ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ЧЕТНО-ЧЕТНЫХ ЯДЕР В НЕЙТРОННЫХ ЦЕПОЧКАХ СN = 96, 98, 100

М.С. НАДЫРБЕКОВ, Г.А. ЮЛДАШЕВА

удк 539.1 ©2012 Институт ядерной физики, Академия наук республики Узбекистан (Улугбек, Ташкент, 100214, Узбекистан)

На основе модели Давыдова–Чабана изучена эволюция изменения в спектре энергий уровней возбужденных состояний ground-, β - и γ -полос четно-четных ядер нейтронных цепочек с N = 96, 98, 100. Рассмотрены энергетические уровни возбуждения этих полос для низких и промежуточных спинов. Показано, что данная модель удовлетворительно описывает энергии уровней рассматриваемых нейтронных цепочек.

1. Введение

Деформация поверхности ядра происходит под влиянием нуклонов, находящихся вне замкнутых оболочек: они притягивают к себе нуклоны остова, растягивая их орбиты. Когда частиц вне замкнутых оболочек достаточно много, ядру становится энергетически выгодно иметь деформированную равновесную форму. Обычно оно приобретает форму вытянутого эллипсоида вращения [1]. Поэтому при учете отклонения формы ядра за счет деформации квадрупольного типа достаточно аппроксимировать ядро трехосным эллипсоидом, и в системе координат, связанной с ядром, при заданном среднем радиусе его форма зависит от двух параметров: β и γ [1]. При их изменении адиабатически изменяется суммарная энергия всех нуклонов ядра, являющаяся потенциальной энергией поверхностных колебаний ядра, нуклоны которого находятся в данном одночастичном состоянии [2].

В работах [3, 4] рассмотрена возможность описания энергетических уровней и электромагнитных переходов между ними на основе модели Давыдова– Чабана для экспоненциального типа потенциальной энергии продольных поверхностных колебаний. На основе полученных результатов выяснено что, в данвозможность единым образом описать спектр уровней возбужденных состояний переходных и несферических ядер. Но в этих работах не рассмотрена возможность описания единым образом спектра уровней возбужденных состояний переходных и несферических ядер для конкретных случаев, а именно, для ядер в изотопных, изобарных и изотонных цепочках. Изучение энергий уровней возбужденных состояний этих цепочек дает возможность анализировать эволюцию изменения в спектре энергий уровней возбужденных состояний ground-, β- и γ-полос от ядра к ядру, как экспериментально [5], так и теоретически. В атомных ядрах энергетические уровни и электромагнитные переходы между ними изменяются, когда число протонов и/или нейтронов во внешней оболочке изменяется, приводя к переходам фазы формы от одного вида коллективного поведения к другому 6.

ной модели с используемым потенциалом появляется

В работе [7] рассмотрено решение уравнения Шредингера с гамильтонианом Бора [8], точным разделением динамических переменных продольных β колебаний и поперечных у-колебаний. В этой работе используется потенциал Девидсон для продольных β -колебаний и осцилляторный потенциал для поперечных у-колебаний. Отметим, что здесь потенциальная энергия $V(\beta, \gamma)$ параметризуется следующим образом: $u = 2BV(\beta, \gamma)/\hbar^2$. В этой работе для описания энергии уровней возбужденных состояний используются три параметра: энергетический множитель $\hbar\omega$, безразмерные параметры β_0 (параметр "Девидсона" который и является параметром деформации ядра в основном состояний) и C (жесткость ядра относительно γ колебаний).

Теперь мы приведем формулу для энергии уровней из работы [7]:

$$E_{nn_{\gamma}I} = \hbar\omega \bigg\{ 2n + 1 + \bigg\} + \sqrt{\frac{I(I+1) - K^2}{3} + \frac{9}{4} + \beta_0^4 + 3C(n_{\gamma} + 1)} \bigg\},$$
(1)

где n = 0, 1, 2, 3, ... – квантовое число β -колебаний; $n_{\gamma} = 0, 1, 2, ...$ – квантовое число γ -колебаний; I – спин четно-четного ядра, K – проекция спин на ось перпендикулярную к оси симметрии ядра. Для K=0, I = 0, 2, 4, 6, ..., для $K \neq 0, I = K, K + 1, K + 2, ...$ Полосы характеризуются квантовыми числами (n, n_{γ}, K) : ground-полос (0, 0, 0); β -полос (1, 0, 0); γ -полос (0, 1, 2). В этой работе вычислены отношения энергий возбужденных уровней четно-четных ядер редкоземельной области и области актинидов к энергии первого возбужденного уровня ground полосы. Эти отношения хорошо согласуются с экспериментальными данными [5].

Как известно, существуют три области деформации ядер: при (Al, Mg) в массовой области 150<A<190 (лантаниды) и при A>200 (актиниды и тяжелые ядра). Поэтому новые экспериментальные данные в работе [5] о коллективных состояниях деформируемых ядер, позволяют:

1. Определить зависимость спектра уровней возбужденных состояний от числа нуклонов вне замкнутых оболочек, которые деформируют ядро и дают возможность проследить эволюцию их изменения от ядра к ядру в нейтронных цепочках.

2. Найти область деформируемых четно-четных ядер, где их энергетические уровни чувствительны к динамическому или эффективному учету поперечных γ колебаний.

Хороший задел для выполнения указанных выше задач был сделан в работе [9], где на основе модели София–Гиссен [9] рассмотрены энергетические уровни положительной и отрицательной четности ground-полосы аксиально симметричных ядер ¹⁵⁰Nd, ¹⁵²Sm, ¹⁵⁴Gd, ¹⁵⁶Dy, ¹⁵⁸Er в нейтронной цепочке с N=90. Отметим, что основой этой модели тоже является гамильтониан Бора–Моттельсона для аксиально симметричных ядер.

В данной работе на основе модели Давыдова– Чабана рассматривается эволюция изменения в спектре энергий уровней возбужденных состояний ground-, β - и γ -полос четно-четных ядер в нейтронной цепочке с N = 96, 98, 100. Полученные результаты сравниваются с результатами работы [7] и экспериментальными данными [5]. Это даст возможность проанализировать изменение спектра энергии уровней рассматриваемых ядер при динамическом и эффективном учете поперечных γ -колебаний.

2. Спектр энергетических уровней коллективных состояний нейтронных цепочек с *N*=96, 98, 100

В представленной статье рассмотрим модель Давыдова–Чабана, для коллективных возбуждений квадрупольного типа, учитывающую связь вращательного движения с продольными и поперечными колебаниями поверхности ядра и развитую в работах [1,4,10]. Эта модель позволяет объяснить ряд закономерностей в спектрах возбуждения деформируемых неаксиальных четно-четных ядер, наблюдаемых в реакциях с тяжелыми ионами на ядрах [5]. В работе [10] решается уравнение Шредингера:

$$\left\{-\frac{\hbar^2}{2B}\frac{1}{\beta^3}\left(\beta^3\frac{d}{d\beta}\right) + V(\beta) + \frac{\hbar^2}{4B\beta^2}\varepsilon_{I\tau} - E_{I\tau}\right\}F_{I\tau}(\beta) = 0,$$
(2)

где B – массовый параметр, $V(\beta)$ – потенциальная энергия β -колебаний, поперечные γ -колебания учитываются введением эффективного параметра $\gamma_{\rm eff}$ [10]. Собственные значения уравнения жесткого асимметричного волчка $\varepsilon_{I\tau}$ [10] в уравнении (2) зависит от параметра $\gamma_{\rm eff}$ и определяются для каждого значения этого параметра, где индекс τ нумерует собственные значения, относящиеся к одинаковым значения I.

Каждое частное решение уравнения (2) связано со специфической формой $V(\beta)$ потенциала. В работах [4, 10, 11–15] были рассмотрены решения уравнения Шредингера (2) для различных видов потенциальной энергии β -колебаний. В этих работах удовлетворительно описываются энергии возбужденных уровней, электрические мультипольные переходы между ними и средние значения электрических мультипольных моментов этих состояний. Однако, в указанных выше работах не рассмотрены изменения характеристик возбужденных состояний ядер от ядра к ядру, в широкой области массовых чисел. Рассмотрим решения уравнения Шредингера (2) для потенциальной

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №8

энергии экспоненциального вида:

$$V(\beta) = -\frac{C\beta_0^2}{2} \exp\left[-\frac{(\beta - \beta_0)^2}{\beta_0^2}\right],\tag{3}$$

где C – жесткость ядра, β_0 – параметр деформации ядра в основном состоянии.

При малых значениях переменной β потенциальную энергию $V(\beta)$ можно разложить в ряд около равновесного состояния $\beta = \beta_0$:

$$V(\beta) = V(\beta_0) + \frac{(\beta - \beta_0)^2}{2} \frac{d^2 V(\beta)}{d\beta^2} \mid_{\beta = \beta_0} + \dots$$

Отсюда видно что, при $\frac{(\beta-\beta_0)^2}{\beta_0^2} \ll 1$ потенциал (3) равняется осцилляторному потенциалу. Следовательно, осцилляторный потенциал можно применить в случае малых деформаций. А в случае больших деформаций мы выбираем потенциал экспоненциального вида (3).

Решение уравнения (2) с осцилляторным потенциалом подробно изложено в работе [10]. В представляемой работе тоже используется тот же метод решение, поэтому здесь мы приводим только конечные формулы для спектра энергий уровней и волновых функций возбужденных состояний.

Энергетический спектр в единицах $\hbar\omega$ имеет вид

$$E_{\nu I\tau} = \left(\nu + \frac{1}{2}\right) \left\{ 2\mu^{-4} \left[2p_{I\tau} + 1 - p_{I\tau}^2 - \frac{3}{2p_{I\tau}} \right] \times \right.$$
$$\times \exp\left[-(p_{I\tau} - 1)^2\right] \right\}^{1/2} + 0.5\mu^{-4}(p_{I\tau}^2 - p_{I\tau} - 1) \times$$

$$\times \exp[-(p_{I\tau} - 1)^2],\tag{4}$$

где $p_{I\tau} = \frac{\beta_{I\tau}}{\beta} > 1$ удовлетворяют следующему условию:

$$p_{I\tau}^{3}(p_{I\tau}-1)\exp\{-(p_{I\tau}-1)^{2}\} = \frac{\varepsilon_{I\tau}+1,5}{2\mu^{-4}},$$
(5)

вытекающему из непрерывности потенциальной энергии поверхностных колебаний $V(\beta)$ [10], где $\mu = \left\{\frac{\hbar^2}{BC\beta_0^4}\right\}^{1/4}$ – безразмерный параметр теории, $\beta_{I\tau}$ – новое состояние равновесия, соответствующее состояниям $I\tau$ [10]. Волновые функции уравнения (2) имеют следующий вид:

$$\phi(\xi) = N_{\nu} H_{\nu}(\xi) e^{-\xi^2/2},\tag{6}$$

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №8

где N_{ν} – коэффициент нормировки, $H_{\nu}(\xi)$ – функция Эрмита первого рода, ν – корень трансцендентного уравнения

$$H_{\nu}\left(-\frac{p_{I\tau}}{\mu_{I\tau}}\right) = 0,\tag{7}$$

вытекающего из конечности волновых функций, переменная

$$\xi = \frac{p_{I\tau}(\beta - \beta_{I\tau})}{\mu_{I\tau}\beta_{I\tau}},$$

изменяется в интервале $-\frac{p_{I\tau}}{\mu_{I\tau}} < \xi < \infty$, где $\mu_{I\tau}$ равен

$$\mu_{I\tau} = \mu \left[2 \left[2p_{I\tau} - p_{I\tau}^2 + 1 - \frac{3}{2p_{I\tau}} \right] \exp\{-(p_{I\tau} - 1)^2\} \right]^{-1/4}$$
(8)

Энергия уровней возбужденных состояний описывается квантовыми числами $\nu I \tau$. Последовательность состояний в энергетических полосах можно изобразить следующим образом $I_{\nu\tau}$.

Состояния с квантовыми числами $\nu=0, \tau=1$ называются ground-полосой и определяются последовательностью спинов $I_{01}^+ = 0_{01}^+; 2_{01}^+; 4_{01}^+; 6_{01}^+; 8_{01}^+; \cdots$

Состояния с квантовыми числами $\nu=0, \tau=2$ называются γ -полосой и определяются последовательностью спинов $I_{02}^+ = 2_{02}^+; 3_{01}^+; 4_{02}^+; 5_{01}^+; 6_{02}^+; \dots$

Состояния с квантовыми числами $\nu=1$, $\tau=1$ называются β -полосой и определяются последовательностью спинов $I_{11}^+ = 0_{11}^+; 2_{11}^+; 4_{11}^+; 6_{11}^+; 8_{11}^+; \dots$

Отметим, что приведенные целые значения квантового числа ν являются условными, потому что в общем случае его значения нецелые, а как было отмечено выше, являются корнями трансцендентного уравнения (7). Именно корни уравнения (7) учитываются при вычислении энергий уровней возбужденных состояний (4).

В этой работе используются следующие параметры: $\hbar\omega$ – энергетический множитель, $\gamma_{\rm eff}$ – эффективное значение поперечных γ -колебаний и безразмерный параметр μ , определяющий "мягкость" ядра относительно поверхностных деформаций. В данной работе рассматриваются коллективные состояния ground-, β - и γ -полос деформируемых четночетных ядер нейтронных цепочек с N = 96, 98, 100. Рассмотрены:

– нейтронные цепочки для ядер с N = 96; ¹⁶⁴Er, ¹⁶⁶Yb, ¹⁶⁸Hf, ¹⁷⁰W;

– нейтронные цепочки для ядер с $N=98;\ ^{162}{\rm Gd},$ $^{166}{\rm Er},\ ^{168}{\rm Yb},\ ^{170}{\rm Hf};$

даны в кэЕ	Вах и град	усах соотве	тственно.	Остальные	е параметри	ы $\mu, \beta_0,$	C являюто	ся безразм	ерными	
Ядра	$\hbar\omega$	μ	$\gamma_{ m eff}$	$\hbar\omega$	β_0	C	RMS	[7]	R_{041}^{\exp}	E_{021}^{\exp}
$^{164}\mathrm{Er}$	93,4	0,2966	$13,1^{\circ}$	572,2	1,5592	6,3	133,1	96,7	3,28	91,4
166 Yb	104	0,3327	$12, 4^{\circ}$	545	0,0261	6,9	182,4	150,1	3,23	102,4
$^{168}\mathrm{Hf}$	120,2	0,3511	13°	549,8	0,0522	5,7	91,2	92,7	3,11	124,1
^{170}W	133,2	0,3473	$14,8^{\circ}$	592,5	0,0486	4,8	98,8	80,2	2,95	156,7
$^{162}\mathrm{Gd}$	69,5	0,2209	$11,7^{\circ}$	714,5	2,8315	7,9	35	15,4	3,31	71,6
$^{166}\mathrm{Er}$	72,2	0,2425	$12,5^{\circ}$	$648,\!8$	2,5118	7	146,9	$104,\! 6$	3,29	80,6
$^{168}\mathrm{Yb}$	86,7	0,2760	$11,9^{\circ}$	$577,\! 6$	1,7827	7,7	54,4	32,1	3,27	87,7
$^{170}\mathrm{Hf}$	100,9	0,3212	$12, 3^{\circ}$	523,5	0,0052	6,8	117,1	99,1	$3,\!19$	100,8
$^{166}\mathrm{Dy}$	82,6	0,2652	$12,8^{\circ}$	590,8	2,0887	6,7	77,4	$56,\! 6$	3,31	$76,\! 6$
$^{168}\mathrm{Er}$	86,7	0,2777	$13,5^{\circ}$	583	1,9742	6	112,8	73,4	3,31	79,8
$^{170}\mathrm{Yb}$	92,4	0,2870	$11, 2^{\circ}$	565,7	1,0451	8,4	101,2	79,2	3,29	84,3
$^{172}\mathrm{Hf}$	$98,\! 6$	0,2890	$11,8^{\circ}$	575	0,0041	7,4	186,2	155,2	3,25	95,2

Т а б л и ц а 1. Значения параметров и характеристик, используемых в данной работе. Параметры $\hbar \omega$ и γ_{eff} даны в кэВах и градусах соответственно. Остальные параметры μ , β_0 , C являются безразмерными

– нейтронные цепочки для ядер с $N=100;\ ^{166}{\rm Dy},$ $^{168}{\rm Er},\ ^{170}{\rm Yb},\ ^{172}{\rm Hf}.$

Экспериментальные значения спектра энергетического уровня для каждой полосы рассмотрены до точки пересечение полос. Пересечение полос происходит под влиянием сил Кориолиса на пары нуклонов во вращающемся ядре [16]. В результате этого эффекта в точке пересечения полос ядро переходит от супержидкого состояния к нормальножидкому [17]. Поэтому представляется нецелесообразным описание энергетических уровней после пересечения полос.

В табл. 1 (колонки 2-4) даны значения используемых параметров модели: $\hbar \omega$, γ_{eff} и μ . Отсюда, можно наблюдать эволюцию изменения значений используемых параметров модели, от ядра к ядру. Видно, что они изменяются довольно плавно. Во второй колонке даны значения энергетического множителя $\hbar\omega$, которые принимают близкие значения для рассматриваемых нейтронных цепочек. В третьей колонке параметр "мягкости" μ принимает значение $\mu > 1/3$ для ядер ¹⁶⁸Нf, ¹⁷⁰W, что соответствует мягким ядрам [10]. А для остальных ядер рассматриваемых нейтронных цепочек он принимает значение $\mu < 1/3$, что соответствует жестким ядрам [10]. В следующей, (четвертой) колонке даны значения параметра "неаксиальности" γ_{eff} , который также принимает близкие значения для рассматриваемых нейтронных цепочек. Это дает основание полагать, что ядра данной нейтронной цепочки имеют малую "неаксиальность" [10]. Следовательно, эти ядра можно рассматривать как аксиально-симметричные [9].

В 5–7 колонках этой таблицы даны значения используемых параметров работы [7]: $\hbar \omega$, β_0 и C. Эти параметры тоже изменяются довольно плавно

за исключением параметра β_0 . В пятой колонке даны значения энергетического множителя $\hbar \omega$, которые принимают близкие значения для рассматриваемых нейтронных цепочек. В шестой колонке параметр β_0 имеет широкий разброс значений от соседнего четночетного ядра к соседнему четно-четному ядру. В седьмой колонке даны значения параметра C, который также принимает близкие значения для рассматриваемых нейтронных цепочек.

В 8–9 колонках даны значения среднеквадратичного отклонения (RMS (в КэВ)) экспериментальных [5] и теоретических величин энергии уровней вышеуказанных полос для нашей работы и работы [7]. Отсюда видно, что для обеих приближений RMS принимают удовлетворительные значения, кроме ядер ¹⁶⁶Yb, ¹⁷²Hf. Отметим, что значение RMS (при \leq 100 KэB) является хорошим критерием применимости различных моделей [9].

В следующей колонке дано значение отношения второго возбужденного уровня к энергии первого возбужденного уровня ground-полосы $R_{041}^{\exp} = E_{041}^{\exp}/E_{021}^{\exp}$. От значения этого отношения зависит коллективное вращательно-колебательное поведение возбужденных уровней [1]. При 2,7 < R_{041}^{\exp} < 10/3 коллективное поведение спектра энергий уровней будет вращательным или близковращательным. А при 2 < R_{041}^{\exp} < 2,4 он будет вибрационным или близковращонным или близковращонным или близковибрационным [18]. Следовательно, спектр энергий уровней рассматриваемых нейтронных цепочек является вращательным.

В последней колонке этой таблицы дано значение энергии первого возбужденного уровня ground-полосы E_{021}^{\exp} . Во всех рассматриваемых нейтронных цепочках эта энергия увеличивается с увеличением

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №8

Таблица 2. Сравнение экспериментальных и теоретических значений энергий уровней ядер нейтронной цепочки сN=96

Ι	$^{164}\mathrm{Er}$				$^{166}\mathrm{Yb}$		Ι		$^{168}\mathrm{Hf}$		¹⁷⁰ W		
	Эксп.	Teop.	[7]	Эксп.	Teop.	[7]		Эксп.	Teop.	[7]	Эксп.	Teop.	[7]
2^{+}_{01}	91,3	112,6	106,9	102,4	124,3	111,5	2^{+}_{01}	124,1	147	121,7	156,7	165,2	140,9
4^{+}_{01}	299,4	354,5	343	330,5	$383,\!8$	$355,\!6$	4^{+}_{01}	385,9	445	385,1	462,3	499,3	$442,\!9$
6^{+}_{01}	614,3	$691,\!8$	683,7	667,9	$734,\!8$	702,9	6^+_{01}	757,3	835,5	755,8	875,5	935	861,9
8^{+}_{01}	$1024,\! 6$	$1093,\!9$	1103,1	1098,3	$1143,\!8$	1124,7	8^{+}_{01}	1213,7	1277,5	1199,8	$1363,\!4$	$1425,\!8$	1359,0
10^{+}_{01}	1518,1	1539,3	1579,7	1605, 9	$1587,\!8$	$1598,\!8$	10^{+}_{01}	1736, 1	1747,4	1694, 4	1901,5	1947,2	1907,5
12^{+}_{01}	2082,9	2014,7	2097,4	2176	2052,7	2109,3	12^{+}_{01}	2306,1	2232,7	2223,3	$2464,\!3$	2487,7	2490,2
14^{+}_{01}	$2702,\!6$	$2512,\!8$	2645	2779,5	2529,7	2645,7	14^+_{01}	2857,5	2726,1	2775,9	3118	3039,9	3096,2
16^+_{01}	3411,2	$3028,\!6$	$3214,\! 6$	3490,1	$3012,\!8$	3200,7	16^{+}_{01}	3310,4	$3221,\!1$	3345,5	$3815,\!9$	3596,7	3718,7
2^{+}_{02}	860,2	891,6	922,2	$932,\!4$	1030,7	1015,5	2^{+}_{02}	875,9	958	933,5	937	977,1	920,3
3^{+}_{01}	946, 4	$977,\!4$	1004,5	1039,1	1114	$1096,\! 6$	3^+_{01}	1030,9	1056, 8	1022,4	$1073,\! 6$	1092,2	$1023,\!8$
4^{+}_{02}	1058,4	$1092,\!8$	1111,9	1162,7	$1224,\!9$	1202,1	4^{+}_{02}	1160,7	1189,4	1137,4	1220	1248,4	1157,1
5^{+}_{01}	1197,4	$1224,\!8$	1242,2	$1327,\!9$	$1352,\!9$	$1329,\!9$	5^{+}_{01}	1386,4	1336,4	1276,2		$1417,\!3$	1317,1
6^{+}_{02}	$1358,\! 6$	1397,4	1393,5	1482,4	1515,1	1478	6^+_{02}	$1551,\!3$	1532,2	1436,2		1650,9	1500,5
7^{+}_{01}	1545,1	$1558,\! 6$	1563,7	1704,5	$1671,\!9$	1644,3	7^+_{01}		$1702,\!4$	$1614,\!8$		1840,5	1704, 1
8^{+}_{02}	$1744,\!8$	$1793,\!6$	1750,8	1812,5	1886,5	1826,7	8^{+}_{02}		1965, 9	1809,7		2160	$1925,\!2$
9^{+}_{01}	1977, 1	$1961,\!4$	$1952,\!8$	2150,3	$2052,\!6$	2023,4	9^+_{01}		2130,2	$2018,\!8$		2332,9	2161,1
10^{+}_{02}	2184,3	2267,2	2168,1	2143,1	$2323,\!6$	2232,5	10^{+}_{02}		2467, 4	2240,1		2746,4	$2409,\!8$
11^{+}_{01}	2479,4	$2417,\!6$	2394,9	2646,7	2478,2	2452,4	11^{+}_{01}		2598,4	2472		2869,9	2669,3
12^{+}_{02}	2733,3	$2802,\!4$	2632,1	$2609,\!6$	2809,7	2682,2	12^{+}_{02}		3011,3	2713,1		3378,5	$2938,\!9$
13^{+}_{01}	3027,2	$2913,\!8$	2878,2	$3196,\!6$	2934,2	2920,2	13^{+}_{01}		3089,2	2962,1		3431,3	$3214,\!9$
0^{+}_{11}	1246	1071	1144,5	1043,1	954,2	1090,1	0^{+}_{11}	942	996, 5	1099,7	952,5	1126,7	1185,0
2^{+}_{11}	$1314,\! 6$	$1206,\!8$	1251,3	1144,3	$1107,\!6$	$1201,\!6$	2^{+}_{11}	$1058,\! 6$	$1178,\!8$	1221,4	1202,2	1331,3	$1325,\!9$
4^{+}_{11}	1469,7	1489,7	1487,5	1342,5	1413	$1445,\! 6$	4^{+}_{11}	1284,7	$1528,\!8$	$1484,\!8$	$1578,\!3$	$1723,\!8$	$1627,\!9$
6^{+}_{11}	$1706,\!6$	1869,1	1828,2	1608	$1804,\! 6$	$1792,\!9$	6^+_{11}		1960,2	1855,1		2205,7	2046,9
8^{+}_{11}	2068,9	2305,5	$2247,\! 6$	$1852,\!9$	$2239,\!6$	$2214,\!8$	8^+_{11}		2423,5	2299,5		$2721,\!6$	2544
10^+_{11}	2462,7	$2774,\!2$	2724,2	$2319,\! 6$	2693,9	2688,8	10^+_{11}		2895,2	2974,1		3247,5	3092,5

протонов, особенно резкое увеличение наблюдается в цепочках с N=96, 98. Как показано систематикой Grodzins [19], эта энергия дает информацию о деформации и моменте инерции ядра.

3. Сравнение с экспериментальными данными

В табл. 2–4 показано сравнение экспериментальных и теоретических (результаты нашей работы и работы [7]) значений спектр энергии возбужденных уровней ground-, β - и γ -полос, рассматриваемых нейтронных цепочек.

Значения RMS и значения энергетического спектра, взятые из табл. 2–4, позволяют условно разделить полученные результаты на три части. Первое, хорошее, для ядер 162 Gd, 166 Dy, 168 Yb 168 Hf и 170 W. Второе, допустимое для ядер 164,166,168 Er, 170 Hf и 170 Yb. Третье, менее допустимое, для ядер 166 Yb и

 $^{172}{\rm Hf.}$ Следовательно, можно считать, что первая категория ядер более чувствительна к экспоненциальному типу потенциала продольных поверхностных деформаций. Однако из табл. 1-4 видно, что полученные результаты в работе [7] лучше согласуются с экспериментальными данными, чем результаты данной работы. Однако следует отметить, что параметр μ (как видно из табл. 1) более плавно меняется от ядра к ядру, чем параметр β_0 . С физической точки зрения такой разброс значений параметра β_0 трудно объяснить. Потому что рассматриваемые ядра нейтронных цепочек отличаются только двумя нуклонами за исключением ядер ¹⁶²Gd и ¹⁶⁶Er нейтронной цепочки N = 98. При плавном изменении этого параметра можно получить более согласованные результаты. В работе [7] решение уравнения Шредингера для поперечных колебаний рассматривается для малых значений γ -переменного. Параметры μ и β_0 характеризуют основное состояние ядра.

Ι	¹⁶² Gd				$^{166}\mathrm{Er}$		Ι	168 Yb			¹⁷⁰ Hf		
	Эксп.	Teop.	[7]	Эксп.	Teop.	[7]		Эксп.	Teop.	[7]	Эксп.	Teop.	[7]
2^{+}_{01}	$71,\!6$	80,2	74,8	80,6	84,9	81,0	2^{+}_{01}	87,7	102,1	95,7	100,8	120,6	107,9
4^{+}_{01}	236,4	261,8	246,2	264,9	274,8	265,3	4^{+}_{01}	$286,\!6$	$326,\!6$	309,5	322	375,1	343,7
6^{+}_{01}	490	533,2	507,4	545,5	553,4	542,9	6^+_{01}	585,3	648,3	622,9	642,9	$723,\!6$	679,1
8^{+}_{01}	826,2	880,1	849,2	911,2	902	900,9	8^{+}_{01}	970	1042,2	1014,8	1043,1	$1133,\!6$	1085, 9
10^{+}_{01}	1237,9	1288,3	1261,4	1349,5	1304,2	1326,1	10^+_{01}	1425,5	1488,1	1466, 4	1505,2	1582,4	$1542,\! 6$
12^{+}_{01}	$1718,\! 6$	1746, 1	1733,7	1846,5	1748,2	1806,2	12^+_{01}	1936	$1971,\! 6$	1962, 9	2016, 1	2055,7	2034,2
14^{+}_{01}	2260,2	2245,2	2256,8	2389,3	2226,3	$2330,\!6$	14^+_{01}	2488,5	2483,5	2492,9	2567	$2544,\! 6$	2550,4
16^{+}_{01}	2857,1	2779,7	2822,3	2967,3	$2733,\!6$	$2890,\!6$	16^+_{01}	3073,2	$3017,\!8$	3048,2	$3151,\!3$	3043,3	3084,4
18^{+}_{01}		$3345,\!9$	3423,2	3577	$3266,\!6$	$3479,\!4$	18^+_{01}	3686,9	3570,3	$3622,\!8$	3766,5	$3546,\!8$	3631,5
2^{+}_{02}	864,7	864,1	863,5	785,9	793,3	822,8	2^+_{02}	984	993,3	1005,1	961,3	1028,2	967,1
3^{+}_{01}	930,7	935,1	$929,\!9$	859,4	866,1	892,8	3^+_{01}	1067,2	1073	1079,5	$1087,\! 6$	1111,7	$1045,\! 6$
4^{+}_{02}	1015,7	$1030,\!8$	$1017,\! 6$	956,2	964,5	$984,\!9$	4^+_{02}	1171,4	1179,7	1177,0	$1227,\!4$	1223	$1147,\! 6$
5^{+}_{01}		$1144,\!5$	$1125,\!9$	1075,3	$1079,\! 6$	1098,3	5^{+}_{01}	1302,3	1305	1295,9		$1351,\!8$	1271,2
6^{+}_{02}		1289,4	$1253,\!8$	$1215,\!9$	$1228,\!8$	1231,3	6^+_{02}	1445,1	$1463,\!8$	1434,9		1515,2	$1414,\!4$
7^{+}_{01}		$1437,\!3$	$1400,\!6$	1376	1375	1383,2	7^{+}_{01}	1618,5	1622,5	1592,1		1674	1575,1
8^{+}_{02}		1636,2	1565,2	1555,7	1580,7	1552,7	8^+_{02}		1836,3	1766		1891,1	$1751,\!2$
9^{+}_{01}		$1804,\!9$	1746,5	$1751,\!4$	1741,5	1738,3	9^+_{01}		2011,8	$1954,\!9$		2060, 6	1941
10^{+}_{02}		2066,1	$1943,\! 6$	1964	2012,9	1938, 9	10^+_{02}		2286,8	2157,3		2336	$2142,\!8$
11^{+}_{01}		$2238,\!6$	2155,4	2189,7	2168,3	2153,2	11^+_{01}		$2459,\!8$	2371,8		2495,5	2355
12^{+}_{02}		2572,1	2380,9	$2428,\!8$	$2515,\!8$	2380,1	12^+_{02}		2803,7	2597,2		2834,4	$2576,\!4$
13^{+}_{01}		2729,4	2619,1	$2654,\!4$	2645,4	2618,3	13^+_{01}		2954,7	2832,2		2964,8	$2805,\!8$
14^+_{02}		$3145,\!8$	2868,9	2880	3078,1	2867,1	14^+_{02}		3374,7	3075,7		3370	3042,2
0^+_{11}	1427,7	$1427,\!5$	1429,0	1460	$1232,\!6$	$1297,\! 6$	0^+_{11}	1155,2	$1144,\!9$	1155,2	$879,\! 6$	990,8	1046, 9
2^{+}_{11}	1492,7	1518,2	$1503,\!8$	$1528,\!4$	$1330,\!6$	$1378,\! 6$	2^{+}_{11}	1233,1	1266,3	1250,9	987	1138,7	$1154,\!9$
4^{+}_{11}		1722,1	1675,2	$1678,\!8$	1546, 9	1562,9	4_{11}^+	1390,1	1526,7	1464,8	1156,7	1438,1	1390,7
6^+_{11}		2023	1936, 4	1897,3	1858,4	1840,5	6^+_{11}		1888,7	1778,1		1828,4	1726
8^+_{11}		$2402,\!3$	2278,3	$2194,\! 6$	2240,5	2198,5	8_{11}^+		2319,3	2170		2267,8	$2132,\!8$
10^{+}_{11}		2842,3	2690,5	2479,7	2673,2	2623,7	10^+_{11}		2793,9	2621,7		2731,7	$2589,\!6$
12^{+}_{11}		$3329,\!4$	3162,8	2656,9	3143	$3103,\!8$	12^+_{11}		3297,2	3118,1		3206, 3	3081,2

Т а б л и ц а 3. Сравнение экспериментальных и теоретических значений энергий уровней ядер нейтронной цепочки с N = 98

4. Заключение

В представляемой статье рассмотрена модель Давыдова–Чабана для потенциальной энергии экспоненциального типа поверхностных β -колебаний. Энергии уровней всех рассматриваемых полос (ground, β и γ) зависят от трех параметров: $\hbar\omega$, $\gamma_{\rm eff}$ и μ , которые изменяются довольно плавно для рассматриваемой области нейтронных цепочек. Рассматриваемые области являются хорошо деформированными, т. е. $R_{041} \geq 2,95$. Обычно для ядер, находящихся вдали от закрытых нейтронных и протонных оболочек, деформация ядра (полученная из оценки значения квадрупольных моментов) и его момент инерции (полученный из оценки значения энергии первого возбужденного уровня groundполосы со спином 2^+_{01}) увеличиваются [19]. Для ядер с полузаполненной оболочкой хорошо известно, что деформация достигает максимума и остается фактически постоянной для большого диапазона ядер. Это область нуклидов, где деформация насыщается и принимает большое значение.

Ближайшее магическое число для протонов и нейтронов, и рассматриваемых нейтронных цепочек N=82, Z=82. Можно считать, что они достаточно удалены от магических чисел. Отметим, что протонная оболочка приближается к магическому числу, а нейтронная удаляется от него. Нами проведен обширный анализ теоретических и экспериментальных данных [5], на основе предлагаемой модели для лантанидов, актинидов, тяжелых и сверхтяжелых ядер. Анализ спектра уровней возбужденных со-

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №8

Ι		166 Dy		¹⁶⁸ Er			Ι	¹⁷⁰ Yb			¹⁷² Hf		
	Эксп.	Teop.	[7]	Эксп.	Teop.	[7]		Эксп.	Teop.	[7]	Эксп.	Teop.	[7]
2^{+}_{01}	76,6	98,3	90,9	79,8	104,7	96,6	2^{+}_{01}	84,3	108,1	103,8	95,2	116,4	113,9
4^{+}_{01}	253,5	$314,\!8$	295,1	264	332,7	312,5	4^{+}_{01}	277,4	344,3	333,5	309,2	369,7	364,1
6^{+}_{01}	527	$626,\!3$	596, 9	548,7	655,2	628,7	6^+_{01}	$573,\!3$	680,9	665,7	628,3	728,9	722
8^{+}_{01}	892	1008,4	$977,\!8$	928,3	1044,2	1024,3	8^{+}_{01}	963,3	1091,7	1075,7	$1037,\!4$	1164,7	$1158,\!8$
10^{+}_{01}	1341	1441,7	1420,5	1396, 8	1479,5	1480,2	10^+_{01}	1437,5	$1555,\!6$	$1542,\! 6$	$1521,\!2$	1654,2	$1651,\!5$
12^{+}_{01}	1868	1913,2	$1910,\! 6$	1943,3	1949	1981,2	12^+_{01}	1983,4	2057,3	2050,7	$2064,\! 6$	2181,3	$2183,\!8$
14^{+}_{01}	2467	2415	2436,9	2571,9	2446	2516,2	14^+_{01}	2580,4	2585,9	2588,9	2654,1	2735,7	2744,3
16^{+}_{01}	3119	2942,2	2991,1	3259,5	2965, 9	3076,7	16^+_{01}	3195,7	$3134,\!6$	3149,3	3277,2	3310,5	3325,4
18^{+}_{01}		$3490,\!8$	3566, 8		3504,7	3656,7	18^+_{01}	3806, 8	3698,2	3726,3	$3919,\!4$	3901,1	$3921,\!8$
20^{+}_{01}		$4057,\!4$	4159,4		$4058,\! 6$	$4251,\!9$	20^+_{01}	$4436,\!6$	4272,7	4316,2	$4575,\!9$	4503,1	4529,7
22^{+}_{01}		$4638,\! 6$	4765,3		4624,1	4858,9	22^+_{01}	$4854,\!4$	$5274,\!3$	4916		5112,7	5146,5
24^+_{01}		$5231,\!3$	$5381,\!9$		5197,7	$5475,\!4$	24^+_{01}	5439,7	$6032,\!3$	$5523,\!6$		5725,7	$5770,\!4$
2^{+}_{02}	857,2	855,5	853,2	821,1	806,6	816,8	0^+_{11}	1069,4	1130,5	1131,4	871,3	1190,1	1150
3^{+}_{01}	928,7	$935,\!9$	927,7	895,7	891,2	895,4	2^{+}_{11}	$1138,\! 6$	1160, 1	1235,2	$952,\!4$	1329,7	1263, 9
4^{+}_{02}	1023,4	$1044,\!4$	1025,3	994,7	$1005,\!8$	998,0	4^+_{11}	1292,5	1535,5	1464,9	1129,5	1625, 4	1514,1
5^{+}_{01}	1141,3	1170,2	1144,5	1117,5	1136,3	1123,1	6^+_{11}		$1914,\!8$	1797,2		2029,9	1872
6^{+}_{02}		$1333,\!9$	1283,9	1263, 9	1310	$1268,\!8$	2^+_{02}	1145,7	$1163,\!8$	1151,1	$1075,\!3$	1137,5	$1112,\!6$
7^{+}_{01}		$1491,\!1$	$1441,\!8$	$1432,\!9$	$1468,\!8$	$1433,\!3$	3^+_{01}	1225,4	$1243,\! 6$	1226, 9	1180,8	$1224,\! 6$	1195,3
8^+_{02}		$1715,\!6$	1616, 8	$1624,\!5$	1709,2	$1614,\!8$	4^+_{02}	1320,3	$1349,\!8$	1325, 9	1304,7	1340,8	1303
0^+_{11}	1149	1180,4	$1181,\! 6$	1217,1	$1132,\!6$	1165, 9	5^{+}_{01}	$1459,\!8$	1475,7	$1446,\! 6$	$1462,\!8$	$1477,\!4$	$1433,\!8$
2^+_{11}	1208	1296, 1	1272,5	1276,2	1257,2	1262,5	6^+_{02}	1632,2	1621,5	1587,3		1649,3	1585,7
4^{+}_{11}		1546	1476,7	1411,1	$1521,\!9$	$1478,\!4$	7^{+}_{01}		$1793,\!3$	1746,3		1822	1756,5
6^+_{11}		1896,2	$1778,\! 6$	$1616,\!8$	1884,7	1794,7	8^+_{02}		2000,8	$1921,\! 6$		$2051,\!6$	$1944,\!3$

T а б л и ц а 4. Сравнение экспериментальных и теоретических значений энергий уровней ядер нейтронной цепочки с N = 100

стояний актинидов, тяжелых и сверхтяжелых ядер не включен в данную работу. Отметим, что свойства коллективных возбужденных состояний актинидов, тяжелых и сверхтяжелых ядер меняются медленно. Это можно наблюдать по энергии первого возбужденного уровня ground-полосы E_{021}^{exp} [5], который меняется медленно от ядра к ядру для четно-четных ядер.

В работе [19] рассмотрена систематика вероятностей перехода от первого возбужденного уровня 2^+_{01} в основное состояние ядра, где фактор прироста F для рассматриваемой области нейтронных цепочек равен $F \approx 70$ [19]. Оболочечные эффекты чувствительно влияют на низколежащие возбужденные состояния. Это подтверждается в довольно резком увеличении $E^{\rm exp}_{021}$ и колебании значений RMS при изменении чисел нуклонов во внешней оболочке рассматриваемых нейтронных цепочек.

Используемые параметры нашей работы и работы [7] соответствуют по порядку записи их в табл. 1. Энергетический множитель $\hbar\omega$ имеет одинаковое определение для нашей и работы [7], параметры μ и

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №8

 β_0 определяются
 β -колебаниями. А параметры $\gamma_{\rm eff}$
иCопределяются γ -колебаниями.

Авторы выражают благодарность кандидату физико-математических наук А.В. Хугаеву за интерес к данной работе. Работа выполнена при поддержке гранта №Ф2-ФА-Ф117 АН Республики Узбекистан.

- 1. А. Бор, *Проблемы современной физики* (Москва, 1955), том 9.
- 2. S.C. Nilsson, Dan. Mat. Fys. Medd. 29, 1 (1955).
- Sh. Sharipov, M.J. Ermamatov, and J.K. Bayimbetova, Phys. At. Nuclei, **71**, 215 (2008); Sh. Sharipov and M.J. Ermamatov, Phys. At. Nucl. **72**, 15 (2009).
- 4. Ш. Шарипов, М.С. Надырбеков, Г.А. Юлдашева Узбекский Физический Журнал, 11, 159 (2009);
 Ш. Шарипов, М.С. Надырбеков, Г.А. Юлдашева ДАН Республики Узбекистан, 3-4, 165 (2009).
- 5. http://www.nndc.bnl.gov/ensdf/.

- 6. D. Bonatsos et al., Roman. Rep. in Phys. 59, 273 (2007).
- 7. D. Bonatsos et al., Phys. Rev. C 76, 064312 (2007).
- A. Bohr, Kgl. Dan. Vidensk. Selsk. Mat. Fys. 26, No. 14, 1 (1952).
- 9. N. Minkov et al., Phys. Rev. C 73, 044315 (2006).
- А.С. Давыдов, Возбужденные состояния атомных ядер (Атомиздат, Москва, 1967).
- П.В. Скоробогатов, ЯФ 15, 220 (1972); В.К. Тартаковский, ЯФ 50, 335 (1989).
- J.P. Elliott, J.A. Evans, and P. Park, Phys. Lett. B 169, 309 (1986).
- Ш. Шарипов, М. С. Надырбеков, Узбекский Физический Журнал 1, 15 (1992).
- Ш. Шарипов, М.С. Надырбеков, Узбекский Физический Журнал 3, 31 (1995).
- Ш. Шарипов, М. С. Надырбеков, Известия РАН 3, 11 (1995).
- F.S. Stephens and R.S. Simon, Nucl. Phys. A 138, 257 (1972).
- 17. B. R. Mottelson and J.G. Valatin, Phys. Rev. Lett. 11, 511 (1960).
- 18. D. Bonatsos et al., Phys. Rev. C 62, 024301 (2000).
- 19. L. Grodzins, Phys. Lett. 2, 88 (1962).

Получено 26.06.11

ЗБУДЖЕНІ СТАНИ ПАРНО-ПАРНИХ ЯДЕР У НЕЙТРОННИХ ЛАНЦЮЖКАХ З N = 96, 98, 100

М.С. Надірбеков, Г.А. Юлдашева

Резюме

На основі моделі Давидова–Чабана вивчено еволюцію зміни в спектрі енергій рівнів збуджених станів ground-, β- і γ-смуг парно-парних ядер нейтронних ланцюжків з N = 96, 98, 100. Розглянуто збуджені енергетичні рівні цих смуг для низьких і проміжних спінів. Показано, що дана модель задовільно описує рівні енергії розглянутих нейтронних ланцюжків.

STATES OF EVEN-EVEN NUCLEI IN NEUTRON CHAINS WITH N=96, 98, 100

M.S. Nadirbekov, G.A. Yuldasheva

Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan, (*Ulughbek, Tashkent 100214, Uzbekistan*)

Summary

On the basis of the Davydov–Chaban model, we study the evolution of changes in the spectrum of the levels of excited states for the ground, β , and γ bands of even-even nuclei of neutron chains with N = 96, 98, and 100. The excited energy levels of these bands are considered for low and intermediate spins. It is shown that the model describes satisfactory the energy levels of the above-mentioned neutron chains.