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1. Introduction

In this paper we consider a class of parabolic equations with nonstan-
dard growth condition and singular lower order term. Let Ω be a domain
in Rn, T > 0, set ΩT = Ω× (0, T ). We study solution to the equation

ut − divA(x, t, u,∇u) = f(x, t), (x, t) ∈ ΩT . (1.1)

Throughout the paper we suppose that the functions A(·, ·, u, ξ) are Le-
besgue measurable for all u ∈ R1, ξ ∈ Rn, A(x, t, ·, ·) are continuous
for almost all (x, t) ∈ ΩT . We also assume that the following structure
conditions are satisfied

A(x, t, u, ξ)ξ ≥ c1(|ξ|p + a(x, t)|ξ|q),
|A(x, t, u, ξ)| ≤ c2(|ξ|p−1 + a(x, t)|ξ|q−1), (1.2)
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where c1, c2 are positive constants, a(x, t) ≥ 0, a(x, t) ∈ Cα,
α
2 (ΩT ) with

some positive α ∈ (0, 1], f ∈ L1(ΩT ), and

2n

n+ 1
< p ≤ q < p+ α. (1.3)

The main goal of this paper is to establish local boundedness of solu-
tions to equation (1.1) in terms of parabolic potential of the right-hand
side. This fact is basically characterized by the different types of degener-
ate behavior according to the size of a coefficient a(x, t) that determines
the “phase”. Indeed, on the set a(x, t) = 0 equation (1.1) has growth of or-
der p with respect to the gradient (this is the “p-phase”), and at the same
time this growth is of order q when a(x, t) > 0 (this is the “(p, q)-phase”).

Before formulating the main results, let us say a few words concerning
the history of the problem. In the standard case p = q, the class of equa-
tions (1.1) has numerous application for several decades (see e.g. [5–7]
and references therein). Starting from the seminal papers by P. Mar-
cellini [18, 19], V. V. Zhikov [23] and G. Lieberman [14] during the last
decade there has been growing interest and substantial development in
the quasilinear elliptic and parabolic equations. The interest grows not
only from the calculus of variations but also from a number of recent ap-
plications in modeling electrorheological fluids, image processing, theory
of elasticity (see e.g. [20]). The basic prototypes of elliptic equations with
nonstandard growth conditions are

−div
(
g(|∇u|) ∇u

|∇u|

)
= f,

(
t

τ

)p−1

≤ g(t)

g(τ)
≤
(
t

τ

)q−1

, t ≥ τ ≥ 0,

(1.4)

−div(|∇u|p−2∇u+ a(x)|∇u|q−2∇u) = f, a(x) ≥ 0. (1.5)

The qualitative theory of parabolic equations with nonstandard growth
conditions has not been developed yet to the same extend. Local bound-
edness of the gradient of solutions to quasilinear parabolic equations of
the type

ut − div

(
g(| ∇u |) ∇u

| ∇u |

)
= f,

(s
τ

)p−1
≤ g(s)

g(τ)
≤
( s
τ

)q−1
, s ≥ τ > 0,

(1.6)

ut − div(|∇u|p−2∇u+ a(x, t)|∇u|q−2∇u) = f, a(x, t) ≥ 0 (1.7)
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were obtained in [1, 22], Hölder continuity of solutions to equation (1.6)
was proved in [8–10].

To describe our results let us remind the reader the definition of a weak
solution to equation (1.1). For ξ ∈ Rn set ga(|ξ|) := |ξ|p−1 + a(x, t)|ξ|q−1

and Ga(|ξ|) = |ξ|ga(|ξ|). We will write W 1,Ga(ΩT ) for a class of functions
which are weakly differentiable with

∫∫
ΩT

Ga(|∇u|)dxdt <∞. We say that

u is a weak solution to (1.1) if u ∈ V (ΩT ) := C(0, T ;L2(Ω)) ∩W 1,Ga(ΩT )
and for any interval (t1, t2) ⊂ (0, T ) the integral identity

∫

Ω

uϕdx |t2t1 +

t2∫

t1

∫

Ω

(−uϕt+A(x, t, u,∇u)∇ϕ)dxdt =
t2∫

t1

∫

Ω

ϕfdxdt (1.8)

holds true for any testing function ϕ ∈
0
W

1,Ga

(ΩT ) with ϕ,ϕt ∈ L∞(ΩT ).
Note that the assumptions that the testing function ϕ and its deriva-

tive ϕt must be bounded guarantee the time derivative and the right-hand
side of (1.8) are well defined. To formulate our first main result, we define
the local parabolic potential.

Let (x0, t0) ∈ ΩT for ρ, θ > 0 and let Qρ,θ(x0, t0) := Q−
ρ,θ(x0, t0) ∪

Q+
ρ,θ(x0, t0), Q

−
ρ,θ(x0, t0) := Bρ(x0)× (t0 − θ, t0), Q

+
ρ,θ(x0, t0) := Bρ(x0)×

(t0 + θ, t0). For m > 2n
n−1 , ρ > 0 define

Dm(ρ;x0, t0) := inf
τ>0





1

τm−2
+ ρ−n

∫∫

Q
ρ,ρmτm−2 (x0,t0)

|f |dxdt




. (1.9)

Note that the above infimum is attained at some τ ∈ (0,+∞] since the
function under the infimum is continuous for τ . Moreover D2(ρ;x0, t0)
=

∫∫
Q

ρ,ρ2(x0,t0)

|f |dxdt.

Now for j = 0, 1, 2, ... set ρj := 2−jρ. Following [16] we define the
parabolic potential

P fm(ρ;x0, t0) :=
∞∑

j=0

Dm(ρj;x0, t0). (1.10)

Particularly, there exists γ > 1 such that

1

γ
P f2 (ρ;x0, t0) ≤

ρ∫

0

r−n
∫∫

Qρ,ρ2(x0,t0)

|f |dxdtdr
r

≤ γP f2 (ρ;x0, t0).
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So that for m = 2 the introduced potential is equivalent to the truncated
Riesz potential used in [2, 4, 12]. Note also that for m > 2 and for a
time-independent f the minimum in the the definition of Dm(ρ;x0, t0) is
attained at

τ = (m− 2)−
1

m−1


ρm−n

∫

Bρ(x0)

|f |dx




1
m−1

,

so

Dm(ρ;x0, t0) = (m− 1)(m− 2)
1

m−1


ρm−n

∫

Bρ(x0)

|f |dx




1
m−1

and P fm(ρ;x0, t0) = W f
1,m(ρ;x0), where W f

1,m(ρ;x0) is Wolff potential
defined by the formula

W f
1,m(ρ;x0) =

∞∑

j=0


ρm−n

j

∫

Bρj
(x0)

f dx




1
m−1

, ρj =
ρ

2j
, j = 0, 1, ..

Remark 1.1. We can estimate P fm by the Lebesgue norm as follows.

Let f ∈ Lr(0, T ;Ls(Ω)) for 1
r +

n
ms < 1. Then

ρ−n
∫

Qρ,ρmτm−2 (x0,t0)

|f |dx ≤ γτ (m−2)(1− 1
r
)ρm(1− 1

r
− n

ms
)||f ||s,r

and

Dm(ρ;x0, t0) ≤ γ(ρm(1− 1
r
− n

ms
)||f ||s,r)

1

1+(m−2)(1− 1
r ) .

Hence if 1
r +

n
ms < 1, then

P fm(ρ;x0, t0) ≤ γ(ρm(1− 1
r
− n

ms
)||f ||s,r)

1

1+(m−2)(1− 1
r )

and limρ→0 sup
(x0,t0)∈ΩT

P fm(ρ;x0, t0) = 0.

The main result of the paper is the local boundedness of the solutions.
As it has already mentioned before the behavior of the solution in a neigh-
borhood of a point (x0, t0) depends on the value of the function a(x0, t0).
In what follows we will distinguish two cases: sup

Qρ,ρ2(x0,t0)
a(x, t) ≥ 2[a]αρ

α



32 Local sub-estimates of solutions to double phase...

(so called (p, q)-phase) and sup
Qρ,ρ2(x0,t0)

a(x, t) ≤ 2[a]αρ
α(so called p-phase),

here [a]α := sup
(x,t),(y,τ)∈ΩT

(x,t) 6=(y,τ)

|a(x,t)−a(y,τ)|
(|x−y|+|t−τ |)α .

Theorem 1.1. (Local boundedness of solution in the (p, q)-phase). Let
u be a solution of equation (1.1) and assumptions (1.2), (1.3) be fulfilled,
q 6= 2. Fix a point (x0, t0) ∈ ΩT such that a0 := a(x0, t0) > 0. Let

R := ( a0
2[a]α

)
1
α and Qρ,θ(x0, t0) ⊂ QR,R2(x0, t0) ⊂ Q8R,(8R)2(x0, t0) ⊂ ΩT .

Then for any 0 < λ < p
nq the following estimate

|u(x0, t0)| ≤ γ

(
ρq

a0θ

) 1
q−2

+γ

(
a0
ρn+q

∫∫

Qρ,θ(x0,t0)
|u|q−1+λ(q−1)dxdt

) 1
1+λ(q−1)

+γ

(
1

ρn+p

∫∫

Qρ,θ(x0,t0)
|u|p−1+λ(q−1)dxdt

) 1
1+λ(q−1)

+γ(1 + a
− 1

q−2

0 )P fq (2ρ;x0; t0) (1.11)

holds true with a constant γ > 0 depending only on n, p, q, c1, c2, [a]α
and λ.

Theorem 1.2. (Local boundedness of solution in the p-phase). Let u
be a solution of equation (1.1) and assumptions (1.2), (1.3) be fulfilled,
and assume also that q < pn+1

n . Fix a point (x0, t0) ∈ ΩT such that

a0 = a(x0, t0) = 0. Then for any 0 < λ < p−n(q−p)
nq the following estimate

|u(x0, t0)| ≤ γ

(
ρp

θ

) 1
p−2

+ γ




1

ρn+p

∫∫

Qρ,θ(x0,t0)

|u|p−1+λ(q−1)dxdt




1
1+λ(q−1)

+γ




1

ρn+p

∫∫

Qρ,θ(x0,t0)

|u|(q−1)(1+λ)dxdt




p
p−n(q−p)+λp(q−1)

+ γP fp (2ρ;x0, t0)

(1.12)
hold true with a constant γ depending only on n, p, q, c1, c2, [a]α and λ.

The proof of Theorems 1.1, 1.2 is based on the adaption of the
Kilpeläinen–Malý technique [11] to the parabolic equations using ideas
from [16].
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2. Local boundedness of solutions. Proof of

Theorems 1.1, 1.2

2.1. Integral estimates of the solutions

For 0 < λ < min(1,m − 1),m > 1, set Wm(s) :=
∫ s
0 (1 + z)−

1+λ
m dz =

m
m−1−λ((1 + s)

m−1−λ
m

−1) for any ε ∈ (0, 1) evidently we have

Wm(s) ≤
m

m− 1− λ
s

m−1−λ
m , s ≤ ε+ γ(ε)W

m
m−1−λ (s) (2.1)

with a constant γ(ε) depending only on ε,m, λ. In what follows we shall
also need the following simple inequality.

s ≤ ε+ γ(ε)

∫ s

0
(1− (1 + z)−λ)dz, ε, λ ∈ (0, 1) (2.2)

with a constant γ(ε) depending only on ε, λ.
The next two lemmas are Cacciopolli type estimates adapted to the

Kilpeläinen–Maly technique.

Lemma 2.1. (p, q-phase). Let the conditions of Theorem 1.1 be ful-
filled. Then there exists γ > 0 depending only on the data such that

for any λ ∈ (0, 1), k > q, l, δ > 0, any cylinder Q
(δ)
r := Qr, rq

a0
δ2−q ⊂

Qρ,θ(x0, t0) ⊂ QR,R2(x0, t0) and any ζ ∈ C∞
0 (Q

(δ)
r ), such that 0 ≤ ζ ≤

1, |∇ζ| ≤ γr−1, |ζt| ≤ γa0r
−qδq−2 one has

sup
0<t<T

δ−1

∫

L(t)

∫ u

l

(
1−

(
1 +

z − l

δ

)−λ)
dzζkdx

+ δp−2

∫∫

L

∣∣∣∣∇Wp

(
u− l

δ

)∣∣∣∣
p

ζkdxdt

+ δq−2a0

∫∫

L

∣∣∣∣∇Wq

(
u− l

δ

)∣∣∣∣
q

ζkdxdt

≤ γa0
δq−2

rq

∫∫

L

(
1 +

u− l

δ

)q−1+λ(q−1)

ζk−qdxdt

+ γ
δp−2

rp

∫∫

L

(
1 +

u− l

δ

)p−1+λ(q−1)

ζk−qdxdt

+ γδ−1

∫∫

Q
(δ)
r

|f |dxdt, (2.3)

where L := Q
(δ)
r ∩ {u > l}, L(t) := L ∩ {τ = t}.
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Proof. First note that by our choice of R we have a0
2 = a0 − [a]αR

α ≤
a(x, t) ≤ a0+[a]αR

α = 3
2a0 for any (x, t) ∈ Q

(δ)
r ⊂ QR,R2(x0, t0). Testing

identify (1.8) by ϕ = (1 − (1 + (u−lδ )+)
−λ)ζk, using conditions (1.2) we

obtain

sup
0<t<T

∫

L(t)

u∫

l

(
1−

(
1 +

z − l

δ

)−λ
)
dzζkdx

+δ−1

∫∫

L

(
1 +

u− l

δ

)−1−λ
|∇u|pζkdxdt

δ−1a0

∫∫

L

(
1 +

u− l

δ

)−1−λ
|∇u|qζkdxdt ≤ γa0

δq−1

rq

∫∫

L

u− l

δ
ζk−1dxdt+ γr−1

∫∫

L

|∇u|p−1ζk−1dxdt

+γa0r
−1

∫∫

L

|∇u|q−1ζk−1dxdt+ γ

∫∫

Q
(δ)
r

|f |dxdt.

From this using the Young inequality and by our choice of Wp(
u−l
δ ),

Wq(
u−l
δ ) we arrive at the required (2.3).

Lemma 2.2. (p-phase). Let the conditions of Theorem 1.2 be fulfilled.
Then there exists γ > 0 depending only on the data such that for any λ ∈
(0, 1), k ≥ q, l > 0, δ ≥ rσ1 , any cylinder Q

(δ)
r := Q

rδ
p−2
p ,rpδ2−p

(x0, t0) ⊂

Qρ,θ(x0, t0) and any ζ ∈ C∞
0 (Q

(δ)
r ), such that 0 ≤ ζ ≤ 1, |∇ζ| ≤

γr−1, |ζt| ≤ γr−pδp−2 one has

sup
0<t<T

∫

L(t)

∫ u

l

(
1−

(
1 +

z − l

δ

)−λ
)
dzζkdx

+δp−2

∫∫

L

∣∣∣∣∇Wp

(
u− l

δ

)∣∣∣∣
p

ζkdxdt

≤ γδp−2r−p
∫∫

L

(
1 +

u− l

δ

)p−1+λ(q−1)

ζk−qdxdt

+γδq−2r−p
∫∫

L

(
1 +

u− l

δ

)q−1+λ(q−1)

ζk−qdxdt+ γδ−1

∫∫

Q
(δ)
r

|f |dxdt.

(2.4)
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Proof. Note that by our choice of δ we have an inclusionQ
(δ)
r ⊂ Qr,r2(x0, t0).

Therefore for any (x, t) ∈ Q
(δ)
r we have a(x, t) ≤ [a]αr

α ≤ [a]αr
q−p (we

have p, q > 2).

Testing (1.8) by ϕ = (1− (1+(u−lδ )+)
−λ)ζk, using condition (1.2) we

obtain

sup
0<t<T

∫

L(t)

∫ u

l

(
1−

(
1 +

z − l

δ

)−λ
)
dzζkdx

+δ−1

∫∫

L
a(x, t)

(
u− l

δ

)−1−λ
|∇u|qζkdxdt ≤ γ

δp−1

rp

∫∫

L

u− l

δ
ζk−1dxdt

+γr−1

∫∫

L

|∇u|p−1ζk−1dxdt+ γr−1

∫∫

L

a(x, t)|∇u|q−1ζk−1dxdt

+γ

∫∫

Q
(δ)
r

|f |dxdt.

Using the Young inequality we arrive at the required (2.4).

2.2. Proof of Theorem 1.1

Fix a number æ ∈ (0, 1) depending only on the data and λ, which
will be specified later. For j = 0, 1, 2, ... positive numbers lj and δj are
defined inductively as follows.

δ−1 :=

(
ρq

a0θ

) 1
q−2

+




a0
æρn+q

∫∫

Qρ,θ(x0,t0)

uq−1+λ(q−1)dxdt




1
1+λ(q−1)

+




1

æρn+p

∫∫

Qρ,θ(x0,t0)

up−1+λ(q−1)dxdt




1
1+λ(q−1)

(2.5)

and l0 = 0. For j = 0, 1, 2, ..., given δj−1 and lj we define δj and lj+1 as
follows. We denote rj := ρ2−j and τj := sup{τ : 1

τ+r
−n
j

∫∫
Q

rj,r
q
j
τq−2 (x0,t0)

|f |dxdt =

Dq(rj ;x0, t0)}, where Dq(rj;x0, t0) is as in (1.9). For δ ≥ 1
2δj−1 we define

Bj := Brj(x0), Q
(δ)
j := Q

rj ,
r
p
j

a0
δ2−q

(x0, t0). Let ζj ∈ C∞
0 (Q

(δ)
j ) be such that
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0 ≤ ζj ≤ 1, ζj = 1 in 1
4Q

(δ)
j and |∇ζj| ≤ γr−1

j , |∂ζj∂t | ≤ γa0r
−q
j δq−2. Set

Aj(δ) := a0
δq−2

rn+qj

∫∫

L
(δ)
j

(
u− lj
δ

)q−1+λ(q−1)

ζqj dxdt

+
δp−2

rn+pj

∫∫

L
(δ)
j

(
u− lj
δ

)p−1+λ(q−1)

ζqj dxdt, (2.6)

here L
(δ)
j := Q

(δ)
j ∩ {u > lj}.

If Aj(
1
2δj−1) ≤ æ, we set δj =

1
2δj−1 and δj = lj+1− lj. Since Aj(δ) is

continuous and decreasing as a function of δ, then if Aj(
1
2δj−1) > æ there

exists δ̂ > 1
2δj−1 such that Aj(δ̂) = æ. In this case we set δj = δ̂ and

lj+1 = lj+δj. Further we set Qj = Q
(δj)
j , Lj = L

(δj)
j . By our choice of δ−1

and δj , j = 0, 1, 2, ... we have an inclusion Qj ⊂ Qj−1 ⊂ Q0 ⊂ Qρ,θ(x0, t0)
for j = 1, 2, ... and in particular ζj−1 ≡ 1 on Qj , j = 1, 2, ..., and moreover

Aj(δj) ≤ æ, j = 1, 2, ... (2.7)

Claim. Set B = 2n+q, then for any j = 0, 1, 2, ...

δj ≤ Bδj−1. (2.8)

We establish the claim by induction. By our choice of δ−1 we have for
j = 0

A0(Bδ−1) =
a0δ

−1−λ(q−1)
−1

ρn+qB1+λ(q−1)

∫∫

Q0

uq−1+λ(q−1)ζq0dxdt

+
δ
−1−λ(q−1)
−1

ρn+pB1+λ(q−1)

∫∫

Q0

up−1+λ(q−1)ζq0dxdt

≤ B−1−λ(q−1)




a0δ

−1−λ(q−1)
−1

ρn+q

∫∫

Qρ,θ(x0,t0)

uq−1+λ(q−1)dxdt

+
δ
−p−1−λ(q−1)
−1

ρn+p

∫∫

Qρ,θ(x0,t0)

up−1+λ(q−1)dxdt





≤ B−1æ < æ.
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If δ0 = 1
2δ−1 ≤ Bδ−1, and if A0(δ0) = æ > A0(Bδ−1), and since A0δ

is decreasing, then δ0 ≤ Bδ−1, and in both cases we obtain δ0 ≤ Bδ−1.
Assume that (2.8) holds for i = 1, 2, ..., j − 1, then

Aj(Bδj−1) = a0

(
2

rj−1

)n+q δq−2
j−1

B1+λ(q−1)

∫∫

Lj

(
u− lj
δj−1

)q−1+λ(q−1)

ζqj dxdt

+

(
2

rj−1

)n+p δp−2
j−1

B1+λ(q−1)

∫∫

Lj

(
u− lj
δj−1

)p−1+λ(q−1)

ζqj dxdt

≤ 2n+qB−1


a0

δq−2
j−1

rn+qj−1

∫∫

Lj

(
u− lj−1

δj−1

)q−1+λ(q−1)

ζqj−1dxdt

+
δp−2
j−1

rn+pj−1

∫∫

Lj

(
u− lj−1

δj−1

)p−1+λ(q−1)

ζqj dxdt




≤ 2n+qB−1Aj−1(δj−1) ≤ æ2n+qB−1 ≤ æ.

If δj = 1
2δj−1 ≤ Bδj−1, Aj(δj) = æ ≥ Aj−1(Bδj−1), and since Aj(δ) is

decreasing, then δj ≤ Bδj−1, and in both cases we obtain δj ≤ Bδj−1,
which proves the claim.

The following lemma is a key in the Kilpeläinen–Malý technique.

Lemma 2.3. Let the conditions of Theorem 1.1 be fulfilled. Then for
any j ≥ 1 there exists γ > 0 depending only on the data and λ, such that

δj ≤
1

2
δj−1 + γ(1 + a

− 1
q−2

0 )Dq(rj ;x0, t0). (2.9)

Proof. We shall assume later that

δj >
1

2
δj−1, δj > a

− 1
q−2

0

1

τj
, (2.10)

since otherwise (2.9) is evident. The first inequality in (2.10) guarantees
that Aj(δj) = æ. First note the inequality

δq−2
j

rn+qj

|Lj |+
δp−2
j−1

rn+pj−1

|Lj | ≤ γæ, j = 1, 2, ... (2.11)

Indeed, by (2.7) and (2.8) we have

a0
δq−2
j

rn+qj

|Lj |+
δp−2
j−1

rn+pj−1

|Lj |
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= a0
δq−2
j

rn+qj

∫∫

Lj

(
lj − lj−1

δj−1

)q−1+λ(q−1)

ζqj−1dxdt

+
δp−2
j−1

rn+pj−1

∫∫

Lj

(
lj − lj−1

δj−1

)p−1+λ(q−1)

ζqj−1dxdt

≤ γ(B)


a0

δq−2
j

rn+qj

∫∫

Lj−1

(
u− lj−1

δj−1

)q−1+λ(q−1)

ζqj−1dxdt

+
δp−2
j−1

rn+pj−1

∫∫

Lj−1

(
u− lj−1

δj−1

)p−1+λ(q−1)

ζqj−1


 dxdt

≤ γ(B)Aj−1(δj−1) ≤ γ(B)æ.

By (2.1) and (2.11) we have for any ε ∈ (0, 1)

æ = a0
δq−2
j

rn+qj

∫∫

Lj

(
u− lj
δj

)q−1+λ(q−1)

ζqj dxdt+
δp−2
j

rn+pj−1

∫∫

Lj

(
u− lj
δj

)p−1+λ(q−1)

ζqj dxdt ≤ a0γε
q−1+λ(q−1)δq−2

j r−n−qj |Lj |

+γεp−1+λ(q−1)δ

p−2

r
−n−q
j

j |Lj |+ γ(ε)J1 ≤ εγæ + γ(ε)J1, (2.12)

where

J1 = a0
δq−2
j

rn+qj

∫∫

Lj

W q
q

(
u− lj
δj

)(
u− lj
δj

)λq
ζqj dxdt

+
δp−2
j

rn+qj

∫∫

Lj

W p
p

(
u− lj
δj

)(
u− lj
δj

)λq
ζqj dxdt.

Further we shall assume that λ satisfies the condition 0 < λ < p
nq . By

the Sobolev embedding theorem and our choice of λ we obtain

J1 ≤ a0γ
δq−2
j

rn+qj


 sup

0<t<T

∫

Lj(t)

u− lj
δj

ζqj dx




q
n ∫∫

Lj

∣∣∣∣∇
(
Wq

(
u− lj
δj

)
ζj

)∣∣∣∣
q

dxdt

+γ
δp−2
j

rn+qj


 sup

0<t<T

∫

Lj(t)

u− lj
δj

ζqj dx




p
n ∫∫

Lj

∣∣∣∣∇
(
Wp

(
u− lj
δj

)
ζj

)∣∣∣∣
p

dxdt. (2.13)
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By (2.2) and Lemma 2.1 we obtain for every ε1 ∈ (0, 1)

sup
0<t<T

∫

Lj(t)

u− lj
δj

ζqj dx ≤ ε1|Bj |

+ γ(ε1)δ
−1
j sup

0<t<T

∫

Lj(t)

∫ u

lj

(
1−

(
1 +

z − lj
δj

)−λ
)
dzζqj dx

≤ |Bj |


ε1 + γ(ε1)a0

δq−2
j

rn+qj

∫∫

Lj

(
1 +

u− lj
δj

)q−1+λ(q−1)

dxdt




+ γ(ε1)
δp−2
j

rn+qj

∫∫

Lj

(
1 +

u− lj
δj

)p−1+λ(q−1)

dxdt

+ γ(ε1)δ
−1
j r−nj

∫∫

Qj

|f |dxdt. (2.14)

Further by (2.7), (2.8), (2.10), (2.11) and our choice of ζj we obtain

a0
δq−2
j

rn+qj

∫∫

Lj

(
1 +

u− lj
δj

)q−1+λ(q−1)

dxdt

+
δp−2
j

rn+qj

∫∫

Lj

(
1 +

u− lj
δj

)p−1+λ(q−1)

dxdt ≤ γAj−1(δj−1) ≤ γæ. (2.15)

Therefore, inequalities (2.13)–(2.15) and Lemma 2.1 imply

æ ≤ εγæ+ γ(ε)


æ+ δ−1

j r−nj

∫∫

Qj

|f |dxdt




×






ε1 + γ(ε1)æ + δ−1

j r−nj

∫∫

Qj

|f |dxdt




q
n

+


ε1 + γ(ε1)æ + δ−1

j r−nj

∫∫

Qj

|f |dxdt




p
n




. (2.16)

Now choose ε = 1
16γ , ε1 =

1
16γ(ε) and æ such that γ(ε, ε1)æ

p
n+γ(ε, ε1)æ

q
n =

1
16 . From (2.16) it follows that there exists γ > 0 such that δ−1

j r−nj
∫∫
Qj

|f |dxdt ≥
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γæ, hence δj ≤ γr−nj
∫∫
Qj

|f |dxdt. By the second inequality in (2.10) we

have an inclusion Qj ⊂ Qrj ,rqj τ
q−2
j

(x0, t0), so

δj ≤ γr−nj

∫∫

Q
rj,r

q
j
τ
q−2
j

(x0,t0)

|f |dxdt ≤ γDq(rj ;x0, t0).

Such a way inequality (2.9) is proved, which completes the proof of
Lemma 2.3.

Summing up inequality (2.9) for j = 1, 2, ..., J − 1 by (2.8) we obtain

lJ ≤ γδ0 + γ(1 + a
− 1

q−2

0 )

∞∑

j=1

Dq(rj ;x0, t0)

≤ γδ−1 + γ(1 + a
− 1

q−2

0 )P fq (2ρ;x0, t0). (2.17)

Hence we can pass to the limit J → ∞ in (2.17). Let l̄ = limj→∞ lj, from

(2.6), (2.7) we conclude that r−n−qj

∫∫
Qj

(u−l̄)q−1+λ(q−1)dxdt ≤ γδ
1+λ(q−1)
j →

0, j → ∞. Choosing (x0, t0) as a Lebesgue point of the function (u −
l̄)q−1+λ(q−1) we conclude that u(x0, t0) ≤ l̄ and hence u(x0, t0) is esti-
mated from above by the righthand side of (2.17). This completes the
proof of Theorem 1.1.

2.3. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that of Theorem 1.1. We note
only the differences arising here.

Fix a number æ ∈ (0, 1) depending only on the data and λ, which
will be specified later. For j = 0, 1, 2, ... positive numbers lj and δj are
defined inductively as follows.

δ−1 :=

(
ρp

θ

) 1
p−2

+




1

æρn+p

∫∫

Qρ,θ(x0,t0)

up−1+λ(q−1)dxdt




1
1+λ(q−1)

+

(
1

æρn+p

∫∫

Qρ,θ(x0,t0)
uq−1+λ(q−1)dxdt

) p
p−n(q−p)+λp(q−1)

, (2.18)
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and l0 = 0. We denote rj := ρ2−j and

τj := sup




τ :

1

τ
+ r−nj

∫∫

Q
rj,r

p
j
τp−2(x0,t0)

|f |dxdt





= Dp(rj ;x0, t0), (2.19)

where Dp(rj;x0, t0) is defined by (1.9). For δ ≥ 1
2δj−1 we define Bj :=

Brj(x0), Q
(δ)
j := Qrj ,rpj δ2−p(x0, t0) and let ζj ∈ C∞

0 (Q
(δ)
j ) be such that

0 ≤ ζj ≤ 1, ζj = 1 in 1
4Q

(δ)
j and |∇ζj| ≤ γr−1

j , |∂ζj∂t | ≤ γr−pj δp−2. Set

Aj(δ) :=
δp−2

rn+pj

∫∫

L
(δ)
j

(
u− lj
δ

)p−1+λ(q−1)

ζqj dxdt

+
δq−2

rn+pj

∫∫

L
(δ)
j

(
u− lj
δ

)q−1+λ(q−1)

ζqj dxdt, (2.20)

where L
(δ)
j := Q

(δ)
j ∩ {u > lj}.

If Aj(
1
2δj−1) ≤ æ, we set δj =

1
2δj−1 and δj = lj+1 − lj. Since Aj(δ)

is continuous and decreasing as a function of δ, then Aj(
1
2δj−1) > æ

and there exists δ̂ > 1
2δj−1 such that Aj(δ̂) = æ. In this case we set

δj = δ̂. Further we set Qj = Q
(δj)
j and Lj = L

(δj )
j . By our choice of

δj , j = 0, 1, 2, ... we have an inclusion Qj ⊂ Qj−1 ⊂ Q0 ⊂ Qρ,θ(x0, t0) for
j = 1, 2, ..., in particular, ζj−1 ≡ 0 on Qj, j = 1, 2, ... and

Aj(δj) ≤ æ, j = 1, 2, ... (2.21)

Similarly to (2.8) we prove

δj ≤ Bδj−1, j = 0, 1, 2, ... (2.22)

where B = 2σ3 , σ3 =
(n+p)p
p−n(q−p) .

The next Lemma is a key in the Kilpeläinen–Malý technique in the
p-phase.

Lemma 2.4. Let the conditions of Theorem 1.2 be fulfilled. Then for
any j ≥ 1 there exists γ > 0 depending only on the data and λ such that

δj ≤
1

2
δj−1 + γDp(rj ;x0, t0). (2.23)
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Proof. We will assume that

δj >
1

2
δj−1, δj >

1

τj
,

since otherwise inequality (2.23) is evident. First, similarly to (2.11) we
obtain

(δp−2
j + δq−2

j )r−n−pj |Lj | ≤ γæ, j = 1, 2, ... (2.24)

By (2.1) and (2.24) we have for any ε ∈ (0, 1)

æ =
δp−2
j

rn+pj

∫∫

Lj

(
u− lj
δj

)p−1+λ(q−1)

ζqj dxdt

+
δq−2
j

rn+pj

∫∫

Lj

(
u− lj
δj

)q−1+λ(q−1)

ζqj dxdt ≤ εæ+ γ(ε)J2, (2.25)

where

J2 =
δp−2
j

rn+pj

∫∫

Lj

W p
p (
u− lj
δj

)(
u− lj
δj

)λqζqj dxdt

+
δq−2
j

rn+pj

∫∫

Lj

W p
p (
u− lj
δj

)(
u− lj
δj

)q−p+λqζqj dxdt.

Assuming that λ satisfies the condition 0 < λ < p−n(q−p)
nq and using

the Sobolev embedding theorem we obtain

J2 ≤ γ

(
δp−2
j + δ

q−2+n
p
(q−p)

j

)
r−n−pj

×


 sup

0<t<T

∫

Lj(t)

u− lj
δj

ζqj dx




p
n ∫∫

Lj

∣∣∣∣∇
(
Wp

(
u− lj
δj

)
ζj

)∣∣∣∣
p

dxdt

= γ

(
δp−2
j + δ

q−2+n
p
(q−p)

j

)
r−n−pj J3. (2.26)
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By (2.2) and Lemma 2.2 we obtain for every ε, ε1 ∈ (0, 1)

γ(ε)δ
q−2+n

p
(q−p)

j r−n−pj J3

≤ γ(ε)


ε1 + γ(ε1)æ + δ

− p−n(q−p)
p

j r−nj

∫∫

Qj

|f |dxdt




p
n

×


æ+ δ

− p−n(q−p)
p

j r−nj

∫∫

Qj

|f |dxdt


 . (2.27)

Similarly, by (2.2) and Lemma 2.2 we have for any ε, ε1 ∈ (0, 1)

γ(ε)δ
− p−n(q−p)

p

j r−n−pj J3

≤ γ(ε)


ε1 + γ(ε1)æ + δ

− p−n(q−p)
p

j r−nj

∫∫

Qj

|f |dxdt




p
n

×


æ+ δ

− p−n(q−p)
p

j r−nj

∫∫

Qj

|f |dxdt


 . (2.28)

Choose ε = 1
16γ , ε1 = 1

16γ(ε) and æ such that γ(ε, ε1)æ
p
n = 1

16 . From

(2.25)–(2.28) it follows

δj ≤ γ


r−nj

∫∫

Qj

|f |dxdt


+ γ


r−nj

∫∫

Qj

|f |dxdt




p
p−n(q−p)

.

Since δj >
1
τj

we have an inclusion Qj ⊂ Qrj ,rpj τ
p−2
j

(x0, t0). From the

previous we obtain

δj ≤ γr−nj

∫∫

Q
rj,r

p
j
τ
p−2
j

(x0,t0)

|f |dxdt ≤ γDj(rj ;x0, t0),

which proves the lemma.

Summing inequalities (2.23) for j = 1, 2, ..., J − 1, using (2.22) and
passing to the limit J → ∞, we arrive at (1.12). Here (x0, t0) is a
Lebesgue point of the function (u− l̄)p−1+λ(q−1), where l̄ = lim

j→∞
lj. This

completes the proof of Theorem 1.2.
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