrm{K}_{\omega}(\lambda): \Omega \times \Omega \rightarrow$ $\mathbb{C}^{m \times m}$ is said to have κ negative squares, if for every positive integer n and every choice of $\omega_{j} \in \Omega$ and $u_{j} \in \mathbb{C}^{m}(j=1, \ldots, n)$ the matrix

$$
\left(u_{k}^{*} \mathrm{~K}_{\omega_{j}}\left(\omega_{k}\right) u_{j}\right)_{j, k=1}^{n}
$$

has at most κ, and for some choice of $n \in \mathbb{N}, \omega_{j} \in \Omega$ and $u_{j} \in \mathbb{C}^{m}$ exactly κ negative eigenvalues.

Denote by \mathfrak{h}_{s} the domain of holomorphy of the $\operatorname{mvf} s(\lambda)$ and let us set $\mathfrak{h}_{s}^{ \pm}:=\mathfrak{h}_{s} \cap \Omega_{ \pm}$.

Let $\mathcal{S}_{\kappa}^{q \times p}$ denote the generalized Schur class of $q \times p$ mvf's s that are meromorphic in Ω_{+}and for which the kernel

$$
\begin{equation*}
\Lambda_{\omega}^{s}(\lambda)=\frac{I_{p}-s(\lambda) s(\omega)^{*}}{\rho_{\omega}(\lambda)} \tag{1.2}
\end{equation*}
$$

has κ negative squares on $\mathfrak{h}_{s}^{+} \times \mathfrak{h}_{s}^{+}$(see [17]). In the case where $\kappa=0$ the class $\mathcal{S}_{0}^{q \times p}$ coincides with the Schur class $\mathcal{S}^{q \times p}$. A mvf $s \in \mathcal{S}^{q \times p}$ is said to be inner $\left(s \in \mathcal{S}_{i n}^{q \times p}\right)$, if $I_{p}-s(\mu)^{*} s(\mu)=0$ for a.e. point $\mu \in \Omega_{0}$. $\operatorname{Mvf} s \in \mathcal{S}^{q \times p}$ is said to be outer $\left(s \in \mathcal{S}_{o u t}^{q \times p}\right)$, if $\overline{s H_{2}^{p}}=H_{2}^{q}$.

As was shown in [17] every mvf $s \in \mathcal{S}_{\kappa}^{q \times p}$ admits a factorization of the form

$$
\begin{equation*}
s(\lambda)=b_{\ell}(\lambda)^{-1} s_{\ell}(\lambda), \quad \lambda \in \mathfrak{h}_{s}^{+} \tag{1.3}
\end{equation*}
$$

where $b_{\ell} \in \mathcal{S}_{i n}^{q \times q}$ is a $q \times q \mathrm{BP}$ (Blaschke-Potapov) product of degree κ (see. [10]), $s_{\ell} \in \mathcal{S}^{q \times q}$ and

$$
\operatorname{rank}\left[\begin{array}{cc}
b_{\ell}(\lambda) & s_{\ell}(\lambda) \tag{1.4}
\end{array}\right]=q \quad\left(\lambda \in \Omega_{+}\right)
$$

The representation (1.3) is called a left KL (Krein-Langer) factorization. Similarly, every generalized Schur function $s \in \mathcal{S}_{\kappa}^{q \times p}$ admits a right $K L$ factorization

$$
\begin{equation*}
s(\lambda)=s_{r}(\lambda) b_{r}(\lambda)^{-1} \quad \text { for } \lambda \in \mathfrak{h}_{s}^{+} \tag{1.5}
\end{equation*}
$$

where $b_{r} \in \mathcal{S}^{p \times p}$ is a BP-product of degree $\kappa, s_{r} \in \mathcal{S}^{q \times p}$ and

$$
\operatorname{rank}\left[\begin{array}{cc}
b_{r}(\lambda)^{*} & s_{r}(\lambda)^{*} \tag{1.6}
\end{array}\right]=p \quad\left(\lambda \in \Omega_{+}\right)
$$

Recall the notations (see [10]): $\mathcal{R}^{p \times q}$ - the class of rational $p \times q$ mvf's,

$$
\begin{gathered}
\mathcal{N}_{ \pm}^{p \times q}=\left\{f=h^{-1} g: g \in H_{\infty}^{p \times q}\left(\Omega_{ \pm}\right), h \in \mathcal{S}_{o u t}^{1 \times 1}\left(\Omega_{ \pm}\right)\right\} ; \\
\mathcal{N}_{o u t}^{p \times q}=\left\{f=h^{-1} g: g \in \mathcal{S}_{o u t}^{p \times q}, h \in \mathcal{S}_{o u t}^{1 \times 1}\right\} .
\end{gathered}
$$

The limit values $f(\mu)$ of mvf $f(\lambda) \in \mathcal{N}^{p \times q}\left(\mathbb{C}_{+}\right)\left(\mathcal{N}^{p \times q}(\mathbb{D})\right)$ are defined a.e. on $\mathbb{R}(\mathbb{T})$

$$
\begin{equation*}
f(\mu)=\lim _{\nu \downarrow 0} f(\mu+i \nu) \quad\left(f(\mu)=\lim _{r \uparrow 1} f(r \mu)\right) \tag{1.7}
\end{equation*}
$$

Similarly, the limit values of $f \in \mathcal{N}^{p \times q}\left(\Omega_{-}\right)$are defined a.e. on Ω_{0}.
Definition 1.1. $A p \times q m v f f_{-}$in Ω_{-}is said to be a pseudocontinuation of a mvf $f \in \mathcal{N}^{p \times q}$, if
(1) $f_{-}^{\#} \in \mathcal{N}^{p \times q}$;
(2) $f_{-}(\mu)=f(\mu)$ a.e. on Ω_{0}.

The subclass of all mvf's $f \in \mathcal{N}^{p \times q}$ that admit pseudocontinuations f_{-} into Ω_{-}will be denoted $\Pi^{p \times q}$. Sometimes the superindex $p \times q$ is dropped and we denote this class by Π if it does not lead to confusion.

1.2. Generalized $j_{p q}$-inner mvf's

Definition 1.2. $[4,13]$ An $m \times m$ mvf $W(\lambda)$ that is meromorphic in Ω_{+} is said to belong to the class $\mathcal{U}_{\kappa}\left(j_{p q}\right)$ of generalized $j_{p q}$-inner mvf's, if:
(i) the kernel

$$
\begin{equation*}
\mathrm{K}_{\omega}^{W}(\lambda)=\frac{j_{p q}-W(\lambda) j_{p q} W(\omega)^{*}}{\rho_{\omega}(\lambda)} \tag{1.8}
\end{equation*}
$$

has κ negative squares in $\mathfrak{h}_{W}^{+} \times \mathfrak{h}_{W}^{+}$, where \mathfrak{h}_{W}^{+}denotes the domain of holomorphy of W in Ω_{+}and
(ii) $j_{p q}-W(\mu) j_{p q} W(\mu)^{*}=0$ a.e. on the boundary Ω_{0} of Ω_{+}.

Let us recall some facts concerning the PG (Potapov-Ginzburg) transform of generalized $j_{p q}$-inner mvf's. As is known [4, Theorem 6.8], for
every $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ the matrix $w_{22}(\lambda)$ is invertible for all $\lambda \in \mathfrak{h}_{W}^{+}$except for at most κ point in Ω_{+}. The PG-transform $S=P G(W)$ of W (see [3])

$$
S(\lambda):=\left[\begin{array}{cc}
w_{11}(\lambda) & w_{12}(\lambda) \tag{1.9}\\
0 & I_{q}
\end{array}\right]\left[\begin{array}{cc}
I_{p} & 0 \\
w_{21}(\lambda) & w_{22}(\lambda)
\end{array}\right]^{-1}
$$

is well defined for those $\lambda \in \mathfrak{h}_{W}^{+}$, for which $w_{22}(\lambda)$ is invertible, $S(\lambda)$ belongs to the class $\mathcal{S}_{\kappa}^{m \times m}$ and $S(\mu)$ is unitary for a.e. $\mu \in \Omega_{0}$ (see [4,13]).

The formula (1.9) can be rewritten as

$$
S=\left[\begin{array}{ll}
s_{11} & s_{12} \tag{1.10}\\
s_{21} & s_{22}
\end{array}\right]=\left[\begin{array}{cc}
w_{11}-w_{12} w_{22}^{-1} w_{21} & w_{12} w_{22}^{-1} \\
-w_{22}^{-1} w_{21} & w_{22}^{-1}
\end{array}\right]
$$

Since the mvf $S(\lambda)$ has unitary nontangential boundary limits a.e. on Ω_{0}, the pseudocontinuation of S to Ω_{-}can be defined by the formula $S(\lambda)=\left(S^{\#}(\lambda)\right)^{-1}$, where the reflection function $S^{\#}(\lambda)$ is defined by

$$
S^{\#}(\lambda)=S\left(\lambda^{\circ}\right)^{*}, \quad \lambda^{\circ}= \begin{cases}1 / \bar{\lambda} & : \text { if } \Omega_{+}=\mathbb{D}, \lambda \neq 0 \tag{1.11}\\ \bar{\lambda} & : \text { if } \Omega_{+}=\mathbb{C}_{+}\end{cases}
$$

1.3. The class $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$

Definition 1.3. [13] An $m \times m$ $m v f W(\lambda) \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ is said to be in the class $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$, if

$$
\begin{equation*}
s_{21}:=-w_{22}^{-1} w_{21} \in \mathcal{S}_{\kappa}^{q \times p} \tag{1.12}
\end{equation*}
$$

Theorem 1.4. [13] Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and let the BP-factors b_{ℓ} and b_{r} be defined by the KL-factorizations of s_{21} :

$$
\begin{equation*}
s_{21}(\lambda):=b_{\ell}(\lambda)^{-1} s_{\ell}(\lambda)=s_{r}(\lambda) b_{r}(\lambda)^{-1}, \quad \lambda \in \mathfrak{h}_{s_{21}}^{+} \tag{1.13}
\end{equation*}
$$

where $b_{\ell} \in \mathcal{S}_{i n}^{q \times q}, b_{r} \in \mathcal{S}_{i n}^{p \times p}, s_{\ell}, s_{r} \in \mathcal{S}^{q \times p}$. Then the mvf's $b_{\ell} s_{22}$ and $s_{11} b_{r}$ are holomorphic in Ω_{+}, and hence they admit the following innerouter and outer-inner factorizations

$$
\begin{equation*}
s_{11} b_{r}=b_{1} a_{1}, \quad b_{\ell} s_{22}=a_{2} b_{2} \tag{1.14}
\end{equation*}
$$

where $b_{1} \in \mathcal{S}_{\text {in }}^{p \times p}, b_{2} \in \mathcal{S}_{\text {in }}^{q \times q}, a_{1} \in \mathcal{S}_{\text {out }}^{p \times p}, a_{2} \in \mathcal{S}_{\text {out }}^{q \times q}$.
The pair $\left\{b_{1}, b_{2}\right\}$ is called the right associated pair of the mvf $W \in$ $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and is written as $\left\{b_{1}, b_{2}\right\} \in \operatorname{ap}^{r}(W)$. In the case $\kappa=0$ this notion was introduced in [6].

Proposition 1.5. [13, 16] If $s \in \mathcal{S}^{q \times p}$, then there exists a set of mvf's $c_{\ell} \in H_{\infty}^{q \times q}, d_{\ell} \in H_{\infty}^{p \times q}, c_{r} \in H_{\infty}^{p \times p}$ and $d_{r} \in H_{\infty}^{p \times q}$, such that

$$
\left[\begin{array}{cc}
c_{r} & d_{r} \tag{1.15}\\
-s_{\ell} & b_{\ell}
\end{array}\right]\left[\begin{array}{cc}
b_{r} & -d_{\ell} \\
s_{r} & c_{\ell}
\end{array}\right]=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & I_{q}
\end{array}\right] .
$$

If, in addition, $s \in \Pi$, then $c_{\ell}, d_{\ell}, c_{r}, d_{r}$ can be chosen from Π.
Proof. The first statement was proved in [13, Theorem 4.9] (the rational case was treated in [16]).

Assume now that $s \in \Pi$ and hence also $s_{\ell} \in \Pi$. Let d_{ℓ} be a rational mvf's such that

$$
b_{\ell}^{-1}\left(I_{q}-s_{\ell} d_{\ell}\right) \in H_{\infty}^{q \times q}
$$

Such a mvf can be chosen via matrix Lagrange-Silvester interpolation. Then by setting

$$
c_{\ell}:=b_{\ell}^{-1}\left(I_{p}-s_{\ell} d_{\ell}\right)
$$

one obtains $c_{\ell} \in H_{\infty}^{q \times q} \cap \Pi^{q \times q}$, since $b_{\ell}, s_{\ell}, d_{\ell} \in \Pi$.
The inclusions $c_{r}, d_{r} \in \Pi$ are implied by (1.15).
By [13, Theorem 4.11] for every $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and c_{ℓ} and d_{ℓ} as in (1.15) the mvf

$$
\begin{equation*}
K=\left(-w_{11} d_{\ell}+w_{12} c_{\ell}\right)\left(-w_{21} d_{\ell}+w_{22} c_{\ell}\right)^{-1} \tag{1.16}
\end{equation*}
$$

belongs to $H_{\infty}^{p \times q}$ and admits the representations

$$
\begin{equation*}
K=\left(-w_{11} d_{\ell}+w_{12} c_{\ell}\right) a_{2} b_{2} \tag{1.17}
\end{equation*}
$$

where $\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$ and $a_{2} \in \mathcal{S}_{o u t}^{q \times q}$ is determined by (1.14).

1.4. The class $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$

The following definitions and statements concerning the dual class $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ are taken from [19].

Definition 1.6. An $m \times m m v f W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ is said to be in the class $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$, if

$$
\begin{equation*}
s_{12}:=w_{12} w_{22}^{-1} \in \mathcal{S}_{\kappa}^{p \times q} . \tag{1.18}
\end{equation*}
$$

If $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ and the $\operatorname{mvf} \widetilde{W}$ is defined by

$$
\widetilde{W}(\lambda)=\left\{\begin{array}{lll}
W(\bar{\lambda})^{*}, & \text { if } & \Omega_{+}=\mathbb{D} \tag{1.19}\\
W(-\bar{\lambda})^{*} & \text { if } & \Omega_{+}=\mathbb{C}_{+}
\end{array}\right.
$$

then, as was shown in [19], the following equivalence holds:

$$
\begin{equation*}
W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \tag{1.20}
\end{equation*}
$$

and as a corollary of Theorem 1.4 one can get the following statement.
Theorem 1.7. Let $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and let the BP-factors \mathfrak{b}_{ℓ} and \mathfrak{b}_{r} be defined by the KL-factorizations of s_{12} :

$$
\begin{equation*}
s_{12}(\lambda)=\mathfrak{b}_{\ell}(\lambda)^{-1} \mathfrak{s}_{\ell}(\lambda)=\mathfrak{s}_{r}(\lambda) \mathfrak{b}_{r}(\lambda)^{-1}, \quad\left(\lambda \in \mathfrak{h}_{s_{12}}^{+}\right) \tag{1.21}
\end{equation*}
$$

where $\mathfrak{b}_{\ell} \in \mathcal{S}_{i n}^{p \times p}, \mathfrak{b}_{r} \in \mathcal{S}_{i n}^{q \times q}, \mathfrak{s}_{\ell}, \mathfrak{s}_{r} \in \mathcal{S}^{p \times q}$. Then

$$
\begin{equation*}
s_{22} \mathfrak{b}_{r} \in \mathcal{S}^{q \times q} \quad \text { and } \quad \mathfrak{b}_{\ell} s_{11} \in \mathcal{S}^{p \times p} \tag{1.22}
\end{equation*}
$$

Definition 1.8. Consider inner-outer and outer-inner factorizations of $\mathfrak{b}_{\ell} s_{11}$ and $s_{22} \mathfrak{b}_{r}$

$$
\begin{equation*}
\mathfrak{b}_{\ell} s_{11}=\mathfrak{a}_{1} \mathfrak{b}_{1}, \quad s_{22} \mathfrak{b}_{r}=\mathfrak{b}_{2} \mathfrak{a}_{2} \tag{1.23}
\end{equation*}
$$

where $\mathfrak{b}_{1} \in \mathcal{S}_{\text {in }}^{p \times p}, \mathfrak{b}_{2} \in \mathcal{S}_{\text {in }}^{q \times q}, \mathfrak{a}_{1} \in \mathcal{S}_{\text {out }}^{p \times p}, \mathfrak{a}_{2} \in \mathcal{S}_{\text {out }}^{q \times q}$. The pair $\mathfrak{b}_{1}, \mathfrak{b}_{2}$ of inner factors in the factorizations (1.23) is called the left associated pair of the mvf $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and is written as $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in a p^{\ell}(W)$, for short.

Remark 1.9. As was shown in [19] (3.25) if $\left\{\mathfrak{w}_{\sim}, \mathfrak{b}_{2}\right\} \in a p^{\ell}(W)$, then $\widetilde{s}_{11} \widetilde{\mathfrak{b}}_{\ell}=\widetilde{\mathfrak{b}}_{1} \widetilde{\mathfrak{a}}_{1}, \quad \widetilde{\mathfrak{b}}_{r} \widetilde{s}_{22}=\widetilde{\mathfrak{a}}_{2} \widetilde{\mathfrak{b}}_{2}$, and, therefore, $\left\{\widetilde{\mathfrak{b}}_{1}, \widetilde{\mathfrak{b}}_{2}\right\} \in \operatorname{ap}(\widetilde{W})$.

As was shown in [19], there exists a set of mvf's $\mathfrak{c}_{\ell} \in H_{\infty}^{p \times p}, \mathfrak{a}_{\ell} \in H_{\infty}^{q \times p}$, $\mathfrak{c}_{r} \in H_{\infty}^{q \times q}$ and $\mathfrak{d}_{r} \in H_{\infty}^{q \times p}$, such that

$$
\left[\begin{array}{cc}
\mathfrak{c}_{\ell} & \mathfrak{s}_{r} \tag{1.24}\\
\mathfrak{d}_{\ell} & \mathfrak{b}_{r}
\end{array}\right]\left[\begin{array}{cc}
\mathfrak{b}_{\ell} & -\mathfrak{s}_{\ell} \\
-\mathfrak{d}_{r} & \mathfrak{c}_{r}
\end{array}\right]=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & I_{q}
\end{array}\right] .
$$

1.5. Reproducing kernel Pontryagin spaces

In this subsection we review some facts and notation from [11-13] on the theory of indefinite inner product spaces for the convenience of the reader. A linear space \mathcal{K} equipped with a sesquilinear form $\langle\cdot, \cdot\rangle_{\mathcal{K}}$ on $\mathcal{K} \times \mathcal{K}$ is called an indefinite inner product space. A subspace \mathcal{F} of \mathcal{K} is called positive (resp. negative) if $\langle f, f\rangle_{\mathcal{K}}>0$, (resp. <0) for all $f \in \mathcal{F}$, $f \neq 0$.

An indefinite inner product space $\left(\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}\right)$ is called a Pontryagin space, if it can be decomposed as the orthogonal sum

$$
\begin{equation*}
\mathcal{K}=\mathcal{K}_{+} \oplus \mathcal{K}_{-} \tag{1.25}
\end{equation*}
$$

of a positive subspace \mathcal{K}_{+}which is a Hilbert space with respect to the inner product $\langle\cdot, \cdot\rangle_{\mathcal{K}}$ and a negative subspace \mathcal{K}_{-}of finite dimension. The number ind_K $:=\operatorname{dim} \mathcal{K}_{-}$is referred to as the negative index of \mathcal{K}.

The isotropic part of $\mathcal{L} \subset \mathcal{K}$ is defined by $\mathcal{L}_{0}:=\left\{x \in \mathcal{L}:\langle x, y\rangle_{\mathcal{L}}=\right.$ $0, y \in \mathcal{L}\}$. The subspace \mathcal{L} is called nondegenerate iff $\mathcal{L}_{0}=\{0\}$.

A Pontryagin space $\left(\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}\right)$ of \mathbb{C}^{m}-valued functions defined on a subset Ω of \mathbb{C} is called a RKPS (reproducing kernel Pontryagin space), if there exists a Hermitian kernel $\mathrm{K}_{\omega}(\lambda): \Omega \times \Omega \rightarrow \mathbb{C}^{m \times m}$, such that:
(1) for every $\omega \in \Omega$ and every $u \in \mathbb{C}^{m}$ the vvf $\mathrm{K}_{\omega}(\lambda) u$ belongs to \mathcal{K};
(2) for every $f \in \mathcal{K}, \omega \in \Omega$ and $u \in \mathbb{C}^{m}$ the following identity holds

$$
\begin{equation*}
\left\langle f, \mathrm{~K}_{\omega} u\right\rangle_{\mathcal{K}}=u^{*} f(\omega) \tag{1.26}
\end{equation*}
$$

It is known (see [18]) that for every Hermitian kernel $\mathrm{K}_{\omega}(\lambda): \Omega \times \Omega \rightarrow$ $\mathbb{C}^{m \times m}$ with a finite number κ of negative squares on $\Omega \times \Omega$ there is a unique Pontryagin space \mathcal{K} with reproducing kernel $\mathrm{K}_{\omega}(\lambda)$, and that ind ${ }_{-} \mathcal{K}=\mathrm{sq}_{-} \mathrm{K}=\kappa$. In the case $\kappa=0$ this fact is due to Aronszajn [5].

For $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ we denote by $\mathcal{K}(W)$ the RKPS associated with the kernel $\mathrm{K}_{\omega}^{W}(\lambda)$ defined by (1.8).

2. A-regular- A-singular factorization of generalized J-inner mvf's

A $\operatorname{mvf} W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ is called A-singular, if it is an outer mvf (see [6, 19]). The set of A-singular mvf's in $\mathcal{U}_{\kappa}\left(j_{p q}\right)$ is denoted by $\mathcal{U}_{\kappa}^{S}\left(j_{p q}\right)$.

We will be also using the following subclasses of the class $\mathcal{U}_{\kappa}^{S}\left(j_{p q}\right)$:

$$
\mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right):=\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{o u t}^{m \times m}, \quad \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right):=\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{N}_{o u t}^{m \times m}
$$

In the case $\kappa=0$ the class $\mathcal{U}^{S}\left(j_{p q}\right):=\mathcal{U}_{0}^{S}\left(j_{p q}\right)$ was introduced and characterized in terms of associated pairs by D. Arov in [9]. For $\kappa \neq 0 \mathrm{a}$ definition of A-singular generalized $j_{p q}$-inner mvf and its characterization in terms of associated pairs was given in [19].

Theorem 2.1. [19] Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and let $\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$. Then:

$$
W \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right) \Longleftrightarrow b_{1} \equiv \mathrm{const}, \quad b_{2} \equiv \text { const. }
$$

Theorem 2.2. [19] Let $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and let $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in a p^{\ell}(W)$. Then:

$$
W \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right) \Longleftrightarrow \mathfrak{b}_{1} \equiv \text { const }, \quad \mathfrak{b}_{2} \equiv \text { const. }
$$

Lemma 2.3. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and let $\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$. Then:

$$
W \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right)
$$

Proof. Let $W \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)$. Then by Theorem 2.1,

$$
b_{1} \equiv \text { const }, \quad b_{2} \equiv \text { const } .
$$

Due to Remark 1.9 one obtains $\widetilde{b}_{1} \equiv$ const, $\widetilde{b}_{2} \equiv$ const and hence $\widetilde{W} \in$ $\mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right)$ by Theorem 2.2. The proof of the converse is similar.

Lemma 2.4. [15] Let a mvf $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ admits a factorization

$$
\begin{equation*}
W=W^{(1)} W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right) \tag{2.1}
\end{equation*}
$$

where $\kappa_{1}+\kappa_{2}=\kappa$. Then:
(i) $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$;
(ii) For $\left\{b_{1}, b_{2}\right\} \in \operatorname{ap}^{r}(W)$ and $\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{ap}^{r}\left(W^{(1)}\right)$ one has

$$
\begin{equation*}
\theta_{1}:=\left(b_{1}^{(1)}\right)^{-1} b_{1} \in S_{i n}^{p \times p}, \quad \theta_{2}:=b_{2}\left(b_{2}^{(1)}\right)^{-1} \in S_{i n}^{q \times q} . \tag{2.2}
\end{equation*}
$$

Definition 2.5. [15] A mvf $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ is called right A-regular, if for any factorization

$$
\begin{equation*}
W=W^{(1)} W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right) \tag{2.3}
\end{equation*}
$$

with $\kappa_{1}+\kappa_{2}=\kappa$ the assumption $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right)$ implies $W^{(2)}(\lambda) \equiv$ const.

Similarly, a mvf $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ is called left A-regular, if for any factorization (2.3) with $\kappa_{1}+\kappa_{2}=\kappa$ the assumption $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{S}\left(j_{p q}\right)$ implies $W^{(1)}(\lambda) \equiv$ const.

In the case $\kappa=0$ Definition 2.5 is simplified since $\mathcal{U}_{0}^{r}\left(j_{p q}\right)=\mathcal{U}_{0}^{\ell}\left(j_{p q}\right)=$ $\mathcal{U}\left(j_{p q}\right)$ (see [7]).

In the next lemma we present one necessary and one sufficient condition for a $\operatorname{mvf} W(\lambda) \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ to be regular. Let us set

$$
\begin{equation*}
\mathcal{L}_{W}:=\mathcal{K}(W) \cap L_{2}^{m} \tag{2.4}
\end{equation*}
$$

Lemma 2.6. [15] Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$, let $\mathcal{K}(W)$ be the $R K P S$ with the kernel $\mathrm{K}_{\omega}^{W}(\lambda)$, defined by (1.8), let ind $\mathcal{L}_{W}=\kappa$ and let $\kappa_{1}=\operatorname{ind}_{-}\left(\mathcal{L}_{W}\right)$, $\kappa_{2}=\kappa-\kappa_{1}$. Assume that:
(A1) $\mathfrak{h}_{W} \cap \Omega_{0} \neq \emptyset$;
(A2) The closure $\overline{\mathcal{L}_{W}}$ of \mathcal{L}_{W} is nondegenerate in $\mathcal{K}(W)$.
Then the following implications hold:
(1) $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \Longrightarrow \overline{\mathcal{L}_{W}}=\mathcal{K}(W)$;
(2) $\mathcal{K}(\widetilde{W}) \subset L_{2}^{m \times m} \Longrightarrow W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$.

Denote by $\mathcal{R}^{m \times m}$ the set of rational $m \times m$-mvf's. The following criterion for a rational mvf $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ to be right A-regular is given in [15]. We will present here a simpler proof of this result.

Theorem 2.7. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ be a rational mvf. Then
(1) $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \Longleftrightarrow \mathcal{L}_{W}=\mathcal{K}(W)$.
(2) $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \Longleftrightarrow W \in \widetilde{L}_{2}^{m \times m}$.

Proof. Let $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \cap \mathcal{R}^{m \times m}$. Then by Lemma $2.6 \overline{\mathcal{L}_{W}}=\mathcal{K}(W)$, and since W is rational, $\mathcal{L}_{W}=\overline{\mathcal{L}_{W}}=\mathcal{K}(W)$. Therefore, $\mathcal{K}(W) \subset L_{2}^{m \times m}$. Hence $W \in \widetilde{L}_{2}^{m \times m}$. The converse is immediate from Lemma 3.19(3) in [15].

Lemma 2.8. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$. Then:

$$
W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{\ell, R}\left(j_{p q}\right)
$$

Proof. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and assume that $\widetilde{W}=\widetilde{W}^{(1)} \widetilde{W}^{(2)}$, where $\widetilde{W}^{(1)} \in$ $\mathcal{U}_{\kappa_{1}}^{r, S}\left(j_{p q}\right), \widetilde{W}^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right)$. Then

$$
W=W^{(2)} W^{(1)}, \quad \text { where } \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{\ell, S}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{r}\left(j_{p q}\right)
$$

By the regularity of $W, W^{(1)} \equiv$ const. Hence $\widetilde{W}^{(1)} \equiv$ const and thus $\widetilde{W} \in \mathcal{U}_{\kappa}^{\ell, R}\left(j_{p q}\right)$. The converse implication is obtained similarly.

The following theorem was proved in [15].
Theorem 2.9. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{R}^{m \times m}$. Then the following statements are equivalent:
(1) W admits the factorization

$$
\begin{equation*}
W=W^{(1)} W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r, R}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) \tag{2.5}
\end{equation*}
$$

with $\kappa=\kappa_{1}+\kappa_{2}$;
(2) \mathcal{L}_{W} is a nondegenerate subspace of $\mathcal{K}(W)$, ind_ $\mathcal{L}_{W}=\kappa_{1}$.

Moreover, if (2) is the case then the factors $W^{(1)}$ and $W^{(2)}$ in (2.5) are uniquely determined up to $j_{p q}$-unitary factors.

In the classical case $(\kappa=0)$ this result coincides with the factorization Theorem in [10].

Let us present now an analog of Theorem 2.9 for A-singular- A-regular factorizations.

Corollary 2.10. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{R}^{m \times m}$. Then the following statements are equivalent:
(1) W admits the factorization

$$
\begin{equation*}
W=W^{(2)} W^{(1)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{\ell, R}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{r, S}\left(j_{p q}\right) \tag{2.6}
\end{equation*}
$$

with $\kappa=\kappa_{1}+\kappa_{2}$;
(2) $\mathcal{L}_{\widetilde{W}}$ is a nondegenerate subspace of $\mathcal{K}(\widetilde{W})$, ind $\mathcal{L}_{\widetilde{W}}=\kappa_{1}$.

Moreover, if (2) is the case then the factors $W^{(1)}$ and $W^{(2)}$ in (2.5) are uniquely determined up to $j_{p q}$-unitary factors.

Proof. Assume that (2) holds and consider the mvf $\widetilde{W} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap$ $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{R}^{m \times m}$ see (1.20). By Theorem 2.9

$$
\begin{equation*}
\widetilde{W}=\widetilde{W}^{(1)} \widetilde{W}^{(2)}, \quad \text { where } \quad \widetilde{W}^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r, R}\left(j_{p q}\right), \widetilde{W}^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) \tag{2.7}
\end{equation*}
$$

with $\kappa_{1}+\kappa_{2}=\kappa$. Hence by Lemma 2.3 and 2.8 W admits the factorization (2.6). Conversely, let (1) holds. Then by (1.20), Lemma 2.3 and 2.8 the $\operatorname{mvf} \widetilde{W}$ admits the factorization (2.7) and hence by Theorem 2.9 the statement (2) holds.

The following example illustrates importance of the condition (2) of Theorem 2.9.

Example 2.11. Let

$$
W_{1}(\lambda)=\frac{1}{2 \lambda-2}\left[\begin{array}{cc}
\lambda^{2}-3 \lambda+1 & \lambda^{2}-\lambda+1 \\
\lambda^{2}-\lambda+1 & \lambda^{2}-3 \lambda+1
\end{array}\right]
$$

As was shown in [15], this mvf W_{1} belongs to $\mathcal{U}_{1}^{r}\left(j_{11}\right) \cap \mathcal{U}_{1}^{\ell}\left(j_{11}\right)$ and it does not admit the A-regular $-A$-singular factorization.

The RKPS $\mathcal{K}\left(W_{1}\right)$ and the subspace $\mathcal{L}_{W_{1}}$ take the form

$$
\mathcal{K}\left(W_{1}\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right], \frac{1}{\lambda-1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}, \quad \mathcal{L}_{W_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} .
$$

and $\mathcal{L}_{W_{1}}$ is a degenerate subspace of $\mathcal{K}\left(W_{1}\right)$ see [15]. Therefore, condition (2) of Theorem 2.9 does not holds. By Corollary $2.10 W_{1}$ does not admit an A-singular- A-regular factorization.

3. Generalized γ-generating matrices

Definition 3.1. Let $\mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ denote the class of $m \times m m v f$'s

$$
\mathfrak{A}(\mu)=\left[\begin{array}{ll}
a_{11}(\mu) & a_{12}(\mu) \tag{3.1}\\
a_{21}(\mu) & a_{22}(\mu)
\end{array}\right]
$$

with blocks a_{11} of size $p \times p$ and a_{22} of size $q \times q$ such that:
(1) $\mathfrak{A}(\mu)$ is a measurable on Ω_{0} mvf that is $j_{p q}$-unitary a.e. on Ω_{0};
(2) $s_{21}=-a_{22}^{-1} a_{21} \in \mathcal{S}_{\kappa}^{q \times p}$;
(3) $\left(a_{11}^{\#}\right)^{-1} b_{r}=a_{1} \in \mathcal{S}_{\text {out }}^{p \times p}, b_{\ell} a_{22}^{-1}=a_{2} \in \mathcal{S}_{\text {out }}^{q \times q}$, where b_{ℓ}, b_{r} are $B P$ products of degree κ which are determined by KL-factorizations of s_{21}.

The mvf's in the class $\mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ are called generalized right γ-generating matrices.

Definition 3.2. Let $\mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)$ denote the class of $m \times m$ mvf's $\mathfrak{A}(\mu)$ of the form (3.1), such that:
(1) $\mathfrak{A}(\mu)$ is a measurable on Ω_{0} mvf that is $j_{p q}$-unitary a.e. on Ω_{0};
(2) $s_{12}=a_{12} a_{22}^{-1} \in \mathcal{S}_{\kappa}^{p \times q}$;
(3) $\mathfrak{b}_{\ell}\left(a_{11}^{\#}\right)^{-1}=\mathfrak{a}_{1} \in \mathcal{S}_{\text {out }}^{p \times p}, a_{22}^{-1} \mathfrak{b}_{r}=\mathfrak{a}_{2} \in \mathcal{S}_{\text {out }}^{q \times q}$, where \mathfrak{b}_{ℓ}, \mathfrak{b}_{r} are BPproduct of degree κ which are determined by KL-factorizations of s_{12}.

The mvf's in the class $\mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)$ are called generalized left γ-generating matrices.

Definition 3.3. An ordered pair $\left\{b_{1}, b_{2}\right\}$ of inner mvf's $b_{1} \in \mathcal{N}^{p \times p}$, $b_{2} \in \mathcal{N}^{q \times q}$ is called a denominator of the mvf $f \in \mathcal{N}^{p \times q}$, if $b_{1} f b_{2} \in \mathcal{N}_{+}^{p \times q}$. The set of denominators of f will be denoted by den (f).

Theorem 3.4. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$, let $b_{\ell}, s_{\ell}, b_{r}, s_{r}$ be defined by KL-factorization of $s_{21} \in \mathcal{S}_{\kappa}^{q \times p}$. Let $c_{\ell}, d_{\ell}, c_{r}, d_{r}$ be defined by (1.15) and let

$$
\begin{equation*}
f_{0}^{r}:=\left(-a_{11} d_{\ell}+a_{12} c_{\ell}\right)\left(-a_{21} d_{\ell}+a_{22} c_{\ell}\right)^{-1}=\left(-a_{11} d_{\ell}+a_{12} c_{\ell}\right) a_{2} \tag{3.2}
\end{equation*}
$$

Then:
(i) if $\operatorname{den}\left(f_{0}^{r}\right) \neq \emptyset$ and $\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}^{r}\right)$ then

$$
W(z)=\left[\begin{array}{cc}
b_{1} & 0 \tag{3.3}\\
0 & b_{2}^{-1}
\end{array}\right] \mathfrak{A}(z) \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right), \quad\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)
$$

and hence $\mathfrak{A} \in \Pi^{m \times m}$. Conversely, if

$$
\begin{equation*}
W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \quad \text { and } \quad\left\{b_{1}, b_{2}\right\} \in a p^{r}(W) \tag{3.4}
\end{equation*}
$$

then

$$
\mathfrak{A}(z)=\left[\begin{array}{cc}
b_{1}^{-1} & 0 \\
0 & b_{2}
\end{array}\right] W(z) \in \Pi^{m \times m} \cap \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right) \text { and }\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}^{r}\right)
$$

(ii) if $\mathfrak{A} \in \Pi^{m \times m}$ then $\operatorname{den}\left(f_{0}^{r}\right) \neq \emptyset$ and, moreover, for some choice of mvf's $c_{\ell}, d_{\ell}, c_{r}, d_{r}$ in (1.15) one gets $f_{0}^{r} \in \Pi$.
(iii) if $\left\{c_{\ell}^{(i)}, d_{\ell}^{(i)}, c_{r}^{(i)}, d_{r}^{(i)}\right\}(i=1,2)$ are two sets of mvf's satisfying (1.15) and

$$
\begin{equation*}
f_{0}^{r, i}=\left(-a_{11} d_{\ell}^{(i)}+a_{12} c_{\ell}^{(i)}\right) a_{2}, \quad i \in\{1,2\} \tag{3.5}
\end{equation*}
$$

then $\operatorname{den}\left(f_{0}^{r, 1}\right)=\operatorname{den}\left(f_{0}^{r, 2}\right)$.
Proof. (i) The first implication holds by Theorem 4.3 from [14]. The converse implication follows from Theorem 4.3 and from the fact that $W \in \Pi^{m \times m}$ since W is $j_{p q}$-unitary. By virtue of $\left[\begin{array}{cc}b_{1}^{-1} & 0 \\ 0 & b_{2}\end{array}\right] \in \Pi^{m \times m}$, this implies $\mathfrak{A} \in \Pi^{m \times m}$.
(ii) Since $\mathfrak{A} \in \Pi^{m \times m}$ one has $a_{11}, a_{12}, a_{2} \in \Pi$. By Proposition 1.5 the mvf's c_{ℓ} and d_{ℓ} can be chosen from Π. Therefore, $f_{0}^{r} \in \Pi$.
(iii) Let $\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}^{r, 1}\right)$ and let $W(z)$ be given by (3.3). Then by item (i) $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$. Let us set

$$
K^{(i)}=\left(-w_{11} d_{\ell}^{(i)}+w_{12} c_{\ell}^{(i)}\right) a_{2} b_{2}, \quad i=\{1,2\}
$$

Then by [13, Theorem 4.11]

$$
\begin{equation*}
\left(b_{1} a_{1}\right)^{-1}\left(K^{(1)}-K^{(2)}\right)\left(a_{2} b_{2}\right)^{(-1)} \in H_{\infty}^{p \times q} . \tag{3.6}
\end{equation*}
$$

Since $K^{(i)}=b_{1} f_{0}^{r, i} b_{2}(i=1,2)$ one gets from (3.6)

$$
f_{0}^{r, 1}-f_{0}^{r, 2} \in H_{\infty}^{p \times q}
$$

Therefore, $\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}^{r, 2}\right)$. Clearly, the converse implication is also true.

Remark 3.5. A similar assertion also holds for the class of generalized left γ-generating matrices. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right), \mathfrak{b}_{\ell}, \mathfrak{s}_{\ell}, \mathfrak{b}_{r}, \mathfrak{s}_{r}$ be defined by KL-factorization of $s_{12} \in \mathcal{S}_{\kappa}^{q \times p}$. Let $\mathfrak{c}_{\ell}, \mathfrak{d}_{\ell}, \mathfrak{c}_{r}, \mathfrak{d}_{r}$ defined by (1.24) and let

$$
\begin{equation*}
f_{0}^{\ell}:=\mathfrak{a}_{2}\left(-\mathfrak{d}_{r} a_{11}+\mathfrak{c}_{r} a_{21}\right)=\left(-\mathfrak{d}_{r} a_{12}+\mathfrak{c}_{r} a_{22}\right)^{-1}\left(-\mathfrak{d}_{r} a_{11}+\mathfrak{c}_{r} a_{21}\right) \tag{3.7}
\end{equation*}
$$

Then:
(i) if $\operatorname{den}\left(f_{0}^{\ell}\right) \neq \emptyset$ and $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in \operatorname{den}\left(f_{0}^{\ell}\right)$ then

$$
W(z)=\mathfrak{A}(z)\left[\begin{array}{cc}
\mathfrak{b}_{1} & 0 \tag{3.8}\\
0 & \mathfrak{b}_{2}^{-1}
\end{array}\right] \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)
$$

and $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in a p^{\ell}(W)$. Conversely, if

$$
\begin{equation*}
W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \quad \text { and } \quad\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in a p^{\ell}(W) \tag{3.9}
\end{equation*}
$$

then

$$
\mathfrak{A}(z)=W(z)\left[\begin{array}{cc}
\mathfrak{b}_{1}^{-1} & 0 \\
0 & \mathfrak{b}_{2}
\end{array}\right] \in \Pi^{m \times m} \cap \mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right) \text { and }\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in \operatorname{den}\left(f_{0}^{\ell}\right) .
$$

(ii) if $\mathfrak{A} \in \Pi^{m \times m}$ then $\operatorname{den} f_{0}^{\ell} \neq \emptyset$ and, moreover, the mvf's $\mathfrak{c}_{\ell}, \mathfrak{d}_{\ell}, \mathfrak{c}_{r}, \mathfrak{d}_{r}$ in (1.24) can be chosen from Π and then $f_{0}^{\ell} \in \Pi$.
(iii) $\left\{\mathfrak{c}_{\ell}^{(i)}, \mathfrak{a}_{\ell}^{(i)}, \mathfrak{c}_{r}^{(i)}, \mathfrak{a}_{r}^{(i)}\right\}(i=1,2)$ two sets of mvf's defined by (1.24)

$$
\begin{gathered}
f_{0}^{\ell, i}=\mathfrak{a}_{2}\left(-\mathfrak{d}_{r} a_{11}+\mathfrak{c}_{r} a_{21}\right), \quad\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \alpha_{2}\left(-\mathfrak{d}_{r}^{(i)} a_{11}+\mathfrak{c}_{r}^{(i)} a_{21}\right), \\
\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in \operatorname{den} f_{0}^{\ell, i}, \quad i=\{1,2\}
\end{gathered}
$$

then $\operatorname{den} f_{0}^{\ell, 1}=\operatorname{den} f_{0}^{\ell, 2}$.

Definition 3.6. We define the denominator of generalized right γ-generating mvf $\mathfrak{A} \in \Pi^{m \times m} \cap \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ as

$$
\operatorname{den}^{r}(\mathfrak{A}):=\operatorname{den} f_{0}^{r}
$$

and the denominator of left generalized γ-generating mvf $\mathfrak{A} \in \Pi^{m \times m} \cap$ $\mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)$ as

$$
\operatorname{den}^{\ell}(\mathfrak{A}):=\operatorname{den} f_{0}^{\ell}
$$

Definition 3.7. Let a $m v f \mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ is said to be
(1) right singular and is written as $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r, S}$ if $f_{0}^{r}=\left(-a_{11} d_{\ell}+\right.$ $\left.a_{12} c_{\ell}\right) a_{2} \in H_{\infty}^{p \times q}$,
(2) right regular and is written as $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r, R}$ if the factorization $\mathfrak{A}=$ $\mathfrak{A}_{1} \mathfrak{A}_{2}$, with $\mathfrak{A}_{1} \in \mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ and $\mathfrak{A}_{2} \in \mathfrak{M}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right), \kappa_{1}+\kappa_{2}=\kappa$ implies that $\mathfrak{A}_{2} \equiv$ const.

Definition 3.8. Let a $m v f \mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)$ is said to be
(1) left singular and is written as $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell, S}$ if $f_{0}^{\ell}=\mathfrak{a}_{2}\left(-\mathfrak{d}_{r} a_{11}+\mathfrak{c}_{r} a_{21}\right) \in$ $H_{\infty}^{p \times q}$,
(2) left regular and is written as $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell, R}$ if the factorization $\mathfrak{A}=$ $\mathfrak{A}_{2} \mathfrak{A}_{1}$, with $\mathfrak{A}_{1} \in \mathfrak{M}_{\kappa_{1}}^{\ell}\left(j_{p q}\right)$ and $\mathfrak{A}_{2} \in \mathfrak{M}_{\kappa_{2}}^{r S}\left(j_{p q}\right), \kappa_{1}+\kappa_{2}=\kappa$ implies that $\mathfrak{A}_{2} \equiv$ const.

In the case $\kappa=0$, the left singularity coincides with the right singularity, therefore our definition coincides with the definition in [8].

4. Fatorization of γ-generating matrices

Lemma 4.1. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right) \cap \Pi^{m \times m}$. Then:

$$
\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r, S}\left(j_{p q}\right) \Longleftrightarrow \mathfrak{A} \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)
$$

Proof. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r, S}\left(j_{p q}\right)$, then $f_{0}=\left(-a_{11} d_{\ell}+a_{12} c_{\ell}\right) a_{2} \in H_{\infty}^{p \times p}$, therefore $\left\{I_{p}, I_{q}\right\} \in \operatorname{den} f_{0}^{r}$. In view of Theorem 3.4 this implies $\mathfrak{A} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $\left\{I_{p}, I_{q}\right\} \in a p^{r}(\mathfrak{A})$. Hence by Theorem $2.1 \mathfrak{A} \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)$.

Conversely, if $\mathfrak{A} \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)$ and $\left\{b_{1}, b_{2}\right\} \in a p^{r}(\mathfrak{A})$, then $b_{i} \equiv$ const, $i=\{1,2\}$. Hence by Theorem $3.4 \mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right),\left\{b_{1}, b_{2}\right\} \in \operatorname{den} f_{0}^{r}$, i.e. $f_{0}^{r} \in H_{\infty}^{p \times q}$, and thus $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r, S}\left(j_{p q}\right)$
Corollary 4.2. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \Pi^{m \times m}$. Then:

$$
\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell, S}\left(j_{p q}\right) \Longleftrightarrow \mathfrak{A} \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right)
$$

Proof. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell, S}\left(j_{p q}\right)$, then $\widetilde{\mathfrak{A}} \in \mathfrak{M}_{\kappa}^{r, S}\left(j_{p q}\right)$, hence by Lemma 4.1 $\widetilde{\mathfrak{A}} \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)$, and thus $\mathfrak{A} \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right)$. Analogously, the assumption $\mathfrak{A} \in \mathcal{U}_{\kappa}^{\ell, S}$ implies $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell, S}$.

Lemma 4.3. Let $\mathfrak{A}^{\prime}, \mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ and $\mathfrak{A}^{\prime}=\left[\begin{array}{cc}\theta_{1}^{-1} & 0 \\ 0 & \theta_{2}\end{array}\right] \mathfrak{A}$, $\theta_{1} \in \mathcal{S}_{i n}^{p \times p}$, $\theta_{2} \in \mathcal{S}_{\text {in }}^{q \times q}$. Then $\theta_{1} \equiv$ const, $\theta_{2} \equiv$ const.
Proof. Let $\mathfrak{A}^{\prime}(\mu)=\left[\begin{array}{ll}a_{11}^{\prime}(\mu) & a_{12}^{\prime}(\mu) \\ a_{21}^{\prime}(\mu) & a_{22}^{\prime}(\mu)\end{array}\right]$ and let the $\operatorname{mvf} \mathfrak{A}(\mu)$ has block representation (3.1). Then

$$
\mathfrak{A}^{\prime}=\left[\begin{array}{cc}
\theta_{1}^{-1} & 0 \\
0 & \theta_{2}
\end{array}\right] \mathfrak{A}=\left[\begin{array}{cc}
\theta_{1}^{-1} a_{11} & \theta_{1}^{-1} a_{12} \\
\theta_{2} a_{21} & \theta_{2} a_{22}
\end{array}\right]
$$

and hence by Definition 3.1

$$
s_{21}^{\prime}:=-\left(a_{22}^{\prime}\right)^{-1} a_{21}^{\prime}=-a_{22}^{-1} \theta_{2}^{-1} \theta_{2} a_{21}=-a_{22}^{-1} a_{21}=s_{21} \in \mathcal{S}_{\kappa}^{q \times p}
$$

This means that the Krein-Langer factorizations of s_{21} and s_{21}^{\prime} coincide

$$
s_{21}^{\prime}=s_{21}=b_{\ell}^{-1} s_{\ell}=s_{r} b_{r}^{-1}
$$

where $b_{\ell} \in \mathcal{S}_{i n}^{q \times q}, b_{r} \in \mathcal{S}_{i n}^{q \times q}, s_{\ell}, s_{r} \in \mathcal{S}^{q \times p}$. Hence

$$
a_{1}^{\prime}=\left(a_{11}^{\prime}\right)^{-\#} b_{r}=\theta_{1}^{\#}\left(a_{11}\right)^{-\#} b_{r} \in \mathcal{S}_{o u t}^{p \times p}, \quad \text { and } \quad a_{1}=a_{11}^{-\#} b_{r} \in \mathcal{S}_{o u t}^{q \times p} .
$$

This is possible only when $\theta_{1} \equiv$ const. Analogously,

$$
a_{2}^{\prime}=b_{\ell}\left(a_{22}^{\prime}\right)^{-1}=b_{\ell} a_{22}^{-1} \theta_{2}^{-1} \in \mathcal{S}_{o u t}^{q \times q} \quad \text { and } \quad a_{2}=b_{\ell} a_{22}^{-1} \in \mathcal{S}_{o u t}^{q \times q}
$$

consequently $\theta_{2} \equiv$ const.
Lemma 4.4. Let a mvf $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right) \cap \Pi^{m \times m}$ admits the factorization

$$
\begin{equation*}
\mathfrak{A}=\mathfrak{A}^{(1)} \mathfrak{A}^{(2)}, \quad \text { where } \quad \mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right), \quad \mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right), \tag{4.1}
\end{equation*}
$$

with $\kappa_{1}+\kappa_{2}=\kappa$. Then $\operatorname{den}^{r}\left(\mathfrak{A}^{(1)}\right) \subset \operatorname{den}^{r}(\mathfrak{A})$.
Proof. Let a $\operatorname{mvf} \mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right) \cap \Pi^{m \times m}$ admits the factorization (4.1). Since $\mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{\ell, S}$, then $f_{0} \in H_{\infty}$ and then $\mathfrak{A}^{(2)} \in \Pi^{m \times m}$. Therefore $\mathfrak{A}^{(1)}=\mathfrak{A}\left(\mathfrak{A}^{(2)}\right)^{-1}$ and thus $\mathfrak{A}^{(1)} \in \Pi$. Let $\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{den}^{r}\left(\mathfrak{A}^{(1)}\right)$ and $\kappa_{1}+\kappa_{2}=\kappa$. By Theorem 3.4

$$
W^{(1)}=\left[\begin{array}{cc}
b_{1}^{(1)} & 0 \\
0 & \left(b_{2}^{(1)}\right)^{-1}
\end{array}\right] \mathfrak{A}^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right), \quad\left\{b_{1}^{(1)}, b_{2}^{(2)}\right\} \in a p^{r} W^{(1)}
$$

$$
W^{(2)}=\mathfrak{A}^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) .
$$

Let us set

$$
W^{\prime}:=\left[\begin{array}{cc}
b_{1}^{(1)} & 0 \\
0 & \left(b_{2}^{(1)}\right)^{-1}
\end{array}\right] \mathfrak{A}=\left[\begin{array}{cc}
b_{1}^{(1)} & 0 \\
0 & \left(b_{2}^{(1)}\right)^{-1}
\end{array}\right] \mathfrak{A}^{(1)} \mathfrak{A}^{(2)}=W^{(1)} W^{(2)} .
$$

Then $W^{\prime} \in \mathcal{U}_{\kappa^{\prime}}, \kappa^{\prime} \leq \kappa_{1}+\kappa_{2}=\kappa$ (see [4] or [13]).
On the other hand, $s_{21}=-\left(w_{22}^{\prime}\right)^{-1} w_{21}^{\prime}=-a_{22}^{-1} a_{21} \in \mathcal{S}_{\kappa}^{p \times q}$, hence $\kappa^{\prime} \geq \kappa$ and therefore $\kappa^{\prime}=\kappa$. Then $W^{\prime} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$.

Let $\left\{b^{\prime}{ }_{1}, b^{\prime}{ }_{2}\right\} \in a p^{r}\left(W^{\prime}\right)$, hence, in view of Lemma $2.4 b_{1}^{\prime}=b_{1}^{(1)} \theta_{1}$, $b_{2}^{\prime}=\theta_{2} b_{2}^{(1)}$. By Theorem 3.4

$$
\begin{gathered}
\mathfrak{A}^{\prime}=\left[\begin{array}{cc}
b_{1}^{\prime-1} & 0 \\
0 & b_{2}^{\prime}
\end{array}\right] W^{\prime}=\left[\begin{array}{cc}
b_{1}^{\prime-1} & 0 \\
0 & b_{2}^{\prime}
\end{array}\right] W^{(1)} W^{(2)} \\
=\left[\begin{array}{cc}
b_{1}^{\prime-1} & 0 \\
0 & b_{2}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
b_{1}^{(1)} & 0 \\
0 & \left(b_{2}^{(2)}\right)^{-1}
\end{array}\right] \mathfrak{A}^{(1)} \mathfrak{A}^{(2)}=\left[\begin{array}{cc}
\theta_{1}^{-1} & 0 \\
0 & \theta_{2}
\end{array}\right] \mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right),
\end{gathered}
$$

Hence, by Lemma $4.3 \theta_{1} \equiv$ const, $\theta_{2} \equiv$ const. Consequently $\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in$ $a p^{r}\left(W^{\prime}\right)$. Thus by Theorem $3.4\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{den}^{r}(\mathfrak{A})$.

Lemma 4.5. Let a mvf $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right) \cap \widetilde{L}_{2}^{p \times q} \cap \mathcal{R}^{m \times m}$. Then $\mathfrak{A} \in$ $\mathfrak{M}_{\kappa}^{r, R}\left(j_{p q}\right)$.
Proof. Let $\mathfrak{A}=\mathfrak{A}^{(1)} \mathfrak{A}^{(2)}$, where $\mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right)$, $\mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right)$, $\kappa_{1}+\kappa_{2}=\kappa$. Let $\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{den}^{r}\left(\mathfrak{A}^{(1)}\right)$, then by Lemma 4.4 the pair $\left\{b_{1}^{(1)}, b_{2}^{(2)}\right\} \in \operatorname{den}^{r}(\mathfrak{A})$. By Theorem 3.4

$$
W^{(1)}=\left[\begin{array}{cc}
b_{1}^{(1)} & 0 \\
0 & \left(b_{2}^{(1)}\right)^{-1}
\end{array}\right] \mathfrak{A}^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right) \quad W^{(2)}=\mathfrak{A}^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right),
$$

and

$$
\begin{aligned}
W & =\left[\begin{array}{cc}
b_{1}^{(1)} & 0 \\
0 & \left(b_{2}^{(1)}\right)^{-1}
\end{array}\right] \mathfrak{A}=\left[\begin{array}{cc}
b_{1}^{(1)} & 0 \\
0 & \left(b_{2}^{(1)}\right)^{-1}
\end{array}\right] \mathfrak{A}^{(1)} \mathfrak{A}^{(2)} \\
& =W^{(1)} W^{(2)} \in \mathcal{U}_{\kappa}\left(j_{p q}\right) .
\end{aligned}
$$

Since $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right) \cap \widetilde{L}_{2}^{m \times m}$, then by Theorem $2.7(2) W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$.
By this condition $\mathfrak{A}^{(2)}=W^{(2)} \equiv$ const. This implies $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r, R}\left(j_{p q}\right)$.

An analogous statement for the left class $\mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)$ can be easily obtained with the help of the transformation (1.19).

Lemma 4.6. Let a mvf $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \widetilde{L}_{2}^{p \times q} \cap \mathcal{R}^{m \times m}$. Then $\mathfrak{A} \in$ $\mathfrak{M}_{\kappa}^{\ell, R}\left(j_{p q}\right)$.

Theorem 4.7. Let a mvf $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{R}^{m \times m},\left\{b_{1}, b_{2}\right\} \in \operatorname{den}^{r}(\mathfrak{A})$, let W be given by (3.3) and let:
(1) $W(z) \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$,
(2) \mathcal{L}_{W} be a nondegenerate subspace of $\mathcal{K}(W)$.

Then the mvf \mathfrak{A} admits regular-singular factorization

$$
\begin{equation*}
\mathfrak{A}=\mathfrak{A}^{(1)} \mathfrak{A}^{(2)}, \quad \mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_{1}}^{r, R}\left(j_{p q}\right), \quad \mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right), \tag{4.2}
\end{equation*}
$$

where $\kappa_{1}=$ ind \mathcal{L}_{W} and $\kappa_{2}=\kappa-\kappa_{1}$.
Proof. Let condition (1) holds and let $\left\{b_{1}, b_{2}\right\} \in a p(W)$. Then by Theorem 2.9, W admits the factorization $W=W^{(1)} W^{(2)}$, where $W^{(1)} \in$ $\mathcal{U}_{\kappa_{1}}^{r, R}\left(j_{p q}\right)$ and $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right), \quad \kappa=\kappa_{1}+\kappa_{2}$. By Theorem 3.4 $W \in$ $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$. By Theorem 2.7 (2) and hence by Lemma $3.12[15] a p^{r}(W)=a p^{r}\left(W^{(1)}\right)$.

Hence, upon applying $\left[\begin{array}{cc}b_{1}^{-1} & 0 \\ 0 & b_{2}\end{array}\right]$ to the mvf W and by Theorem 3.4 and Lemma 4.1 we obtain
$\mathfrak{A}=\mathfrak{A}^{(1)} \mathfrak{A}^{(2)}$, where $\mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right), \mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right), \kappa_{1}+\kappa_{2}=\kappa$.
Since $W^{(1)} \in \widetilde{L}_{2}^{m \times m}$, then $\mathfrak{A}^{(1)} \in \widetilde{L}_{2}^{m \times m}$, and thus by Lemma 4.5 $\mathfrak{A}^{(1)} \in$ $\mathfrak{M}_{\kappa}^{r, R}\left(j_{p q}\right)$.

Theorem 4.8. Let a mvf $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{R},\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in \operatorname{den}{ }^{\ell}(\mathfrak{A})$, let W be given by (3.8) and let:
(1) $W(z) \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$,
(2) $\mathcal{L}_{\widetilde{W}}$ be a nondegenerate of $\mathcal{K}(\widetilde{W})$, with negative index ind $\mathcal{L}_{\widetilde{W}}=$ κ_{1}.

Then \mathfrak{A} admits regular-singular factirization

$$
\begin{equation*}
\mathfrak{A}=\mathfrak{A}^{(2)} \mathfrak{A}^{(1)}, \quad \mathfrak{A}^{(1)} \in \mathfrak{M}_{\kappa_{1}}^{\ell, R}\left(j_{p q}\right), \quad \mathfrak{A}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{r, S}\left(j_{p q}\right), \tag{4.3}
\end{equation*}
$$

where $\kappa_{1}=$ ind $_{-} \mathcal{L}_{\widetilde{W}}$ and $\kappa_{2}=\kappa-\kappa_{1}$.

Proof. Let $\mathfrak{A} \in \mathfrak{M}_{\kappa}^{\ell}\left(j_{p q}\right)$, then $\widetilde{\mathfrak{A}} \in \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ and the mvf's $\widetilde{W}(z)$ and $\widetilde{\mathfrak{A}}(z)$ satisfy the assumptions of Theorem 4.7. By Theorem 4.7 $\widetilde{\mathfrak{A}}$ admits a factorization

$$
\begin{equation*}
\widetilde{\mathfrak{A}}=\widetilde{\mathfrak{A}}^{(1)} \widetilde{\mathfrak{A}}^{(2)}, \quad \widetilde{\mathfrak{A}}^{(1)} \in \mathfrak{M}_{\kappa_{1}}^{r, R}\left(j_{p q}\right), \quad \widetilde{\mathfrak{A}}^{(2)} \in \mathfrak{M}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) \tag{4.4}
\end{equation*}
$$

where $\kappa_{1}+\kappa_{2}=\kappa$.
Using the transformation (1.19) again, we obtain (4.3).

References

[1] V. M. Adamjan, D. Z. Arov, M. G. Krein, Infinite Hankel matrices and generalized problems of Carathodory-Fejer and I. Schur problems // Funktsional. Anal. i Prilozhen, 2 (1968), No. 4, 1-17.
[2] V. M. Adamjan, Nondegenerate unitary couplings of semiunitary operators // Funktsional. Anal. i Prilozhen., 7 (1973), No. 4, 1-16.
[3] D. Alpay, A. Dijksma, J. Rovnyak, H. S. V. de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces // Oper. Theory: Adv. Appl., 96, (1997), 229.
[4] D. Alpay, H. Dym, On applications of reproducing kernel spaces to the Schur algorithm and rational J unitary factorization. I. Schur methods in operator theory and signal processing // Oper. Theory Adv. Appl., 18 (1986), 89-159.
[5] N. Aronszajn, Theory of reproducing kernels // Trans. Amer. Math. Soc., 68 (1950), 337-404.
[6] D.Z. Arov, Realization of matrix-valued functions according to Darlington // Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 1299-1331.
[7] D. Z. Arov, Regular and singular J-inner matrix functions and corresponding extrapolation problems // Funktsional. Anal. i Prilozhen., 22 (1988), No. 1, 5759 [in Russian]; transl. in Funct. Anal. Appl., 22 (1988), No. 1, 46-48.
[8] D. Z. Arov, γ-generating matrices, j-inner matrix-functions and related extrapolation problems // Teor. Funktsii Funktsional. Anal. i Prilozhen, I, 51 (1989), 61-67; II, 52 (1989), 103-109 [in Russian]; transl. in J. Soviet Math. I, 52 (1990), 3487-3491; II, 52 (1990), 3421-3425.
[9] D. Z. Arov, H. Dym, J-inner matrix function, interpolation and inverse problems for canonical system, I: foundation, Integral Equations // Operator Theory, 28 (1997), 1-16.
[10] D. Z. Arov, H. Dym,J-Contractive Matrix Valued Functions and Related Topics, Cambridge University Press, Cambridge, 2008.
[11] T. Ya. Azizov, I. S. Iokhvidov, Foundations of the theory of linear operators in spaces with an indefinite metric, Nauka, Moscow, 1986.
[12] J. Bognar, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York-Heidelberg, 78, 1974.
[13] V. A. Derkach, H. Dym, On linear fractional transformations associated with generalized J-inner matrix functions // Integ. Eq. Oper. Th., 65 (2009), 1-50.
[14] V. A. Derkach, O. Sukhorukova, Generalized γ-generating matrices and NehariTakagi problem // Oper. Matrices, 10 (2016), No. 4, 1073-1091.
[15] V. Derkach, O. Sukhorukova, A-regular-A-singular factorizations of generalized J-inner matrix functions //Journal of Mathematical Sciences, 23 (2017), No. 3, 231-251.
[16] B. Francis, A Cource in H_{∞} Control Theory, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 88, 1987.
[17] M. G. Krein, H. Langer, Über die verallgemeinerten Resolventen und die characteristische Function eines isometrischen Operators im Raume $\Pi_{\kappa} / /$ Hilbert space Operators and Operator Algebras (Proc. Intern. Conf.,Tihany, 1970); Colloq. Math. Soc. Janos Bolyai, 5, (1972), 353-399.
[18] L. Schwartz, Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associes // J. Analyse Math., 13 (1964), 115-256.
[19] O. Sukhorukova, Factorization formulas for some classes of generalized J-inner matrix valued functions // Methods Funct. Anal. Topology, 20 (2014), No. 4, 365-378.
[20] O. Sukhorukova, Generalized γ-generating matrices // Ukr. Mat. Visn, 12 (2015), No.4, 539-558 [in Russian]; transl. in J. of Math. Sci., 218, (2016) No. 1, 89-104.

Contact information

Olena Sukhorukova National Pedagogical Dragomanov
University, Kiev, Ukraine
E-Mail: sukhorukova.elena.ua@gmail.com

