YKpalHChbKUI MaTeMaTUIHUN BICHUK
Tom 15 (2018), Ne 2, 177 — 193 el

Partial logarithmic derivatives and distribution
of zeros of analytic functions in the unit ball of
bounded L-index in joint variables
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(Presented by V. Ya. Gutlyanskii)

Abstract. In this paper, we obtain sufficient conditions of bound-
edness of L-index in joint variables for analytic functions in the unit
ball, where L : C" — R is a continuous positive vector-function. They
give an estimate of maximum modulus of analytic function by its min-
imum modulus on a skeleton in a polydisc and describe the behavior
of all partial logarithmic derivatives outside some exceptional set and
the distribution of zeros. The deduced results are also new for analytic
functions in the unit disc of bounded index and /-index. They generalize
known results of G. H. Fricke, M. M. Sheremeta, A. D. Kuzyk and V.
O. Kushnir.
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1. Introduction

A concept of an entire function of bounded index arose in analytic
theory of differential equations. It appeared in paper of B. Lepson [24].
An entire function f is said to be of bounded index if there exists an
integer N > 0 such that

fD ()]

J!

f7(2)]

n!

(Vz € C)(Vn €40,1,2,...}): Smax{ :OSjSN}.

(1.1)
The least such integer N is called the index of f. There was proved that
every entire solution of ordinary m-th order linear differential equation
with constant coefficients has bounded index. B. Lepson conjectured
that every entire solution of the linear differential equation of infinite or-
der with constant coefficients has the same property. In a general case
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the hypothesis is not correct because an entire function of bounded in-
dex has exponential type [20, 32| and there exist entire solutions with
order greater than one. Therefore, it is natural to pose the same ques-
tion about /-index boundedness of entire solutions (see definition below).
This assumption has not yet been proven even in this extended formula-
tion. However, there are many papers of various authors with different
applications. Namely, theory of functions of bounded index has many
applications in value distribution theory, differential equations and its
system (see bibliography in [7,33]|). This concept is applicable as for
entire functions of one and several variables [4, 10, 22| so for analytic
functions in a domain [1,11,21,23,35]. In a comparison with traditional
approaches (for example, Wiman—Valiron’s method [15,16,31,37] or value
distribution theory [18,19,25,29,34]) it is more flexible to investigate an-
alytic solutions of ordinary and partial differential equations [2,3,9,27].
Particularly, if an entire solution has bounded index [22,32,36] then it
immediately yields its growth estimates, an uniform distribution of its
zeros in a sense, a certain regular behavior of the solution, etc. Similar
conclusions are valid for functions of one variable which are analytic in a
domain [13,23,33, 35].

To study more general entire functions, A. D. Kuzyk and M. M. She-

remeta [22] introduced a boundedness of the l-index, replacing m on

P
(P) . . . . .
Lfllz(\(jl))l in (1.1), where [ : Ry — R, is a continuous function. In view

of results from [14] it allows to study an arbitrary entire function f with
bounded multiplicity of zeros. Besides, there are papers about bounded
l-index for analytic function of one variable [23,35].

In a multidimensional case a situation is more difficult and inter-
esting. Recently we [11,12] proposed approach to consider bounded
L-index in joint variables for analytic functions in a polydisc, where
L(z) = (li(2), ..., ln(2)), [ : C* — R4 is a positive continuous func-
tions, j € {1,...,n}. Although J. Gopala Krishna and S. M. Shah [21]
introduced an analytic in a domain (a nonempty connected open set)
2 C C" (n € N) function of bounded index for a = (a1,...,a,) € R7}.
But analytic function of bounded index in a domain by Krishna and Shah
is an entire function. It follows from necessary condition of the [-index
boundedness for analytic in the unit disc function ( [33, Th.3.3,p.71|):
Jo l(t)dt — o0 as r — 1 (we take I(t) = o). Thus, there arises necessity
to introduce and to investigate bounded L-index in joint variables for
analytic functions in polydisc domain. Besides a polydisc, other example
of polydisc domain in C" is a ball.

For analytic functions in the unit ball we introduced a concept of
bounded L-index in joint variables and deduced properties [1-3]. Also,
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there was presented an application of the concept to study properties of
analytic solutions for systems of partial differential equations and to esti-
mate its growth. But in one-dimensional case there is known logarithmic
criterion of index boundedness [17,36]. It is very important to investigate
infinite products and holomorphic solutions of differential equations. The
assertion describes behavior of logarithmic derivative outside some excep-
tional set consisting with zeros of the function with some neighborhoods.
The second condition of the criterion is uniform distribution of zeros in a
sense. Above 20 years it has not been possible to obtain an analog of this
criterion for entire functions of several variables by technical difficulties.
Using other approach [4,6,8] we deduced the analog for a class of entire
functions of bounded L-index in a direction. But for entire functions
of bounded L-index in joint variables the analog of logarithmic criterion
remained unknown. Recently as sufficient conditions some analog of the
characterization have been obtained for the class [5].

In view of importance of logarithmic criterion for analytic functions
of one variable it is naturally to pose the following problem: What is an
analog of logarithmic criterion for analytic functions in the unit ball of
bounded L-index in joint variables?

A complete solution to this problem may give new applications of
bounded L-index in joint variables for analytic functions in the unit ball.
For example, this can be useful to investigate properties of multidimen-
sional analogs of Blaschke products. or analytic solutions of partial dif-
ferential equations system.

In this paper we will try to give some answer to the question.

2. Main definitions and notations

We need some standard notations. Denote Ry=[0, +00),0=(0,...,0)

eRY,1=(1,...,1) € R}, 1; = (0,...,0, 1 ,0,...,0) € R,
—~—
j—th place

R = (ri,....,rn) € R}, 2 = (21,...,20) € C% 2] = /270 [
For A = (a1,...,a,) € R", B = (b1,...,b,) € R"™ we will use for-
mal notations without violation of the existence of these expressions
AB = (a1by,--- ,anby), A/B = (a1/by,...,a,/by), AP = a?la? eabn,
|A|ll = a1 + --- + an, and the notation A < B means that a; < bj,
j € {1,...,n}; the relation A < B is defined similarly. For K =
(k1,...,kn) € Z7 denote K! = k! - ... - k,!. Addition, scalar multipli-
cation, and conjugation are defined on C” componentwise. The polydisc
{zeC": |z — z?| < rj, j=1,...,n} is denoted by D"(z% R), its
skeleton {z € C" : |z; — z?| =r;, j=1,...,n} is denoted by T"(z°, R),
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and the closed polydisc {z € C" : |z; — z?\ <rj j=1,...,n}is
denoted by D"[2°,R], D* = D"(0,1), D = {z € C : |z| < 1}. The
open ball {z € C" : |z — 2% < r} is denoted by B"(2°,7), the closed
ball {z € C" : |z — 2% < r} is denoted by B"[z0,r], B® = B"(0,1),
D=B!'={zeC: |z|]<1}.

For K = (k1,...,kn) € Z and the partial derivatives of an analytic

in B" function F(z) = F(z1,...,2,) we use the notation
K eyt
F(K)Z:all Hanl f'
02K 8z’fl ...0zpn
Let L(z) = (li(2),...,ln(2)), where ;(2) : B® — Ry is a continuous
function such that
(VzeB"): lj(2) > B/(1—|z]), j€{1,...,n}, (2.1)

where 8 > /n is a some constant.

S. N. Strochyk, M. M. Sheremeta, V. O. Kushnir [23,33,35] imposed
a similar condition for a function / : D — Ry and | : G — R4, where G
is arbitrary domain in C.

An analytic function F': B" — C is said to be of bounded L-index (in
joint variables) [1-3], if there exists ng € Z4 such that for all z € B™ and
for all J € Z1

[P ()] [P ()

— =< LI S B n < ' .
JILI(2) = maX{K]LK(Z) KeZl, |K| < no} (2.2)

The least such integer ng is called the L-index in joint variables of the
function F' and is denoted by N(F,L,B") (for entire functions see [10,
25,30]).

By Q(B™) we denote the class of functions L, which satisfy (2.1) and
the following condition

(VR c R:b_, ’R‘ < ﬁ, j S {1, . ,n}): 0< )\17]'(R) < )\2J(R) < 00,

where

M j(R) = inf inf{ Li(2) 1z € D" [zo,R/L(zO)]},

2eBn 1;(2°)
22,0 = mp mp {55 - e [ R

Ai(R) = (Ma(R), ..., An(R)), A2(R) = (A21(R),..., Aan(R)).

We need the following assertion.
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Theorem 2.1 ([2]). Let L € Q(B"), F' : B* — C be analytic function.
If there exist R', R" ¢ R, R' < R", |[R"| < B and py = p1(R',R") > 1
such that for every z° € B"

maX{F(z)|: zeT" <zo, LZ;)> }
<p max{yF(z)|: zeT" <z°, I@)} (2.3)

then F is of bounded L-index in joint variables.

3. Estimate maximum modulus on a skeleton in polydisc

Let Zr be a zero set of analytic in B” function F. We denote

n Ty -
Gr(F) = U {ZEC :’Zj_Z?‘<l-(;0) V]G{l,Q,...,n}}
ZOEZF J
R
- n 0
- U ()

20€Zp
Theorem 3.1. Let L € Q(B"), F : B" — C be an analytic function. If

IR € R? withrje(o,%), Ipy >13IO €R?,0< O < R, IR > 0,

(R' =0 for Zp = 0) such that ¥z° € B" 3R® = R(2%) e R", © < R® <
R, for which

meas{']T” <z0, Lﬁ)) ﬂGR/(F)} < <2;>n£[1 Mj(gglj(zo) (3.1)

and max {\F(z)\: zeT" <z0, LJ;)) }
< ppmin {|F(z)|: zeT" <z0, Li00)> \ Gr (F)} (32)

then the function F has bounded L-index in joint variables (meas is the
Lebesgue measure on the skeleton in the polydisc).

Proof. Denote 3 = %1. By Theorem 2.1 we will show that dp; > 0
V¥ e B®

max {\F(z)! zeT" (ZO’ gé@?) }

< max{\F(z)|: seTm <ZO, L£O)> }
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Denote I} = max{lj(z) :ze D" [zo, %} }, pj0 = ljz“—zjo), Pik = Pjo+
=L, keN, je{l,...,n}. The following estimate holds
0 _ri__ri _B/Nn B/Vn-r;

T N R W ) S N

Hence, there exists S* = (s%,...,s}) € N* independent of z° such that
B/v/n— PIvn—Ty 5/\F
P S TG S S G

for some m; = m;(2%) < s* because L € Q(B"). Indeed,
J J J

(B/\/ﬁ - Pj,0> /Zﬁ = (B8/Vn—r;) 5 L

1;(20) i15(2°)
— WZ_TJ max{llj((zzo)) czeD” [zo L(zo)} } < ﬁ/\/;j Y rei(8).

Thus, s} = [%7;_”)\24(,6)} where [z] is the integer part of z € R.
Let My = (mq,...,my,) and 75" be such a point in B" that

|F(1i)] = max{|F(2)|: z € T"(2", R)},

where K = (ki,...,kn), Rk = (P1kys---»Pnk,) and T K be the in-
tersection point in C of the segment [z ,T] o] with |z — | Pjk;—1
We construct a sequence of polydisc D"(2%, R) with K g My, Ro =
R/L(Z°) = (p1.0- -+, pno) and O/L(2%) = (61/15,...,0,/1%) (see Figures
1 and 2).

Denote o/ = (TLK, s T KO TR Tir K T 7). Hence, for ev-
9.
ery rj > 0; and K < S* : |7‘;K — ’-k* %l = Z—J < l (T](j)). Thus, for some
I\

RO = RO(a) € R?, © < R < R, we deduce

- , o ) R
atal §max{]F(z)|. zeT (@Q,M (j))>}

123¢

: nf Gy R
< py min {|F(z)] ze€T (a%), L(a%))> \GR’(F)}

, R
<pymin {!F(Z)\: 2 €T (o), — ) \Gr(F), 2 € D"[zO,RK_lj]}
L(ag)

< pomax{|F(z)|: z € T"(z°, Rx_1,)}- (3.3)
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* ok

Tk

Figure 2

To deduce (3.3) we implicitly used that

. 0
(T” <a§?, L(i%))) \ GR/(F)> ND"[2°, Ri—1,] # 0. (3.4)

Condition (3.1) provides (3.4). Indeed, we will find a lower estimate of n-

dimensional Lebesgue measure of the set T" (ag), 0 R?j) ) M"Y, R K-1,]
(0%

and will show that the measure is not lesser than}; left-hand side of
inequality (3.1).

The set ']I‘”( U) _R ) ND"[2°, Rk _1,] is the Cartesian product of

OK T ,D
L(O‘K )
the following arcs on circles: for every m € {1,...,n}, m # j (see Figure
3)
0 0
2 € C: om — T k| = m(.) ﬂ{szC: 2 = Zn| < P
lm(oz[? )

and for m = j (see Figure 4)
0 )
y ﬂ{sz(C:’Zj— j‘gpj}kj*l}'

i)

It is easy to prove that the length of arc equals

{Zj € C: ‘Zj —T;:K‘ =

0

r

— . arccos ———~——— for m # j (3.5)
(o) 2 () P,
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I, \\
T**,K \ i~
A=
1
1
'l
X K~
20 Pm Km Zjo ik
Figure 3 with 0= —'»__ Figure 4 with 9= "
igure 3 with = el igure 4 with »° = )
and
21";-) 7“? ]
() AICCOS v for m = j. (3.6)
Li(ag’) 2L )pjky—1
. 0 r0
But for m # j l;% < Pm k., and W < pjk;—1 then the argument
MK J K

in arccosine from (3.6) and (3.5) does not exceed 1. This means that the
length of arc is not lesser than

27 arcco L > 20mm for eve € {1,2 }
—— arccos = > r every m y2,...,n},
lm(a%)) 2 3lm(zo)/\2,m(ﬁ)

because L € Q(B"™). Accordingly, the measure of the set T" (a%) R?.) )ﬂ
L(aé )
D" (20, Rik-1,;] on the skeleton of polydisc is always not lesser than
| WM' Assuming a strict inequality in (3.1), we deduce that
(3.4) is valid.
Applying (3.3) m;-th times in every variable z;, we obtain
n 0 16 —R n (.0
max< |[F(2)]:2€T" | 2 L) <max{|F(2)]: z € T"(z",Rum,) }
z
< pomax{|F(2)|: 2 € T"(=*, Ragy1,)}
< py max{|F(2)|: z € T*(z°, Rasg—mo1,)} < - <

< py T max{|F(2)]: 2 € T"(2°, Ratg-mn1,-1,-1)}

S p;nn+m"71 maX{|F(Z)’ HEAS Tn(’z(J? RMO*mn]-n*mn—lln—l)} et

< plMll max{|F(2)|: z € T"(z°, Ro)}

< pgs*ll max{!F(Z)\: zeT" (207 L(Jj())) } '

By Theorem 2.1 the function F' has bounded L-index in joint variables.
O
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Let us to denote c(z/,7) = {z € D: |z — /| = ﬁ} For n = 1
Theorem 3.1 implies the following corollary.

Corollary 3.1. Let l € Q(D), f : D — C be an analytic function.
If 3r € (0,8/2), 3" > 0, Ipp > 1 30 € (0,7), such that Vz' € D
0 =r0(zY) € [0;7], and meas {c(2°,r°) N Gr/(F)} < WM and
max {|f(2)]: z € c(zo,ro)} < pomin {|f(2)]: z € (22,70 \ Gy (f)}
(3.7)
then the function f has bounded l-index (here meas means the Lebesque
measure on the circle).

In a some sense, this corollary is new even for analytic functions of
one variable because the circle ¢(2°,7°) can contain zeros of the function
f- Meanwhile, in corresponding theorems from [23,33] the circle ¢(z°, r%)
is chosen such that f(z) # 0 for all z € ¢(2°,7).

4. Behavior of partial logarithmic derivatives

Theorem 4.1. Let L € Q(B"). If an analytic function F : B — C
satisfies the following conditions:

1) for every R € R, |R| < 3, there exists p1 = p1(R) > 0 such that
for all z € B\ Gr(F) and for all j € {1,...,n}

! ‘aF(z) < prlj(2), (4.1)

[F(2)] | 0z

2) for every R € R, |R| < 3, and R' > 0 there exists pp=pa2(R, R') >
1 that for all 2° € B"™ such that T™(2°, %)\GR/(F) =, Ci #0,
where the sets C; are connected disjoint sets, and either

in |F < i in |F
o) maxx i |F(2)| < p2 min min |F ()], or
b F(2)| < i F
) max max | F(z)] < pp min max | F(2)], or
¢) |F(2")| = max;max.cc; |[F(2)], |[F(z™)| = min; minzec, |[F(z)],
and z*, 2** belong to the same set Cj,

3) for every R € R, |R| < 3, there exists ©,R' € R}, 0 < 0; <
#Z{j@, such that for all z € B"

2e\" 1o 9:(r; —6;)

meas {Gr (F)ND" [z, R/L(2)]} < () g

(Grrow ke < () 1132 s
(4.2)

j=1
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then F' has bounded L-index in joint variables (here meas is 2n-dimen-
sional the Lebesque measure).

Proof. Let 2° € B". In view of Theorem 3.1, we need to prove that

for some R = RO(20).
Let dS =dsy-...-dsp, S =(s1,...,5n), w, be a volume measure in
R?". By the Fubini-Tonelli theorem we have

1 Tn 27 27
/ u(z)dwzz/ / S1... sn(/ . / u(2° + Se™©)db;. . .dby)
D" [20,R] 0 0 0 0
R 2T 2w )
dsy. . .dsy :/ (/ / u(2° +Se’e)d(5191)...d(sn9n)> ds,
0 0 0

where u is measurable function. Let u(z) = xr(z) be a characteristic
function of the set Gr/(F) for the function F. We substitute R/L(2°)
instead R. Hence,

meas{ [ f } NGr (F } :/ Xr(2)dw,
D7 (2%, R/L(20)]

R/L
/ / xr(z)dp.dS
n(20,5/L(29))

R/L(z
= / meas {T"(2°,8) N Gr(F)} dS, (4.3)
0

where pu, is the measure on the skeleton of polydisc in C".
Combining (4.2) and (4.3), we obtain

R/L(z0)
/ meas {T"(z%, S) N G (F)} dS
0

- meas{D" [ZO, L(IEO)] ﬂGR/(F)} < (?)nﬁlm (4.4)

Besides, we have

©/L(z°)
/ meas {T"(zO,S)ﬂGR/(F)}dS
0

= meas {]D)" {zo, L(@ZO)] N GR/(F)} <" ﬁ HEDY
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Thus, the following difference is positive

21 T M— e/L(ZO)meas ues y
( 3 ) 11 A2, (B)I3(2°) /0 (T, 5) NGB} dS

2 \" 17 0;(r; — ;) =
S (27 0i(rj —0;)
- (5) st~ o

n 0; 2rj —0;(2+3X,;(B))
=7 : >0
jHl 13(20) 3X2,5(8B)
because 0; < 24-%7;3(3) From (4.4) it follows that

meas {T"(z", S) N G <
0/L(9) f e >\ )

n n

Q/L(z°) /
_/ meas {T"(2%, ) N Gp/(F)} dS < ( > H l2 0)
; Z

By mean value theorem there exists R® = R%(z") with r? € [0;,7;] such
that

R/L(z°)
/ meas{T" (2", S)NG g/ (F)}dS
0/L(20)

= meas{T" (=", R*/L(=")) NG (F)} [] -2 —b;

i Li(z0)

Hence, in view of (4.5) we obtain a desired inequality

meas {T" (2", R/L(z")) N G (F }<(2§ ) HAzﬂeﬂ(zO)

Clearly, that for every point 2° € B" we have T"( 2°, ¢ z0)> \ Zp =

U, Ci, where C! are connected disjoint sets, C} D C; and C; is defined
in condition 2). Without loss of generality we assume that two any
points from C] can be connected by a segment of line lying inside in
C!. Otherwise we can split C/ by the sets with the property. Let z* €

T" (2", R/L(2°)) be such that |F(z*)| = max {|F(z) 2z e T (zo, LIEZOO)) } :

Then there exists ip that z* € Cj . Let 2 € Cj, C Cj be such
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that [F'(z™)| = min.ec,, [F'(2)[. We connect the points z* and z** by
a piecewise-analytic curve z = z(t) = (21(t),...,2n(t)), t € [0;1]. The

curve is chosen such that fol |25(t)]dt < 127(:"3) Integrating from z* to z**
J

we obtain
F(2) F(2)
1 <1 = dln F(z ;
n’F(z**) _‘nF(z**) / i 4

7 K " 277 -
< / > pili(2)ldz| SZpllj(zO)/\z,j(R)l,(zg) =27 Y ride (R
P ]:]_ ]:l 7 ]:1

Hence,

max{|F(z)]: zeT? <z0, Li%) } = |F(z")]

<exp@pim)_rida(R}HF ()| =exp{2pim Y ridaj(R)} min [F(2)]
J=1 j=1 ‘0

n
<exp{2p17 Z riXej(R)}p2 miin greucn |F(2)]
=1 '

n 0
:exp{2p17r2rj)\2,j(R)}p2 mln{]F(z)\ z € ’]I‘"(zo, L](%20)> \ GR/(F)} )

Jj=1

By Theorem 3.1 the function F' has bounded L-index in joint variables.
O

Let us to denote A as Laplace operator. We will consider Aln |F| as
generalized function. Using some known results from potential theory,
we can rewrite Theorem (4.1) in the following way

Theorem 4.2. Let L € Q(B"). If an analytic function F : B" — C
satisfies the following conditions

1) for every R € R, |R| < 3, there exists p1 = p1(R) > 0 such that
for all z € B"\ Gr(F) and for every j € {1,...,n}
0ln F(z)
8Zj

< pilj(2). (4.6)

2) for every R € R |R| < 8, and R’ > O there exists po=p2(R, R') >
1 such that for all 2° € C™ such that T”(zo,%) \ Gr/(F) =
U, Ci # 0, where the sets C; are connected disjoint sets, and either
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. S

a) max min | F(2)| < pp min min [F(2)], or
-

b) max max | F(z)| < pp minmax |F(2)], or

c¢) |F(2*)| = max; max,ec, |F(2)|, |F(2**)| = min; min.cc, |F(2)],
and z*, 2** belong to the same set Cj,

3) for every R € R, |R| < B, there exists © € R7, 0 < 0; <
ﬁg(ﬁ), such that for all z € B"

/ Aln |F|dVay, < 27T<2> I‘[ () _ ;) 1,]( )
D" [z,R/L(z)] 3 i r2 X2;(B)

then F' has bounded L-index in joint variables.

Proof. L. 1. Ronkin [28, p. 230] deduced the following formula for entire
function:

/ Aln |F|dVa, =27 / Yr(2)dVan—2,
Dn{0,R*] ZpND"[0,R*]

where vp(z) is a multiplicity of zero point of the function F' at point z,
R* € R is arbitrary radius. Let xp(z) be a characteristic function of
zero set of F. Then xr(z) < vr(z). Hence,

Vau (G (F) (D" (2 R/ L(2)))

< [ (O RGE)) das
20€ZpnD" (2,R/L(2))

< max { Vo (D"(=", R/L(2))) : 2° € Zp ND" (2, R/L(2)) }

X / YF(2)dVap_2
20€ZrND"(2,R/L(z))
= max {VQn (D"(ZO, R/L(zo))) 2% € Zp ND"(z, R/L(z))}
1

3
R
m D”[z,L(z)]

Aln |F|dVyy,
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i.e. inequality (4.2) holds. O
For n =1 Theorem 4.1 implies the following corollary.

Corollary 4.1. Let | € Q(D), f : D — C be an analytic function
n(r, 2%, f) be a number of zeros of the f in the disc |z — 2| < oy If the
function f satisfies the following conditions

1) for every r € (0,0) there exists p1 = p1(r) > 0 such that for all
z €D\ G (f)

2) for every r € (0,8) and v > 0 exists po = pa(r,r’) > 1 that
for all 2° € D such that {z € D: |z — 20 = @} \ G (f) =
U; Ci # 0, where the sets C; are connected disjoint sets, and ei-
th i < in mi b <

er a) max min | f(2)] < pp min min [f(2)], or b) max max|f(z)| <
pzminmax|f(z)], or
¢) |f(z%)] = max; max.cq; [f(2)], |f(z™)] = minjmin.cc; [f(2)],
and z*, 2** belong to the same set Cj,

3) for every r € (0,3) there exist 6 € (0, ngf’;(ﬁ)), " > 0 such that

forall z € D
O(r —0)
e ) < S
then f has bounded [-index.
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