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Abstract. The paper is devoted to extremal problems of the geometric
function theory of complex variable related with estimates of functionals
defined on systems of non-overlapping domains. Till now, many such
problems have not been solved, though some partial solutions are avail-
able. In the paper improved method is proposed for solving problems
on extremal decomposition of the complex plane. The main results of
the paper generalize and strengthening some known results in the theory
of non-overlapping domains with free poles to the case of an arbitrary
arrangement of systems of points on the complex plane.
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1. Inequalities for the inner radii of symmetric

non-overlapping domains on the unit circle

Let N, R be the sets of natural and real numbers, respectively, C

be the complex plane, C = C
⋃{∞} be a one point compactification and

R+ = (0,∞). Let r(B, a) be an inner radius of the domain B ⊂ C relative
to a point a ∈ B. The inner radius of the domain B is connected with
Green’s generalized function gB(z, a) of the domain B by the relations

gB(z, a) = − ln |z − a|+ ln r(B, a) + o(1), z → a,

gB(z,∞) = ln |z|+ ln r(B,∞) + o(1), z → ∞.
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The system of points An := { ak ∈ C, k = 1, n}, n ∈ N, n > 2 is called
n-radial, if |ak| ∈ R+ for k = 1, n and

0 = arg a1 < arg a2 < ... < arg an < 2π.

Denote an+1 := a1, αk := 1
π arg

ak+1

ak
, αn+1 := α1, k = 1, n,

n∑
k=1

αk = 2.

Consider the following extremal problem.

Problem. For any fixed values of γ ∈ (0, n] to find the maximum of
the functional

In(γ) = rγ (B0, 0)

n∏

k=1

r (Bk, ak) ,

where B0, B1, B2,..., Bn, n > 2, are mutually non-overlapping domains
in C and B1, . . . , Bn are symmetric about the unit circle, a0 = 0, |ak| = 1,
k = 1, n, ak ∈ Bk ⊂ C, k = 0, n.

This problem belongs to the class of extremal problems with free
poles. Problems of this type have been studied in many papers (see, for
example, [1–13]). In 1968 P. M. Tamrazov in the paper [10] first attracted
the attention of experts to the study of the extremal problems associated
with quadratic differentials with nonfixed poles possessing a definite free-
dom. And he solved a significant extremal problem of the geometric
theory of functions of a complex variable with five free simple poles. In
the works [1, 9] a very efficient method of separating transformation was
developed with the help of which it was possible to solve some difficult
problems with free poles on a circle.

Problem posed above in the case γ = 1 was formulated as an open
problem in the paper [1]. For γ = 1 and n > 2 this problem was solved
by L. V. Kovalev [3, 4]. Namely, it was shown that under its conditions
the inequality is true

r(B0, 0)

n∏

k=1

r(Bk, ak) 6 r (D0, 0)

n∏

k=1

r (Dk, dk) ,

where dk, Dk, k = 0, n, are, respectively, poles and circular domains of
the quadratic differential

Q(w)dw2 = −w
2n + 2(n2 − 1)wn + 1

w2(wn − 1)2
dw2.

However, for the values of γ 6= 1, this problem has not been solved for
a long time. Only in 2018 in the paper [5] it was solved for n > 2 and
γ ∈ (0, 1). In the paper we propose a method which allows to obtained
estimate of the maximum of the functional In(γ) for this problem for all
n > 2 and γ ∈ (1, n]. We obtain the following result.
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Theorem 1. Let n ∈ N, n > 2, γ ∈ (1, n]. Then, for any system of dif-
ferent points {ak}nk=1 of the unit circle and any mutually non-overlapping
domains Bk, ak ∈ Bk ⊂ C, k = 0, n, a0 = 0, and Bk, k = 1, n, are sym-
metric about the unit circle |ak| = 1, the following inequality holds

rγ (B0, 0)

n∏

k=1

r (Bk, ak) 6 n−
γ
2

(
n∏

k=1

r (Bk, ak)

)1− γ
n

. (1.1)

Proof. From the definition of the Green function we have

r (B0, 0) = r
(
B+

0 ,∞
)
, B+ =

{
z;

1

z
∈ B

}
.

Let E ⊂ C be a compact infinite set of the complex plane. Let d(E)
be the transfinite diameter of a compact set E ⊂ C. Then the following
relation holds

r (B0, 0) = r
(
B+

0 ,∞
)
=

1

d(C \B+
0 )

6
1

d(
n⋃
k=1

B
+
k )

. (1.2)

By virtue of the well-known Polya theorem [6, p. 28], [7, p. 34], the
inequality

µE 6 πd2(E),

where µE denotes the Lebesgue measure of a compact set E, is valid.
From whence, we get

d(E) >

(
1

π
µE

) 1
2

.

Then relation (1.2) yields

r (B0, 0) 6
1

d(
n⋃
k=1

B
+
k )

6
1√

1
πµ(

n⋃
k=1

B
+
k )

=

[
1

π

n∑

k=1

µB
+
k

]− 1
2

. (1.3)

For a bounded domain B, a ∈ B we consider the class of all regular
functions ϕ(z), ϕ(a) = 0, ϕ′(a) = 1, given in the domain B, and the area
of an image of the domain B at the mapping by an arbitrary function
ϕ(z). It follows from the theorem of minimization of areas [7, p. 34] that

∫∫

B

|ϕ′(z)|2dxdy > πr2 (B, a) , (1.4)
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where r (B, a) is the inner radius of the domain B with respect to the
point a. Let us set ϕ1(z) = (z − a). Then relation (1.4) yields

S(B) = µ(B) > πr2 (B, a) .

Inequality (1.3) implies directly that

r (B0, 0) 6

[
1

π

n∑

k=1

µB
+
k

]− 1
2

6

[
1

π

n∑

k=1

µB+
k

]− 1
2

6

[
n∑

k=1

r2
(
B+
k , a

+
k

)
]− 1

2

.

From whence, we get the inequality

r (B0, 0) 6
1

[
n∑
k=1

r2
(
B+
k , a

+
k

)] 1
2

.

With regard for the relation

r
(
B+
k , a

+
k

)
=
r (Bk, ak)

|ak|2

we arrive at the inequality

r (B0, 0) 6




1
n∑
k=1

r2(Bk,ak)
|ak|4




1
2

.

This result and the assumption of Theorem 1 yield the relation

rγ (B0, 0)

n∏

k=1

r (Bk, ak) 6

n∏
k=1

r (Bk, ak)

[
n∑
k=1

r2(Bk ,ak)
|ak|4

] γ
2

. (1.5)

The Cauchy inequality yields automatically the relation

1

n

n∑

k=1

r2 (Bk, ak)

|ak|4
>

[
n∏

k=1

r2 (Bk, ak)

|ak|4

] 1
n

.

And using the equality
n∏

k=1

|ak| = 1,
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we get easily

[
n∑

k=1

r2 (Bk, ak)

|ak|4

] γ
2

>


n
[

n∏

k=1

r2 (Bk, ak)

|ak|4

] 1
n




γ
2

> n
γ
2

[
n∏

k=1

r (Bk, ak)

] γ
n

.

Eventually, from (1.5) we obtain

rγ (B0, 0)
n∏

k=1

r (Bk, ak) 6 n−
γ
2

[
n∏

k=1

r (Bk, ak)

]1− γ
n

.

Thus Theorem 1 is proved.

Remark 1. If γ = n, then from Theorem 1 the following inequality
holds

rn (B0, 0)

n∏

k=1

r (Bk, ak) 6 n−
n
2 .

Using Theorem 5.1.1 [8] from Theorem 1 we have the following state-
ment.

Corollary 1. Let n ∈ N, n > 2, γ ∈ (1, n]. Then, for any system of dif-
ferent points {ak}nk=1 of the unit circle and any mutually non-overlapping
domains Bk, ak ∈ Bk ⊂ C, k = 0, n, a0 = 0, and Bk, k = 1, n, are sym-
metric about the unit circle |ak| = 1, the following inequality holds

rγ (B0, 0)
n∏

k=1

r (Bk, ak) 6 2(n−γ) · n− γ
2 ·
(

n∏

k=1

αk

)1− γ
n

.

From Theorem 6.11 [9, p.172] we obtain the following inequality.

Corollary 2. Let n ∈ N, n > 2, γ ∈ (1, n]. Then, under the conditions
of the Corollary 1 the following inequality holds

rγ (B0, 0)
n∏

k=1

r (Bk, ak) 6 n−
γ
2

(
4

n

)n−γ
.

Let

I0n(γ) = rγ(D0, d0) ·
n∏

k=1

r(Dk, dk),

where Dk and dk, k = 0, n are the circular domains and, respectively, the
poles of the quadratic differential

Q(w)dw2 = −γw
2n + 2(n2 − γ)wn + γ

w2(wn − 1)2
dw2.
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From [1–5] we have

I0n(γ) =

(
4

n

)n
(
2γ
n2

) γ
n

∣∣∣1− 2γ
n2

∣∣∣
n
2
+ γ

n

∣∣∣∣
n−√

2γ

n+
√
2γ

∣∣∣∣

√
2γ

.

We made a comparative analysis of estimate of the maximum of functional
In(γ) obtained in Theorem 1 and the estimate I0n(γ) when γ = n for
n = 2, 10 (see table below).

n I0n(n) n−
n
2 n−

n
2 − I0n(n)

n−n
2 −I0n(n)
I0n(n)

2 0,2500000000 0,5000000000 0,2500000000 1,0000000000

3 0,0897092419 0,1924500897 0,1027408478 1,1452649211

4 0,0273370712 0,0625000000 0,0351629288 1,2862727153

5 0,0070194764 0,0178885438 0,0108690674 1,5484156742

6 0,0015467153 0,0046296296 0,0030829143 1,9932008548

7 0,0002977029 0,0011019372 0,0008042344 2,7014669766

8 0,0000508051 0,0002441406 0,0001933355 3,8054339019

9 0,0000077826 0,0000508053 0,0000430227 5,5280820279

10 0,0000010811 0,0000100000 0,0000089189 8,2502515613

2. Inequalities for the inner radii of non-overlapping

domains on the complex plane

From method of proof of the Theorem 1 we can obtain estimates of
the next functional

Jn(γ) = [r (B0, 0) r (B∞,∞)]γ
n∏

k=1

r (Bk, ak) ,

considered, for example, in the papers [1, 8, 9, 13], in which for Jn(γ)
in particular cases for some values of γ, the following inequality was
established

Jn(γ) 6

(
4

n

)n
(
4γ
n2

) 2γ
n

∣∣∣1− 4γ
n2

∣∣∣
2γ
n
+n

2

∣∣∣∣
n− 2

√
γ

n+ 2
√
γ

∣∣∣∣
2
√
γ

.

Equality in this inequality is achieved when 0, ∞, ak and B0, B∞, Bk,
k = 1, n, are, respectively, poles and circular domains of the quadratic
differential

Q(w)dw2 = −γw
2n + (n2 − 2γ)wn + γ

w2(wn − 1)2
dw2.
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Namely, the following result holds.

Theorem 2. Let n ∈ N, n > 2, γ ∈ (0, n+2
2 ]. Then, for any fixed

system of different points An = {ak}nk=1 ∈ C/{0,∞} and any mutually
non-overlapping domains B0, B∞, Bk, a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C,
ak ∈ Bk ⊂ C, k = 1, n, the following inequality holds

Jn(γ) 6 (n+ 1)−
n+1
n+2

γ

(
n∏

k=1

r (Bk, ak)

)1− 2γ
n+2

(
n∏

k=1

|ak|
) 2γ

n+2

. (2.1)

Proof. Using inequalities (1.2), (1.3) and (1.4), we have

r (B0, 0) 6
1

[
r2
(
B+

∞, 0
)
+

n∑
k=1

r2
(
B+
k , a

+
k

)] 1
2

=
1

[
r2 (B∞,∞) +

n∑
k=1

r2(Bk,ak)
|ak |4

] 1
2

,

r (B∞,∞) 6
1

[
r2 (B0, 0) +

n∑
k=1

r2 (Bk, ak)

] 1
2

.

Taking into account the Cauchy inequality

1

n+ 1

(
r2 (B0, 0) +

n∑

k=1

r2 (Bk, ak)

)
>

[
r2 (B0, 0)

n∏

k=1

r2 (Bk, ak)

] 1
n+1

.

Then

(
r2 (B0, 0) +

n∑

k=1

r2 (Bk, ak)

) 1
2

> (n + 1)
1
2

[
r (B0, 0)

n∏

k=1

r (Bk, ak)

] 1
n+1

.

Analogically,

(
r2 (B∞,∞) +

n∑

k=1

r2 (Bk, ak)

|ak|4

) 1
2

>(n+1)
1
2

[
r (B∞,∞)

n∏

k=1

r (Bk, ak)

|ak|2

] 1
n+1

.

Thus,

r (B∞,∞) 6
1

(n+ 1)
1
2 (r (B0, 0))

1
n+1

(
n∏
k=1

r (Bk, ak)

) 1
n+1

,
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r (B0, 0) 6

(
n∏
k=1

|ak|
) 2

n+1

(n + 1)
1
2 (r (B∞,∞))

1
n+1

(
n∏
k=1

r (Bk, ak)

) 1
n+1

.

Further, we obtain the relations

r (B0, 0) r (B∞,∞)

6

(
n∏
k=1

|ak|
) 2

n+1

(n+ 1) (r (B0, 0) r (B∞,∞))
1

n+1

(
n∏
k=1

r (Bk, ak)

) 2
n+1

,

(r (B0, 0) r (B∞,∞))1+
1

n+1 6

(
n∏
k=1

|ak|
) 2

n+1

(n+ 1)

(
n∏
k=1

r (Bk, ak)

) 2
n+1

,

r (B0, 0) r (B∞,∞) 6

(
n∏
k=1

|ak|
) 2

n+2

(n+ 1)
n+1
n+2

(
n∏
k=1

r (Bk, ak)

) 2
n+2

,

from which inequality (2.1) of the Theorem 2 follows

Jn(γ) 6

n∏
k=1

r (Bk, ak)

(
n∏
k=1

|ak|
) 2

n+2

(n+ 1)
n+1
n+2

γ

(
n∏
k=1

r (Bk, ak)

) 2γ
n+2

= (n+ 1)−
n+1
n+2

γ

(
n∏

k=1

r (Bk, ak)

)1− 2γ
n+2

(
n∏

k=1

|ak|
) 2γ

n+2

.

Remark 2. If γ = n+2
2 and

n∏
k=1

|ak| 6 1 then from Theorem 2 the

following inequality holds

Jn(γ) 6 (n+ 1)−
n+1
2 .
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From Theorem 2 we have the following statements.

Corollary 3. Let n ∈ N, n > 2, γ ∈ (0, n+2
2 ]. Then, for any sys-

tem of different points {ak}nk=1 of the unit circle and any mutually non-
overlapping domains B0, B∞, Bk, a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C,
ak ∈ Bk ⊂ C, k = 1, n, the following inequality holds

Jn(γ) 6 (n + 1)−
n+1
n+2

γ

(
2n

n∏

k=1

αk

)1− 2γ
n+2

.

Corollary 4. Let n ∈ N, n > 2, γ ∈ (0, n+2
2 ]. Then, under the condi-

tions of the Corollary 3 the following inequality holds

Jn(γ) 6 (n+ 1)−
n+1
n+2

γ

(
4

n

)n− 2nγ
n+2

.

From Theorem 2 on condition B0 ⊂ U , we obtain a result giving some
estimate in the problem stated in the paper of G. P. Bakhtina [2].

Theorem 3. Let n ∈ N, n > 2, γ ∈ (0, n+2
2 ] and B0 ⊂ U . Then, for

any system of different points {ak}nk=1 of the unit circle and any mutually
non-overlapping domains Bk, ak ∈ Bk ⊂ C, k = 0, n, a0 = 0, and Bk,
k = 1, n, are symmetric about the unit circle |ak| = 1, the following
inequality holds

r2γ (B0, 0)

n∏

k=1

r (Bk, ak)

6 (n+ 1)−
γ(n+1)
n+2

(
n∏

k=1

r (Bk, ak)

)1− 2γ
n+2

(
n∏

k=1

|ak|
) 2γ

n+2

.

Let p, q ∈ N. A set of points Ap,q :=
{
ak,s ∈ C : k = 1, p, s = 1, q

}

is called (p, q)-radial system, if for all k = 1, p and s = 1, q the relations
hold

0 < |ak,1| < . . . < |ak,q| <∞;
arg ak,1 = arg ak,2 = . . . = arg ak,q =: θk =: θk(Ap,q);
0 = θ1 < θ2 < . . . < θp < θp+1 := 2π.

Then, from method of proofs of the above presented theorems we obtain
the following corollaries for Ap,q-radial systems points.

Corollary 5. Let p, q ∈ N, p > 2, γ ∈ (0, pq]. Then, for any fixed
(p, q)-radial system of points Ap,q = {ak,s}, k = 1, p, s = 1, q, and any
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mutually non-overlapping domains B0, Bk,s, ak,s ∈ Bk,s ⊂ C, k = 1, p,
s = 1, q, a0 = 0 ∈ B0 ⊂ C, the inequality holds

rγ (B0, 0)

p∏

k=1

q∏

s=1

r (Bk,s, ak,s)

6 (pq)−
γ
2

(
p∏

k=1

q∏

s=1

r (Bk,s, ak,s)

)1− γ
pq
(

p∏

k=1

q∏

s=1

|ak,s|
) 2γ

pq

.

Corollary 6. Let p, q ∈ N, p > 2, γ ∈ (0, pq+2
2 ]. Then, for any fixed

(p, q)-radial system of points Ap,q = {ak,s}, k = 1, p, s = 1, q, and
any mutually non-overlapping domains B0, B∞, Bk,s, ak,s ∈ Bk,s ⊂ C,
k = 1, p, s = 1, q, a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C, the inequality holds

[r (B0, 0) r (B∞,∞)]γ
p∏

k=1

q∏

s=1

r (Bk,s, ak,s)

6 (pq + 1)
− pq+1

pq+2
γ

(
p∏

k=1

q∏

s=1

r (Bk,s, ak,s)

)1− 2γ
pq+2

(
p∏

k=1

q∏

s=1

|ak,s|
) 2γ

pq+2

.
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