

Recent progress in Subset Combinatorics of Groups

IGOR V. PROTASOV, KSENIA D. PROTASOVA

Abstract. We systematize and analyze some results obtained in Subset Combinatorics of G groups after publications the previous surveys [1–4]. The main topics: the dynamical and descriptive characterizations of subsets of a group relatively their combinatorial size, Ramsey-product subsets in connection with some general concept of recurrence in Gspaces, new ideals in the Boolean algebra \mathcal{P}_G of all subsets of a group G and in the Stone-Čech compactification βG of G, the combinatorial derivation.

2010 MSC. 20A05, 20F99, 22A15, 06E15, 06E25.

Key words and phrases. Large, small, thin, thick, sparse and scattered subsets of groups; descriptive complexity; Boolean algebra of subsets of a group; Stone- \check{C} ech compactification; ultracompanion; Ramseyproduct subset of a group; recurrence; combinatorial derivation.

1. Introduction

In this paper, we systematize and analyze some results obtained in Subset Combinatorics of Groups after publications the surveys [1–4]. The main topics: the descriptive and dynamical characterizations of subsets of a group with respect to their combinatorial size, Ramsey-product subsets in connection with some general concept of recurrence, new ideals in the Boolean algebra \mathcal{P}_G of all subsets of G and in the Stone-Čech compactification βG of G, the combinatorial derivation.

In these investigations, the principal part play ultrafilters on a group G. On one hand, ultrafilters are using as a tool to get some purely combinatorial results. On the other hand, the *Subset Combinatorics of Groups* allows to prove new facts about ultrafilters, in particular, about the Stone-Čech compactification βG of G. In this connection, we recall some basic definitions concerning ultrafilters.

A filter \mathcal{F} on a set X is a family of subsets of X such that

Received 03.12.2017

- $\emptyset \notin \mathcal{F}, X \in \mathcal{F};$
- $A, B \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F};$
- $A \in \mathcal{F}, A \subseteq C \Longrightarrow C \in \mathcal{F}.$

The family of all filters on X is partially ordered by inclusion. A filter maximal in this ordering is called an *ultrafilter*. A filter \mathcal{F} is an ultrafilter if and only if $X = A \bigcup B$ implies $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

Now we endow X with the discrete topology and identity the Stone-Čech compactification βX with the set of all ultrafilters on X. An ultrafilter \mathcal{F} is principal if there exists $x \in X$ such that $\mathcal{F} = \{A \subseteq X : x \in A\}$. Otherwise, $\bigcap \mathcal{F} = \emptyset$ and \mathcal{F} is called free. Thus, X is identified with the set of all principal ultrafilters and the set of all free ultrafilter on X is denoted by X^* .

To describe the topology on βX , given any $A \subseteq X$ we denote $\overline{A} = \{\mathcal{F} \in X : A \in \mathcal{F}\}$. Then the set $\{\overline{A} : A \subseteq X\}$ is a base for the topology of X. The characteristic topological property of βX : every mapping $f : X \longrightarrow K$, K is a compact Hausdorff space, can be extended to the continuous mapping $f^{\beta} : \beta X \longrightarrow K$.

Given a filter φ on X, the set $\bar{\varphi} = \{p \in \beta X : \varphi \subseteq p\}$ is closed in βX , and for every non-empty closed subset K of βX , there is a filter φ on X such that $\bar{\varphi} = K$.

Now let G be a discrete group. Using the characteristic property of βG , we can extend the group multiplication on G to the semigroup multiplication on βG in such a way that, for every $g \in G$, the mapping $\beta G \longrightarrow G : p \longmapsto gp$ is continuous and, for every $q \in \beta G$, the mapping $\beta G \longrightarrow \beta G : p \longmapsto pq$ is continuous.

To define the product pq of ultrafilters p and q, we take an arbitrary $P \in p$ and, for each $x \in P$, pick some $Q_x \in q$. Then, $\bigcup_{x \in P} xQ_x$ is a member of pq, and each member of pq contains some subsets of this form.

For properties of the compact right topological semigroup βG and a plenty of its combinatorial application see [5].

2. Diversity of subsets and ultracompanions

Let G be a group with the identity e, \mathcal{F}_G denotes the family of all finite subsets of G. We say that a subset A of G is

- large if G = FA for some $F \in \mathcal{F}_G$;
- small if $L \setminus A$ is large for every large subset L;

- extralarge if $G \setminus A$ is small;
- thin if $gA \cap A$ is finite for each $g \in G \setminus \{e\}$;
- thick if, for every $F \in \mathcal{F}_G$, there exists $a \in A$ such that $Fa \subseteq A$;
- prethick if FA is thick for some $F \in \mathcal{F}_G$;
- *n*-thin, $n \in \mathbb{N}$ if, for every distinct elements $g_0, \ldots, g_n \in G$, the set $g_0 A \cap \cdots \cap g_n A$ is finite;
- sparse if, for every infinite subset X of G, there exists a finite subset $F \subset X$ such that $\bigcap_{q \in F} gA$ is finite.

Remark 2.1. In *Topological dynamics*, large subsets are known as syndetic, and a subset is small if and only if it fails to be piecewise syndetic. In [4], the authors use the dynamical terminology.

All above definitions can be unified with usage the following notion [6]. Given a subset A of a group G and an ultrafilter $p \in G^*$, we define a *p*-companion of A by

$$\Delta_p(A) = A^* \cap Gp = \{gp : g \in G, A \in gp\}.$$

Then, for every infinite group G, the following statement hold:

- A is large if and only if $\Delta_p(A) \neq \emptyset$ for each $p \in G^*$;
- A is small if and only if, for every $p \in G^*$ and every $F \in \mathcal{F}_G$, we have $\Delta_p(FA) \neq Gp$;
- A is thick if and only if, there exist $p \in G^*$ such that $\Delta_p(A) = Gp$;
- A is thin if and only if, $\Delta_p(A) \leq 1$ for every $p \in G^*$;
- A is n-thin if and only if, $\Delta_p(A) \leq n$ for every $p \in G^*$;
- A is sparse if and only if, $\Delta_p(A)$ is finite for each $p \in G^*$.

Following [1], we say that a subset A of G is *scattered* if, for every infinite subset X of A, there is $p \in X^*$ such that $\Delta_p(X)$ is finite. Equivalently [7, Theorem 1], A is scattered if each subset $\Delta_p(A)$ is discrete in G^* .

Comments. For motivations of above definitions see [1], for more delicate classification of subsets of a group and G-spaces see [2,8].

3. The descriptive look at the size of subsets of groups

Given a group G, we denote by \mathbf{P}_G and \mathbf{F}_G the Boolean algebra of all subsets of G and its ideal of all finite subsets. We endow \mathbf{P}_G with the topology arising from identification (via characteristic functions) of \mathbf{P}_G with $\{0,1\}^G$. For $K \in F_G$ the sets

$$\{X \in \mathbf{P}_G : K \subseteq X\}, \ \{X \in \mathbf{P}_G : X \cap K = \emptyset\}$$

form the subbase of this topology.

After the topologization, each family \mathcal{F} of subsets of a group G can be considered as a subspace of \mathbf{P}_G , so one can ask about the Borel complexity of \mathcal{F} , the question typical in the *Descriptive Set Theory* (see [9]). We ask these questions for the most intensively studied families in *Combinatorics* of *Groups*.

For a group G, we denote by \mathbf{L}_G , \mathbf{EL}_G , \mathbf{S}_G , \mathbf{T}_G , \mathbf{PT}_G the sets of all large, extralarge, small, thick and prethick subsets of G, respectively.

Theorem 3.1. For a countable group G, we have: \mathbf{L}_G is F_{σ} , \mathbf{T}_G is G_{δ} , \mathbf{PT}_G is $G_{\delta\sigma}$, \mathbf{S}_G and \mathbf{EL}_G are $F_{\sigma\delta}$.

A subset A of a group G is called

- *P-small* if there exists an injective sequence $(g_n)_{n \in \omega}$ in *G* such that the subsets $\{g_n A : n \in \omega\}$ are pairwise disjoint;
- weakly *P*-small if, for any $n \in \omega$, there exists g_0, \ldots, g_n such that the subsets g_0A, \ldots, g_nA are pairwise disjoint;
- almost P-small if there exists an injective sequence (g_n)_{n∈ω} in G such that g_nA ∩ g_mA is finite for all distinct n, m;
- near *P*-small if, for every $n \in \omega$, there exists g_0, \ldots, g_n such that $g_i A \cap g_j A$ is finite for all distinct $i, j \in \{0, \ldots, n\}$.

Every infinite group G contains a weakly P-small set, which is not P-small, see [10]. Each almost P-small subset can be partitioned into two P-small subsets [8]. Every countable Abelian group contains a near P-small subset which is neither weakly nor almost P-small [11].

Theorem 3.2. For a countable group G, the sets of thin, weakly P-small and near P-small subsets of G are $F_{\delta\sigma}$.

We recall that a topological space X is *Polish* if X is homeomorphic to a separable complete metric space. A subset A of a topological space X is analytic if A is a continuous image of some Polish space, and A is coanalytic if $X \setminus A$ is analytic.

Using the classical tree technique [9] adopted to groups in [12], we get.

Theorem 3.3. For a countable group G, the ideal of sparse subsets is coanalytic and the set of P-small subsets is analytic in \mathbf{P}_G .

Given a discrete group G, we identify the Stone-Čech compactification βG with the set of all ultrafilters on G and consider βG as a right-topological semigroup (see Introduction). Each non-empty closed subspace X of βG is determined by some filter φ on G:

$$X = \bigcap \{ \overline{\Phi} : \Phi \in \varphi \}, \ \overline{\Phi} = \{ p \in \beta G : \Phi \in p \}.$$

On the other hand, each filter φ on G is a subspace of \mathbf{P}_G , so we can ask about complexity of X as the complexity of φ in \mathbf{P}_G .

The semigroup βG has the minimal ideal K_G which play one of the key parts in combinatorial applications of βG . By [5], Theorem 1.5, the closure $cl(K_G)$ is determined by the filter of all extralarge subsets of G. If G is countable, applying Theorem 3.1, we conclude that $cl(K_G)$ has the Borel complexity $F_{\sigma\delta}$.

An ultrafilter p on G is called *strongly prime* if $p \notin cl(G^*G^*)$, where G^* is a semigroup of all free ultrafilters on G. We put $X = cl(G^*G^*)$ and choose the filter φ_X which determine X. By [13], $A \in \varphi_X$ if and only if $G \setminus A$ is sparse. If G is countable, applying Theorem 3.3, we conclude that φ_X is coanalitic in \mathbf{P}_G .

Let $(g_n)_{n \in \omega}$ be an injective sequence in G. The set

$$\{g_{i_1}g_{i_2}\dots g_{i_n}: 0 \le i_1 < i_2 < \dots < i_n < \omega\}$$

is called an *FP-set*. By the Hindman Theorem 5.8 [5], for every finite partition of G, at least one cell of the partition contains an *FP*-set. We denote by \mathbf{FP}_G the family of all subsets of G containing some *FP*-set. A subset A of G belongs to \mathbf{FP}_G if and only if A is an element of some idempotent of βG . By analogy with Theorem 3.3, we can prove that \mathbf{FP}_G is analytic in \mathbf{P}_G .

Comments. This section reflects the results from [14].

4. The dynamical look at the subsets of a group

Let G be a group. A topological space X is called a G-space if there is the action $X \times G \longrightarrow X : (x, g) \longmapsto xg$ such that, for each $g \in G$, the

mapping $X \longrightarrow X : x \longmapsto xg$ is continuous.

Given any $x \in X$ and $U \subseteq X$, we set

$$[U]_x = \{g \in G : xg \in U\}$$

and denote

$$O(x) = \{xg : g \in G\}, T(x) = clO(x),$$

 $W(x) = \{y \in T(X) : [U]_x \text{ is infinite for each neighbourhood } U \text{ of } y\}.$ We recall also that $x \in X$ is a *recurrent point* if $x \in W(x)$.

Now we identify \mathcal{P}_G with the space $\{0,1\}^G$, endow \mathcal{P}_G with the product topology and consider \mathcal{P}_G as a *G*-space with the action defined by

$$A \mapsto Ag, Ag = \{ag : a \in A\}.$$

We say that a subset A of G is *recurrent* if A is a recurrent point in (\mathcal{P}_G, G) .

All groups in this sections are supposed to be infinite.

Theorem 4.1. For a subset A of a group G, the following statements hold

(i) A is finite if and only if $W(A) = \emptyset$;

(ii) A is thick if and only if $G \in W(A)$.

Theorem 4.2. For a subset A of a group G, the following statements hold

(i) A is n-thin if and only if $|Y| \leq n$ for every $Y \in W(A)$;

(ii) A is sparse if and only if each subset $Y \in W(A)$ is finite;

(iii) A is scattered if and only if, for every subset $B \subseteq A$ there exists $Y \in \mathcal{F}_G$ in the closure of $\{Bb^{b^1} : b \in B\}$.

Let $(g_n)_{n \in \omega}$ be an injective sequence in G. The set

$$FP(g_n)_{n \in \omega} = \{g_{i_1}g_{i_2}\dots g_{i_n} : 0 \le i_1 < i_2 < \dots < i_n < \omega\}$$

is called an FP-set.

Given a sequence $(b_n)_{n\in\omega}$ in G, the set

$$\{g_{i_1}g_{i_2}\dots g_{i_n}b_{i_n}: 0 \le i_1 < i_2 < \dots < i_n < \omega\}$$

is called a *(right) piecewise shifted FP*-set [7].

Theorem 4.3. For a subset A of a group G, the following statements hold

(i) A is not n-thin if and only if there exist $F \in [G]^{n+1}$ and an injective sequence $(x_n)_{n < \omega}$ in G such that $Fx_n \subseteq A$ for each $n \in \omega$;

(ii) A is not sparse if and only if there exists two injective sequences $(x_n)_{n<\omega}$ and $(y_n)_{n<\omega}$ such that $x_ny_m \in A$ for each $0 \le n \le m < \omega$;

(iii) A is not scattered if and only if A contains a piecewise shifted FP-set;

(iv) A contains a recurrent subset if and only if there exists $x \in A$ and an FP-set Y such that $xY \subseteq A$.

Corollary 4.1. Every scattered subset of a group G has no recurrent points.

Remark 4.1. By [4, Theorem 2], every scattered subset A of an amenable group G is absolute null, i.e. $\mu(A) = 0$ for every left invariant Banach measure μ on G. But this statement could not be generalized to subsets with no recurrent points. By [17, Theorem 11.6], there is a subset A of \mathbb{Z} of positive Banach measure such that $(a + B) \setminus A \neq \emptyset$ for any FP-set B. By Theorem 4.3(iv), A has no recurrent subsets.

Remark 4.2. Let G be an arbitrary infinite group. In [15], we constructed two injective sequences $(x_n)_{n \in \omega}$, $(y_n)_{n \in \omega}$ in G such the set $\{x_n y_m : 0 \le n \le m < \omega\}$ is scattered. By Theorem 4.3(ii), this subset is not sparse.

Comments. This section reflects the first part of [15].

5. Ramsey-product subsets and recurrence

In this section, all groups under consideration are supposed to be infinite; a countable set means a countably infinite set.

Let G be a group and let $\vec{m} = (m_1 \dots, m_k) \in \mathbb{Z}^k$ be a number vector of length $k \in \mathbb{N}$. We say that a subset A of a group G is a Ramsey \vec{m} product subset if every infinite subset X of G contains pairwise distinct elements $x_1, \dots, x_k \in X$ such that,

$$x_{\sigma(1)}^{m_1} x_{\sigma(2)}^{m_2} \dots x_{\sigma(k)}^{m_k} \in A$$

for every substitution $\sigma \in S_k$.

Theorem 5.1. For a group G and a number vector $\vec{m} = (m_1, ..., m_k) \in \mathbb{Z}^k$, the following statements hold:

(i) a subset A of G is a Ramsey \overrightarrow{m} -product subset if and only if every infinite subset X of G contains a countable subset Y such that $y_1^{m_1} \dots y_k^{m_k} \in A$ for any distinct elements $y_1, \dots, y_k \in Y$.

(ii) the family $\varphi_{\overrightarrow{m}}$ of all Ramsey \overrightarrow{m} -product subsets of G is a filter.

For $t \in \mathbb{Z}$ and $q \in G^*$ we denote by $q^{\wedge}t$ the ultrafilter with the base $\{x^t : x \in Q\}, Q \in q$. Warning: $q^{\wedge}t$ and q^t are different things. Certainly, $q^{\wedge}t = q^t$ only if $t \in \{-1, 0, 1\}$.

We remind the reader that, for a filter φ on G, $\overline{\varphi} = \{p \in \beta G : \varphi \subseteq p\}$.

Theorem 5.2. For every group G and any number vector $\vec{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$, we have

$$\overline{\varphi}_{\overrightarrow{m}} = cl\{(q^{\wedge}m_1) \ldots (q^{\wedge}m_k) : q \in G^*\}.$$

Now we consider some special cases of vectors \vec{m} .

Proposition 5.1. For any totally bounded topological group G, any neighborhood U of the identity e of G is a Ramsey \vec{m} -product subset for any vector $\vec{m} = (m_1, \ldots, m_k)$ such that $m_1 + \ldots + m_k = 0$.

We recall that a quasi-topological group is a group G endowed with a topology such that, for any $a, b \in G$ and $\varepsilon \in 1, 1$, the mapping $G \longrightarrow G : x \longmapsto ax^{\varepsilon}b$, is continuous.

Proposition 5.2. The closure A of any Ramsey (-1, 1)-product set A in a quasi-topological group G is a neighborhood of the identity.

Proposition 5.3. Let $\vec{m} = (m_1, \ldots, m_k)$ be a number vector and $s = m_1 + \ldots + m_k$. For any Ramsey \vec{m} -product subset A of a group G, the set $\{x^s : x \in G\}$ is contained in the closure of A in any non-discrete group topology on G.

Proposition 5.4. Let G be the Boolean group of all finite subsets of \mathbb{Z} , endowed with the group operation of symmetric difference. The set

$$A = G \setminus \{ \{x, y\} : x, y \in \mathbb{Z}, 0 \neq x - y \in \{z^3 : z \in \mathbb{Z}\} \}$$

has the following properties:

(i) A is a Ramsey \vec{m} -product for any vector $\vec{m} = (m_1, \ldots, m_k) \in (2\mathbb{Z}+1)^k$ of length $k \geq 2$;

(ii) A does not contain the difference BB^{-1} of any large subset B of G;

(iii) A is not a neighborhood of zero in a totally bounded group topology on G.

Now we show how Ramsey (-1, 1)-product sets arise in some general concept of recurrence on G-spaces.

Let G be a group with the identity e and let X be a G-space with the action $G \times X \longrightarrow X$, $(g, x) \longmapsto gx$. If X = G and gx is the product of g and x then X is called a *left regular G-space*.

Given a G-space X, a family \mathfrak{F} of subset of X and $A \in \mathfrak{F}$, we denote

 $\Delta_{\mathfrak{F}}(A) = \{ g \in G : gB \subseteq A \text{ for some } B \in \mathfrak{F}, B \subseteq A \}.$

Clearly, $e \in \Delta_{\mathfrak{F}}(A)$ and if \mathfrak{F} is upward directed $(A \in \mathfrak{F}, A \subseteq C \text{ imply } C \in \mathfrak{F})$ and if \mathfrak{F} is G-invariant $(A \in \mathfrak{F}, g \in G \text{ imply } gA \in \mathfrak{F})$ then

 $\Delta_{\mathfrak{F}}(A) = \{g \in G : gA \cap A \in \mathfrak{F}\}, \Delta_{\mathfrak{F}}(A) = (\Delta_{\mathfrak{F}}(A))^{-1}.$

If X is a left regular G-space and $\emptyset \notin \mathfrak{F}$ then $\Delta_{\mathfrak{F}}(A) \subseteq AA^{-1}$.

For a *G*-space *X* and a family \mathfrak{F} of subsets of *X*, we say that a subset *R* of *G* is \mathfrak{F} -recurrent if $\Delta_{\mathfrak{F}}(A) \cap R \neq \emptyset$ for every $A \in \mathfrak{F}$. We denote by $\mathfrak{R}_{\mathfrak{F}}$ the filter on *G* with the base $\cap \{\Delta_{\mathfrak{F}'}(A) : A \in \mathfrak{F}'\}$, where \mathfrak{F}' is a finite subfamily of \mathfrak{F} , and note that, for an ultrafilter *p* on *G*, $\mathfrak{R}_{\mathfrak{F}} \in p$ if and only if each member of *p* is \mathfrak{F} -recurrent.

The notion of an \mathfrak{F} -recurrent subset is well-known in the case in which G is an amenable group, X is a left regular G-space and $\mathfrak{F} = \{A \subseteq X : \mu(A) > 0 \text{ for some left invariant Banach measure } \mu \text{ on } X\}$. See [16–18] for historical background.

We recall [19] that a filter φ on a group G is *left topological* if φ is a base at the identity e for some (uniquely defined) left translation invariant (each left shift $x \mapsto gx$ is continuous) topology on G. If φ is left topological then $\overline{\varphi}$ is a subsemigroup of βG [19]. If G = X and a filter φ is left topological then $\varphi = \Re_{\varphi}$.

Proposition 5.5. For every G-space X and any family \mathfrak{F} of subsets of X, the filter $\mathfrak{R}_{\mathfrak{F}}$ is left topological.

Let X be a G-space and let \mathfrak{F} be a family of subsets of X. We say that a family \mathfrak{F}' of subsets of X is \mathfrak{F} -disjoint if $A \cap B \notin \mathfrak{F}$ for any distinct $A, B \in \mathfrak{F}'$. A family \mathfrak{F}' of subsets of X is called \mathfrak{F} -packing large if, for each $A \in \mathfrak{F}'$, any \mathfrak{F} -disjoint family of subsets of X of the form $gA, g \in G$ is finite.

Proposition 5.6. Let X be a G-space and let \mathfrak{F} be a G-invariant upward directed family of subsets of X. Then \mathfrak{F} is \mathfrak{F} -packing large if and only if, for each $A \in \mathfrak{F}$, the set $\Delta_{\mathfrak{F}}(A)$ is a Ramsey (-1,1)-product set.

Applying Theorem 5.2, we conclude that $\triangle_{\mathfrak{F}}(A)$ contains all ultrafilters of the form $q^{-1}q$, $q \in G^*$, and in the case X = G, G is amenable and \mathfrak{F} is the family of all subsets of positive Banach measure, we get Theorem 3.14 from [18].

Comments. The proofs of all above statements can be find in [20, 21].

6. Ideals in \mathcal{P}_G and βG

We recall that a family \mathcal{I} of subsets of a set X is an *ideal* in the Boolean algebra \mathcal{P}_G of all subsets of G if $G \notin \mathcal{I}$ and $A \in \mathcal{I}, B \in \mathcal{I}, C \subseteq A$ imply $A \cup B \in \mathcal{I}, C \in \mathcal{I}$. A family φ of subsets of G is a filter if and only if the family $\{X \setminus A : A \in \varphi\}$ is an ideal.

For an infinite group G, an ideal \mathcal{I} in \mathcal{P}_G is called *left (right) translation invariant* if $gA \in \mathcal{I}$ $(Ag \in \mathcal{I})$ for all $g \in G$, $A \in \mathcal{I}$. If \mathcal{I} is left and right translation invariant then \mathcal{I} is called *translation invariant*. Clearly, each left (right) translation invariant ideal of G contains the ideal \mathcal{F}_G of all finite subsets of G. An ideal \mathcal{I} in \mathcal{P}_G is called a *group ideal* if $\mathcal{F}_G \subseteq \mathcal{I}$ and if $A \in \mathcal{I}, B \in \mathcal{I}$ then $AB^{-1} \in \mathcal{I}$.

Now we endow G with the discrete topology and use the standard extension of the multiplication on G to the semigroup multiplication on βG , see Introduction.

It follows directly from the definition of the multiplication in βG that G^* , $\overline{G^*G^*}$ are ideals in the semigroup βG , and G^* is the unique maximal closed ideal in βG . By Theorem 4.44 from [5], the closure $\overline{K(\beta G)}$ of the minimal ideal K(G) of βG is an ideal, so $\overline{K(\beta G)}$ is the smallest closed ideal in βG . For the structure of $\overline{K(\beta G)}$ and some other ideals in βG see [5, Sections 4, 6].

For an ideal \mathcal{I} in \mathcal{P}_G , we put

$$\mathcal{I}^{\wedge} = \{ p \in \beta G : G \setminus A \in p \text{ for each } A \in \mathcal{I} \},\$$

and use the following observations:

• \mathcal{I} is left translation invariant if and only if \mathcal{I}^{\wedge} is a left ideal of the semigroup βG ;

• \mathcal{I} is right translation invariant if and only if $(\mathcal{I}^{\wedge})G \subseteq \mathcal{I}^{\wedge}$.

We use also the inverse to $^{\wedge}$ mapping $^{\vee}$. For a closed subset K of βG , we take the unique filter φ on G such that $K = \overline{\varphi}$ and put

$$K^{\vee} = \{G \setminus A : A \in \varphi\}.$$

In this section, all groups under consideration are suppose to be infinite.

We denote by Sm_G , Sc_G , Sp_G the families of all small, scattered and sparse subsets of a group G. These families are translation invariant ideals in \mathcal{P}_G (see [6, Proposition 1]), and for every group G, the following inclusions are strict [6, Proposition 12]

$$Sp_G \subset Sc_G \subset Sm_G.$$

We say that a subset A of G is *finitely thin* if A is n-thin for some $n \in \mathbb{N}$. The family FT_G of all finitely thin subsets of G is a translation invariant ideal in \mathcal{P}_G which contains the ideal $< T_G >$ generated by the family of all thin subsets of G. By [22, Theorem 1.2] and [23, Theorem 3], if G is either countable or Abelian and $|G| < \aleph_{\omega}$ then $FT_G = < T_G >$. By [23, Example 3], there exists an Abelian group G of cardinality \aleph_{ω} such that $< T_G > \subset FT_G$.

Theorem 6.1. For every group G, we have $Sm_G^{\wedge} = \overline{K(\beta G)}$.

This is Theorem 4.40 from [5] in the form given in [24, Theorem 12.5].

Theorem 6.2. For every group G, $Sp_G^{\wedge} = \overline{G^*G^*}$.

This is Theorem 10 from [13].

6.1. Between $\overline{G^*G^*}$ and G^* .

Theorem 6.3. For every group G, the following statements hold:

(i) if \mathcal{I} is a left translation invariant ideal in \mathcal{P}_G and $\mathcal{I} \neq \mathcal{F}_G$ then there exists a left translation invariant ideal \mathcal{J} in \mathcal{P}_G such that $\mathcal{F}_G \subset \mathcal{J} \subset \mathcal{I}$ and $\mathcal{J} \subset Sp_G$;

(ii) if \mathcal{I} is a right translation invariant ideal in \mathcal{P}_G and $\mathcal{I} \neq \mathcal{F}_G$ then there exists a right translation invariant \mathcal{J} in \mathcal{P}_G such that $\mathcal{F}_G \subset \mathcal{J} \subset \mathcal{I}$;

(iii) if G is either countable or Abelian and \mathcal{I} is a translation invariant ideal in \mathcal{P}_G such that $\mathcal{I} \neq \mathcal{F}_G$ then there exists a translation invariant ideal \mathcal{J} in \mathcal{P}_G such that $\mathcal{F}_G \subset \mathcal{J} \subset \mathcal{I}$ and $\mathcal{J} \subset Sp_G$.

Theorem 6.4. For every group G, the following statements hold:

(i) if L is a closed left ideal in βG such that $L \subset G^*$ then there exists a closed left ideal L' of βG such that $L \subset L' \subset G^*$, $\overline{G^*G^*} \subset L'$;

(ii) if R is a closed subset of G^* such that $R \neq G^*$ and $RG \subseteq R$ then there exists a closed subset R' of G^* such that $R \subset R' \subset G^*$, $R'G \subseteq R$;

(iii) if G is either countable or Abelian and I is a closed ideal in βG such that $I \subset G^*$ then there exists a closed ideal I' in βG such that $I \subset I' \subset G^*$, $\overline{G^*G^*} \subset I$.

For a cardinal κ , S_{κ} denotes the group of all permutations of κ .

Theorem 6.5. For every infinite cardinal κ , there exists a closed ideal I in βS_{κ} such that

(i) $S^*_{\kappa}S^*_{\kappa} \subset I;$

(ii) if M is a closed ideal in βS_{κ} and $I \subseteq M \subseteq G^*$ then either M = Ior $M = S_{\kappa}^*$.

Theorem 6.6. For every group G, we have $FT_G \subset Sp_G$ so $\overline{G^*G^*} \subset FT_G^{\wedge}$.

For subsets X, Y of a group G, we say that the product XY is an n-stripe if $|X| = n, n \in \mathbb{N}$ and $|Y| = \omega$. It is easy to see that a subset A of G is n-thin if and only if A has no (n + 1)-stripes. Thus, $p \in FT_G^{\wedge}$ is and only if each member $P \in p$ has an n-stripe for every $n \in \mathbb{N}$.

We say that XY is an (n, m)-rectangle if |X| = n, |Y| = m, $n, m \in \mathbb{N}$. We say that a subset A of G has bounded rectangles if there is $n \in \mathbb{N}$ such that A has no (n, n)-rectangles (and so (n, m)-rectangles for each m > n).

We denote by BR_G the family of all subsets of G with bounded rectangles.

Theorem 6.7. For a group G, the following statements hold:

(i) BR_G is a translation invariant ideal in \mathcal{P}_G ;

(ii) BR_G^{\wedge} is a closed ideal in βG and $p \in BR_G^{\wedge}$ if and only if each member $P \in p$ has an (n, n)-rectangle for every $n \in \mathbb{N}$;

(*iii*) $BR_G \subset FT_G$.

6.2. Between $\overline{K(G)}$ and $\overline{G^*G^*}$.

Theorem 6.8. For a group G, the following statements hold:

(i) $Sc_G^{\wedge} = cl\{\epsilon p : \epsilon \in G^*, \ p \in \beta G, \ \epsilon \epsilon = \epsilon\};$

(ii) Sc_G^{\wedge} is an ideal in βG and $p \in Sc_G^{\wedge}$ if and only if each member of p contains a piecewise shifted FP-set;

(iii) Sc_G^{\wedge} is the minimal closed ideal in βG containing all idempotents of G^* .

For a group G, we put $I_{G,n} = G^*$, $I_{G,n+1} = \overline{G^*I_{G,n}}$ and note that $I_{G,n}$ is an ideal in βG .

Theorem 6.9. For every group G and $n \in \omega$, we have

- (i) $I_{G,n+1} \subset I_{G,n}$
- (*ii*) $Sc_G^{\wedge} \subset I_{G,n}$.

For a natural number n, we denote by $(G^*)^n$ the product of n copies of n. Clearly, $\overline{(G^*)^{n+1}} \subseteq \overline{(G^*)^n}$. and $\overline{(G^*)^n} \subseteq I_{G,n}$.

Theorem 6.10. For every group G and $n \in \omega$, we have

(i) $\overline{(G^*)^{n+1}} \subset \overline{(G^*)^n};$ (ii) $Sc_G^{\wedge} \subset \overline{(G^*)^n}.$

Comments. This section is an extract from [25].

7. The combinatorial derivation

Let G be a group with the identity e. For a subset A of G, we denote

$$\triangle(A) = \{g \in G : |gA \bigcap A = \infty|\},\$$

observe that $(\triangle(A))^{-1} = \triangle(A), \ \triangle(A) \subseteq AA^{-1}$, and say that the mapping

 $\triangle: \mathcal{P}_G \longrightarrow \mathcal{P}_G, \ A \longmapsto \triangle(A)$

is the *combinatorial derivation*.

Theorem 7.1. For an infinite group G and a subset A of G, the following statements hold

(1) A is finite if and only if △(A) = Ø;
(2) △(A) = {e} if and only if A is infinite and thin;
(3) if A is thick then △(A) = G;
(4) if A is prethick then △(A) is large.

Theorem 7.2. Every infinite group G contains a subset A such that $G = AA^{-1}$ and $\triangle(A) = \{e\}$.

Theorem 7.3. Let A be a subset of an infinite group G such that $A = A^{-1}$. Then there exist two thin subsets X, Y of G such that $\triangle(X \bigcup Y) = A$.

We consider also the inverse to \triangle , multivalued mapping ∇ defined by

$$\nabla(A) = \{ B \subseteq G : \triangle(B) = A \}.$$

For a family F of subsets of a group G, we say that \mathcal{F} is \triangle -complete $(\nabla$ -complete) if $\triangle(A) \in \mathcal{F}$ $(\nabla(A) \subseteq \mathcal{F})$ for each $A \in \mathcal{F}$.

Theorem 7.4. For every infinite group G, the following statements hold

(1) the families of all small and sparse subsets of G is ∇ -complete;

(2) if an ideal \mathcal{I} in \mathcal{P}_G is \triangle -complete and ∇ -complete then $\mathcal{I} = \mathcal{P}_G$;

(3) If \mathcal{I} is a group ideal in \mathcal{P}_G , $\mathcal{I} \neq \mathcal{P}_G$, then \mathcal{I} is \triangle -complete and \mathcal{I} is contained in the ideal of all small subsets of G.

Comments. More information on combinatorial derivation in [26–28]. In particular, Theorem 6.2 from [26] shows that the trajectory $A \longrightarrow \triangle(A) \longrightarrow \triangle^2(A) \longrightarrow \ldots$ of a subset A of G could be surprisingly complicated: stabilizing, increasing, decreasing, periodic or chaotic. Also [26] contains some parallels between the combinatorial and topological derivations.

References

- I.Protasov, Selective survey on subset combinatorics of groups // J. Math. Sciences, 174 (2011), 486–514.
- [2] I. Protasov, S. Slobodianiuk, On the subset combinatorics of G-spaces // Algebra Discrete Math., 17 (2011), 98–109.
- [3] I. Protasov, S. Slobodianiuk, Partitions of groups // Math. Stud., 42 (2014), 115–128.
- [4] T. Banakh, I. Protasov, S. Slobodianiuk, Densities, submeasures and partitions of groups // Algebra Discrete Math., 17 (2014), 193–221.
- [5] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification: theory and applications, Berlin, New York: Walter de Gruyter, 1998.

- [6] I. Protasov, S. Slobodianiuk, Ultracompanions of subsets of a group // Comment. Math. Univ. Carolin., 55 (2014), 257–265.
- [7] T. Banakh, I. Protasov, S. Slobodianiuk, Scattered subsets of groups // Ukr. Math. J., 67 (2015), No. 3, 347–356.
- [8] Ie. Lutsenko, I. Protasov, Sparse, thin and other subsets of groups // Intern. J. Algebra Comp., 19 (2009), 491–510.
- [9] A. Kechris, *Classical Descriptive Set Theory*, Springer, 1995.
- [10] T. Banakh, N. Lyaskovska, Weakly P-small not P-small subsets in groups // Intern. J. Algebra Comput., 19 (2008), 1–6.
- I. Protasov, K. Protasova, Around P-small subsets of groups // Carpath. Math. Publ., 6 (2014), 337–341.
- [12] T. Banakh, N. Lyaskovska, On thin-complete ideals of subsets of groups // Ukr. Math. J., 63 (2011), No. 6, 216–225.
- [13] M. Filali, Ie. Lutsenko, I. Protasov, Boolean group ideals and the ideal structure of βG // Math. Stud., 30 (2008), 1–10.
- [14] T. Banakh, I. Protasov, K. Protasova, Descriptive complexity of the sizes of subsets of groups // Ukr. Mat. J., 69 (2017), No. 9, 1280–1283.
- [15] I. Protasov, S. Slobodianiuk, The dynamical look at the subsets of a group // Appl. Gen. Topol., 16 (2015), No. 2, 217–224.
- [16] H. Furstenberg, Poincare recurrence and number theory // Bull. Amer. Math. Soc., 5 (1981), No. 3, 211–234.
- [17] N. Hindman, Ultrafilters and combinatorial number theory // Lecture Notes in Math., 571 (1979), 119–184.
- [18] V. Bergelson, N. Hindman, Quotient sets and density recurrent sets // Trans. Amer. Math. Soc., 364 (2012), 4495–4531.
- [19] I.Protasov, Filters and topologies on groups // Math. Stud., 3 (1994), 15–28.
- [20] I. Protasov, K. Protasova, On recurrence in G-spaces // Algebra Discrete Math., 23 (2017), No. 2, 80–85.
- [21] T. Banakh, I. Protasov, K. Protasova, Ramsey-product subsets of a group // Math. Stud., 47 (2017), 145–149.
- [22] Ie. Lutsenko, I. Protasov, Thin subsets of balleans // Appl. Gen. Topology, 11 (2010), 89–93.
- [23] I. Protasov, S. Slobodianiuk, *Thin subsets of groups* // Ukr. Math. J., 65 (2013), 1384–1393.
- [24] I. Protasov, T. Banakh, Ball Structures and Colorings of Graphs and Groups // Math. Stud. Monogr. Ser, 11, Lviv: VNTL Publisher, 2003.
- [25] I. Protasov, K. Protasova, Ideals in PG and βG // ArXiv: 1704.02494–1.
- [26] I. Protasov, The combinatorial derivation // Appl. Gen. Topology, 14 (2013), 171–178.
- [27] I. Protasov, The combinatorial derivation and its inverse mapping // Central Europ. J. Math., 11 (2013), 1276–1281.
- [28] J. Erde, A note on combinatorial derivation // arxiv: 1210. 7622.

CONTACT INFORMATION

Igor V. Protasov	Faculty of Computer Science and
	Cybernetics of Taras Shevchenko
	National University of Kyiv,
	Kyiv, Ukraine
	<i>E-Mail:</i> i.v.protasov@gmail.com
Ksenia D.	Faculty of Computer Science and
Protasova	Cybernetics of Taras Shevchenko
	National University of Kyiv,
	Kyiv, Ukraine
	E-Mail: ksuha@freenet.com.ua