О.І. ФЕОКТІСТОВ, В.Т. КУПРЯШКІН, Л.П. СИДОРЕНКО, М.Ф. КОЛОМІЄЦЬ, О.В. КОВАЛЕНКО, В.А. ЛАШКО

Інститут ядерних досліджень НАН України (Просп. Науки, 47, Київ 03680; e-mail: kupryashkinvt@yahoo.com)

НИЗЬКОЕНЕРГЕТИЧНІ СПЕКТРИ ЕЛЕКТРОНІВ, ЯКІ ВИНИКАЮТЬ ПРИ БОМБАРДУВАННІ ТИТАНОВОЇ МІШЕНІ β -ЧАСТИНКАМИ ТРИТІЮ ТА α -ЧАСТИНКАМИ ²³⁸Ри

Методом часових (βe)-збігів досліджено низькоенергетичний спектр електронів, які виникають при бомбардуванні мішені титану β -частинками з розпаду тритію. Щоб порівняти спільні риси та відмінності у впливі різних заряджених частинок на цей процес, в тих же експериментальних умовах і з тою самою мішенню, аналогічні вимірювання було проведено з α -частинками з розпаду ²³⁸Ри. Показано, що іонізацію атомів при бомбардуванні мішені зарядженими частинками можна представити як ефект струсу в обох випадках.

Ключові слова: відбиття, пропускання, електрони близько нульової енергії, ефект струсу, мікро канальні пластини (МКП)

1. Вступ

УДК 539.163

Низькоенергетичний спектр електронів, який виникає внаслідок бомбардування титанової мішені β -частинками тритію, можна представити як результат ефекту струсу – квантово-механічного переходу системи з початкового, незбудженого стану системи (атома) i в кінцевий стан f під дією раптового збурення $\frac{e^2}{r}$, яке викликане взаємодією заряду пролітаючої зі швидкістю $V_{\beta} \beta$ -частинки з зарядом електрона атома у момент їх найбільшого зближення r. Під умовою "раптовості" при ефекті струсу розуміється, що виникнення (або зміна) заряду відбувається за короткий час τ , який значно менший, ніж період переходу атома з початкового стану i в кінцевий f, таким чином, що $\tau_{\beta} = \frac{r}{V_a} \ll 2\pi \omega_{fi}^{-1}$, де ω_{fi} – частота переходу.

Ефект струсу може спостерігатися як у випадку, коли раптове збудження виникає спонтанно в системі, що знаходиться в стані спокою, як, наприклад, при β -розпаді ядер, так і у випадку руху зарядженої частинки в момент найбільшого зближення її з атомами мішені, коли ймовірність струсу стає залежною від швидкості V_{β} . У першому випадку, зміна гамільтоніана взаємодії має вигляд $H_0 \rightarrow H_0 + \Delta H$, який називається "струс типу включення взаємодії", тоді як у другому випадку зміна гамільтоніана має вигляд $H_0 \to H_0 + \Delta H \to H_0$, який називається "струс типу розсіяння взаємодії" [1]. Під час струсу хвильова функція початкового стану $\psi_i^{(0)}(q)$ гамільтоніана H_0 у місці, де знаходиться взаємодіючий з зарядом частинки електрон, "не встигає" змінитися за час τ_p [2] і всі інші електрони атома залишаються на своїх місцях, крім електрона, який переходить в вакуум, залишаючи кінцевий стан атома $\psi_f^*(q)$ з вакансією на тій оболонці, з якої він струсився.

З досліджень кутового розподілу електронів, які випромінюються з поверхні мішені при бомбардуванні її α -частинками, нами було встановлено кілька типів емісії електронів залежно від їх походження [3]. В геометрії "вперед" або "на простріл", коли α -частинка викликає виліт електронів з поверхні на виході з мішені, ми маємо три типи емісії електронів. Це електрони близьконульової енергії e_0 , які струшуються з поверхні мішені в вакуум через взаємодію їх з раптово виникаючим нерухомим зарядом іонізованих атомів, які розташовані поблизу поверхні, як у випадку радіоактивного розпаду, та e_0 -електрони, які струшуються безпосередньо при взаємодії з пролітаючою повз них зарядженою частинкою. Кінетична енергія е₀-електронів E становить не більше кількох eB, а енергія зв'язку на поверхні E_n становить менше 1 eB, про що буде вестися мова пізніше. Кутовий розподіл е₀-

ISSN 0372-400X. Укр. фіз. журн. 2013. Т. 58, № 1

[©] О.І. ФЕОКТІСТОВ, В.Т. КУПРЯШКІН,

Л.П. СИДОРЕНКО, М.Ф. КОЛОМІЄЦЬ,

О.В. КОВАЛЕНКО, В.А. ЛАШКО, 2013

електронів направлений різко вперед, вздовж нормалі до поверхні.

Два інших типи емісії електронів, які ми називаємо швидкими електронами e_f , пов'язані зі збудженням атомів у момент прольоту зарядженої частинки. Якщо ці атоми знаходяться всередині мішені, то струс призводить до переходу електрона на незаповнений рівень атома та утворення вакансії на місці, де він знаходився раніше. Після заповнення вакансії відбуваються процеси оже-рекомбінації, в результаті яких швидкі електрони e_f^A , зв'язані з цим процесом, можуть мігрувати в бік поверхні та переходити у вакуум. Вони є неначе свідками ефекту струсу всередині мішені. Їх кутовий розподіл буде ізотропним, що ми і спостерігали в роботі [3].

Врешті-решт, якщо заряджена частинка при виході з мішені викликає ефект струсу електронів атомів, які розташовані на поверхні, то відбувається виліт швидких e_f^i -електронів у вакуум, що супроводжується вакансією в атомах, на місці їх вильоту. Оскільки eⁱ_f-електрони безпосередньо переходять у вакуум, їх енергетичний спектр не викривляється, і його можна порівняти зі спектром, який випливає з теоретичних уявлень на основі ефекту струсу. (Ми будемо розглядати спектри e_{f}^{i} електронів до енергії 400 eB. При більш високих енергіях можуть виникнути спотворення, наприклад через "хвости" конвойних електронів). Розподіл e_{f}^{i} -електронів за кутами вильоту з мішені близький до косинусоїдального соз θ , де θ – кут між напрямом вильоту e_{f}^{i} -електрона та нормаллю до поверхні в місці виходу зарядженої частинки [3].

У геометрії "на відбиття", тобто при реєстрації електронів, що випромінюються з поверхні при вході зарядженої частинки в мішень, ми спостерігаємо e_0 -електрони, які вилітають переважно у напрямку нормалі до поверхні, та ізотропний розподіл швидких електронів e_f^A , як і в геометрії "на пропускання". Таким чином, при вимірах "на пропускання" і "на відбиття" ми бачимо е₀-електрони близьконульової енергії і e_f^A -електрони оже, а e_f^i -електрони спостерігаються тільки в геометрії "на пропускання". Оскільки e_f^i -електрони з поверхні мішені потрапляють безпосередньо у вакуум, це дозволяє порівнювати виміряні низькоенергетичні спектри електронів з теоретичними, як це було нами зроблено в дослідженнях проходження α частинок через мішені Al, Cu i Au [4-6], які показали правильність уявлень іонізації атома про-

ISSN 0372-400Х. Укр. фіз. журн. 2013. Т. 58, № 1

літаючою α -частинкою, як один із проявів ефекту струсу.

У даній роботі ми продовжуємо ці дослідження, де у ролі зарядженої частинки використовуємо β частинки з розпаду тритію, де енергія β -частинок мала, а в ролі мішені вибираємо титан. Щоб більш детально порівняти спільне та відмінне у впливі α і β -частинок на процес струсу, ми вирішили провести також і виміри з α -частинками ²³⁸Pu в тих самих експериментальних умовах і з тою ж мішенню, що і при β -розпаді тритію. Крім того, оскільки тритій відіграє важливу роль в науці і техніці, отримані відомості можуть виявитися корисними.

2. Співвідношення між фізичними величинами при ефекті струсу

Основна формула, яка описує ймовірність вильоту електрона e_f^i , що знаходиться на поверхні в вакуум через збудження, яке виникає внаслідок взаємодії з зарядом частинки, що раптово пролітає повз нього, має такий вигляд:

$$dW(E) = \frac{c}{V_p} \left(\frac{Z_p e^2}{r}\right)^2 \left| \int \psi_f^* \psi_i^{(0)} dq \right|^2 \frac{b\sqrt{E}}{(E+E_n)^2} dE.$$
(1)

Перші два множники визначають ймовірність отримання збудження електроном. Вона стає тим більшою, чим довше відбувається збудження, звичайно, при збереженні умови струсу, тобто щоб $\tau_{\beta} \ll 2\pi \omega_{fi}^{-1}$. Найменша ймовірність збудження має місце при русі частинки зі швидкістю світла С. Хоча розмірність передаваного збудження визначається як квадрат енергії, потім воно ділиться у формулі (1) на квадрат енергії $(E + E_n)^2$. Ймовірність переходу системи зі стану i у стан f з вакансією на місці електрона, що вилетів, визначається квадратом матричного елемента, складеного з хвильових функцій, які являють собою координатні частини стаціонарних станів $\Psi(q,t) =$ $= \psi(q) \exp\left(-iE\frac{t}{\hbar}\right)$. Нарешті, останній множник перед dE є диференціальним розподілом електронів за енергією в неперервному спектрі після струсу. Тут $b\sqrt{E} = \nu$ – статистичний розподіл щільності рівнів електронів у кінцевому стані неперервного спектра, де $b = \frac{\sqrt{2}m^{3/2}V_e}{\pi^2\hbar^3}$, m – маса електрона, а $V_e = x^3$ – об'єм та x – середня відстань між електронами, здатними струситися у вакуум.

Таким чином, перші співмножники до матричного елемента описують першу стадію процесу струсу – визначають ймовірність передачі збудження, яка залежить від швидкості заряду частинок, тоді як решта множників відносяться до другої стадії процесу струсу – вони передають ймовірність переходу системи з початкового стану в кінцевий і розподіл електронів за енергією в неперервному спектрі. Друга стадія не залежить від сорту і руху частинок, хоча і не може відбуватись без першої стадії.

При виведенні формули (1) використовувались формули теорії збурень першого порядку для переходів, які залежать від часу за раптового збудження системи, викладені в роботах [2–7], які доповнені виразом для опису процесу струсу електронів у неперервний спектр, а також співмножником c/v_p , який враховує рух заряду в момент передачі збудження [8]. Збудження цілком і повністю передається струшуваному електрону, а система залишається з вакансією на оболонці, звідкіля струсився електрон. Тоді для e_f^i -електронів, які знаходяться на поверхні, маємо

$$\left(\frac{Z_p e^2}{r_a}\right) = E + E_n.$$
(2)

Хоча ймовірність переходу системи з початкового стану *i* в кінцевий *f* не залежить від величини енергії збудження, однак повинна виконуватись умова $r < r_{\text{max}}$, де $r_{\text{max}} = \frac{Z_p e^2}{E_n}$ для e_f^i -електронів. З співвідношення невизначеності випливає, що в момент передачі збудження від зарядженої частинки електрона атома невизначеність значення енергії передачі $\Delta E = \frac{\hbar}{\tau}$ в кілька разів більше, ніж сама величина цього збудження $E = \hbar \omega_{fi}$, так що основну вимогу раптовості можна переписати у вигляді $\frac{\Delta E}{E} = \frac{\omega^{-1}}{\tau} \gg 1$. У момент збурення передавана електронам енергія стає невизначеною. Тому величину збурення можна визначити тільки після вимірювання енергії електрона, що вилетів, та розрахунку за формулою (2). Так само, за формулою (2), можна встановити і на якій відстані *r* частинка пролетіла повз струшуваний електрон.

При проходженні зарядженої частинки через поверхню мішені вихід e_f^i -електронів $\Upsilon(E)$ з енергією в інтервалі від 0 до E визначається за формулою

$$\Upsilon(E) = \pi \frac{c}{v_p} \left(\frac{Z_p e^2}{x}\right)^2 \left| \int \psi_f^* \psi_i^{(0)} dq \right|^2 b \int_0^E \frac{\sqrt{E} dE}{\left(E + E_n\right)^2} = B \int_0^E \frac{\sqrt{E} dE}{\left(E + E_n\right)^2} = BF(E),$$
(3)

де

$$F(E) = \int_{0}^{E} \frac{\sqrt{E}dE}{\left(E + E_n\right)^2} = \frac{1}{\sqrt{E_n}} \operatorname{arctg} \sqrt{\frac{E}{E_n}} - \frac{\sqrt{E}}{E + E_n},$$

$$F\left(0\right) = 0. \tag{4}$$

Формула (3) випливає з формули (1), якщо врахувати, що заряджена частинка, яка пролітає через вихідну поверхню мішені, може взаємодіяти з електронами атомів, які знаходяться на поверхні. Якщо місце перетину зарядженої частинки з поверхнею уявити як центр круга, то всі електрони, які знаходяться в межах кільця $\pi r_{\max}^2 - \pi r^2$, взаємодіючи з зарядженою частинкою, отримують необхідну енергію збудження для того, щоб струситися у вакуум з енергією від 0 до E, залежно від їх розташування. При $r>r_{\rm max}$ струс не може відбуватись внаслідок порушення закону збереження енергії, а в крузі з радіусом меншим за r, тобто при енергії більше E, струс не розглядається через те, що в кінцевому стані неперервного спектра в інтервалі від 0 до Е таких рівнів немає. Кількість e_{f}^{i} -електронів, розташованих в інтервалі від r до r+dr,та здатних струситися у вакуум, визначається як $\frac{|\pi r^2 - \pi r_{\max}^2|}{x^2}$, де x^2 – площа, яку займає один електрон, що здатен струситися у вакуум. Хоча в різних точках кільця електрон отримує різну енергію збурення, втім внаслідок раптовості збурення і співвідношення невизначеності передача збурення стає більша від самої величини збурення і всі електрони стають нерозрізненними по енергії. Залежність ймовірності струшування від енергії електрона визначається другою стадією процесу. Запис площі кільця через модуль пов'язана з необхідністю, саме у такому порядку, узгодити її з межами інтегрування по енергії від 0 до Е у формулі для F(E). Крім того, оскільки в подальшому πr_{max}^2 множиться на F(0) = 0, він виключається з подальшого розгляду, а перша стадія процесу струсу визначається як

$$\frac{c}{v_p}\frac{\pi r^2}{x^2}\left(\frac{ze^2}{r}\right)^2 = \pi \frac{c}{v_p}\left(\frac{z_p e^2}{x}\right)^2.$$

Якщо в подальшому струс не відбудеться, то заряджена частинка відбирає назад енергію збурення у електрона і це подібне випадку на зразок внесення пробного заряду, а потім його видалення.

ISSN 0372-400X. Укр. фіз. журн. 2013. Т. 58, № 1

12

3. Умови проведення експерименту

Дослідження низькоенергетичного спектра електронів іонізації, який виникає після проходження β -частинок тритію через мішень титану, проводилось за методом часових (βe)-збігів з використанням гальмівної напруги U (затримуючого потенціалу) в каналі реєстрації електронів. Вимірювалась швидкість відліку часових збігів залежно від величини гальмівної напруги, що подавалась на мішень. Часові спектри збігів реєструвалися багатоканальним аналізатором ORTEC-NORLAND.

Вимірювання проводились у двох геометріях, зображених на рис. 1. У експерименті "на пропускання" (рис. 1,*a*) джерело тритію S разом з коліматором К розміщувалось поблизу мішені Т, як зображено на рисунку. Мішенню була самопідтримувана плівка титану товщиною 0,4 мкм, розташована до пучка β -частинок під кутом 45°, так що загальна товщина, яку проходили β -частинки, становила 0,57 мкм. Після проходження β-частинками мішені, вони на відстані 6 см потрапляли на детектор МСР₁, який являє собою збірку з двох мікроканальних пластин у вигляді шеврона, та реєструвались ним. Електрони e_0, e_f^A, e_f^i , що вилетіли при проходженні через мішень β -частинки, потрапляли на інший детектор MCP₂ та реєструвались ним. Детектор МСР₂ був закріплений у вакуумній камері нерухомо, а всі інші елементи конструкції (MCP₁, S, K, T) закріплювались на валу (на осі повороту) О, що давало змогу вимірювати кутовий розподіл електронів, які потрапляють на МСР₂ при збігах з *β*-частинками. Мішень, коліматор та джерело знаходились при однаковому потенціалі U, який змінювався під час вимірювань. У вакуумній камері підтримувався тиск 5 · 10⁻⁶ мм рт. ст.

В експерименті "на відбиття" (рис. 1,6) безпосередньо за мішенню розташовувався детектор β частинок MCP₁, в той час як джерело S (без коліматора) переміщувалось на місце, де раніше знаходився детектор MCP₁. Таким чином, MCP₂ реєстрував e_0 - і e_f -електрони, які виникають при вході β -частинок у мішень, на яку при вимірюваннях подавався потенціал U. В обох геометріях досліджувалась одна і та ж поверхня мішені.

Радіоактивне джерело являло собою пляму тритію діаметром 7,5 мм, внесенного в титанову підкладку діаметром 35 мм. Середня енергія спектра β -частинок тритію становить 5,69 ± 0,02 кеВ при граничній енергії 18 кеВ, а активність джерела – $5 \cdot 10^7$ Бк. Для спрощення розрахунків ми нехтували невеликою кількістю β -частинок, які випромі-

ISSN 0372-400Х. Укр. фіз. журн. 2013. Т. 58, № 1

Рис. 1. Схема експерименту: a – "на пропускання", δ – "на відбиття", S – джерело, T – мішень, MCP₁ и MCP₂ – детектори, K – коліматор, O – вісь повороту

нюються з енергією від 16 до 18 кеВ, розглядаючи розподіл електронів жорсткої частини спектра як гіпотенузу прямокутного трикутника. В геометрії "на пропускання", через поглинання β -частинок, детектор MCP₁ реєстрував тільки електрони з початковою енергією більше 8,4 кеВ, що відповідає довжині пробігу електронів у товщині мішені. Середня швидкість β -частинок на виході з мішені становить $V_{\beta} = 3,8 \cdot 10^9$ см · с⁻¹, а їх середня енергія E = 3,7 кеВ, про що буде зазначено нижче. В геометрії "на відбиття" середня енергія β -частинок при вході, які потім зможуть пройти через мішень

Рис. 2. Часові спектри (β е)-збігів (зліва) і (α е)-збігів (справа) при різних значеннях потенціалу затримки на мішені: 1 – в експерименті "на пропускання"; 2 – "на відбиття", N_k – номер каналу аналізатора

ISSN 0372-400Х. Укр. фіз. журн. 2013. Т. 58, № 1

та бути зареєстрованими детектором MCP₁, становить 11 кеВ, що відповідає середній швидкості $V_{\beta} = 6.3 \cdot 10^9 \text{ см} \cdot \text{c}^{-1}.$

При вимірюваннях з α -частинками джерело тритію замінювалось просто джерелом ²³⁸Pu з набору ОСАИ (еталонне спектрометричне джерело з енергією α -частинок E = 5,5 MeB). Оскільки для α -частинок мішень була достатньо тонкою, можна вважати, що на вході та на виході α -частинок з мішені їх енергія практично не змінюється, і швидкість $V_{\alpha} = 1,6 \cdot 10^9$ см · с⁻¹ приймається в обох випадках однаковою.

На рис. 2 наведено фрагменти спектрів часових збігів, виміряних в геометрії "на пропускання" (крива 1) і "на відбиття" (крива 2) при різних значеннях потенціалу затримки U. Ліва колонка відноситься до спектрів при проходженні через мішень β -частинок, а права – α -частинок. З рисунка видно, що при затримуючому потенціалі U = 0 В спектри містять два піка: від e_0 електронів (лівий пік) та від *е*_f-електронів (правий пік). З ростом потенціалу інтенсивність e_0 -піка швидко падає та при енергії eU = 24 eB майже повністю зникає. Нами досить детально властивості e_0 -електронів було вивчено у роботах [9–12], тому зупинимось на них лише коротко. Наведемо для наочності N(E = eU), отриманий при вимірюваннях "на пропускання" для *e*₀-електронів у збігу з β -частинками тритію в діапазоні вимірювання Uвід +24 до -10 eB. Воно наведено на рис. 3 (крива 1). Збільшення кількості збігів $N_{\beta e}$ при U < 0пов'язано зі збільшенням тілесного кута реєстрації електронів детектором MCP₂ через збільшення витягаючої напруги між мішенню та детектором. Ми будемо розглядати розподіл e_0 -електронів за енергією тільки у діапазоні від 0 до E, представляючи його як різницю кількості (βe_0)-збігів N(0) (у діапазоні від E_{max} до 0) і N(E) (в діапазоні від E_{max} до E): $N_{\Delta}(E) = N(0) - N(E) = AF(E)$, де F(E) теоретичний розподіл струшуваних е₀-електронів, що розраховується за формулою (4). Як видно з рис. 3, експериментальний розподіл $N_{\Delta}E$ добре узгоджується з теоретичним (крива 3). Підгонка проводилась методом найменших квадратів. При цьому енергія зв'язку електронів на поверхні Тімішені виявилась рівною $E_n = 0.6 \pm 0.1$ eB, а $A = 2274 \pm 255.$

Втім, повернемось до дослідження часових спектрів збігів для швидких електронів e_f , фрагменти яких наведено на рис. 2. Внаслідок великої кількості випадкових збігів у спектрах "на відбиття" від

ISSN 0372-400Х. Укр. фіз. журн. 2013. Т. 58, № 1

Рис. 3. Спектри електронів від β -частинок тритію у вимірюваннях "на пропускання": 1 – крива затримки (інтегральний спектр електронів у діапазоні енергії від E_{\max} до E = eU), 2 – інтегральний розподіл по енергії e_0 -електронів, виміряний в діапазоні від 0 до E, 3 – розподіл електронів по енергії, розрахований за формулою (4) ефекту струсу при $E_n = 0,6$ еВ. На вставці наведений диференціальний розподіл e_0 -електронів, розрахований при цій енергії зв'язку за формулою (3)

 β -частинок тритію було проведено згладжування по п'яти точках, а через те, що при вимірюваннях α - і β -частинок від моменту проходження мішені до моменту реєстрації частинки проходять меншу відстань при вимірюваннях "на пропускання", ніж при вимірюваннях "на відбиття", їх піки у часових спектрах зсунуті в бік менших часів реєстрації. З тієї самої причини за один і той самий час вимірювання "на відбиття" кількість N_{β} була більшою в 5 разів, а кількість N_{α} – в 2 рази, ніж у вимірюваннях "на пропускання". Всі спектри наведені у відповідності з реєстрацією $n_{\beta} = 3,6 \cdot 10^{6}\beta$ -частинок або $n_{\alpha} = 1,8 \cdot 10^{5} \alpha$ -частинок за одну годину (хоча для наочності на рис. 2 спектри на відбиття з β -частинками збільшені у 5 разів).

У роботі виміряні часові спектри збігів в інтервалі затримуючої напруги від 0 до 400 В, всього було виміряно 13 точок з експозицією 1 година.

4. Представлення результатів вимірювань

Перейдемо тепер до обговорення властивостей швидких e_f -електронів. На рис. 4 наведено розподіл 1, який являє собою кількість (βe_f)-збігів, виміряних як сума e_f^A - та e_f^i -електронів у геометрії на пропускання, залежно від енергії $N_{\beta 1}(eU)$.

Рис. 4. Залежність від енергії кількості збігів β -частинок зі швидкими електронами e_f : 1 – в експерименті "на пропускання", 2 – в експерименті "на відбиття", 3 – залежність для e_f^i -електронів, що струшуються в вакуум

Розподіл 2 показує кількість (βe_f^A)-збігів, отриманих в геометрії на відбиття $N_{\beta 2}(eU)$, а розподіл 3 відображає кількість реєстрацій e_f^i -електронів, які визначаються як різниця $N_{\beta 1}(eU) - 1,7 \cdot N_{\beta 2}(eU) = N_{\beta 3}(eU)$. Коефіцієнт 1,7 виник внаслідок того, що ймовірність струсу на виході з мішені, де $v_\beta = 3,8 \cdot 10^9$ см · с⁻¹ в 1,7 раза більша, ніж ймовірність на вході, де $v_\beta = 6,3 \cdot 10^9$ см · с⁻¹.

На рис. 5 показані такі самі залежності, що і на рис. 4, але вже при проходженні α -частинок через мішень. Так, для e_f^i -електронів розподіл визначався як $N_{\alpha 3}(eU) = N_{\alpha 1}(eU) - N_{\alpha 2}(eU)$. Оскільки для α -частинок титанова мішень тонка, то на вході кількість електронів e_f^A така сама, як і на виході з мішені.

Виходячи з формули (1), ми можемо порівняти розподіли $N_{\beta3}(eU)$ та $N_{\alpha3}(eU)$. Наприклад, $\frac{N_{\alpha3}(0)\cdot n_{\beta}}{N_{\beta3}(0)\cdot n_{\alpha}} = \frac{876\cdot 20}{1832} = 9,57$, в той час як за формулою (1) $\frac{z_{\alpha}^2 \cdot v_{\beta}}{1 \cdot v_{\alpha}} = \frac{4 \cdot v_{\beta}}{1 \cdot 1,6}$, звідси на виході швидкість β -частинки $v_{\beta} = 3,8 \cdot 10^9 \text{ см} \cdot \text{c}^{-1}$. Таке значення v_{β} для β -частинок у режимі на пропускання вже використовувалось нами раніше. Відношення, що розглядається, мало відрізняється одне від одного для інших точок (eU) і становить в середньому 8,8, що означає подібність кривих при струсі для α - і β -частинок.

Можемо порівняти і розподіл для e_f^A -електронів. Так, наприклад, для електронів, які струшуються на збуджені рівні атомів всередині мішені при

Рис. 5. Залежність від енергії кількості збігів α -частинок зі швидкими електронами e_f : 1, 2, 3 – те саме, що і на рис. 3

проходженні α - і β -частинок $\frac{N_{\alpha 2}(0)}{N_{\beta 2}(0)} = \frac{467 \cdot 20 \cdot 2}{215 \cdot 5} =$ = 17,4 · 10⁹ см·с⁻¹, в той час як з формули (1) випливає $\frac{z_{\alpha}^2 \cdot v_{\beta}}{1 \cdot v_{\alpha}} = \frac{4 \cdot 6, 3}{1 \cdot 1, 6} = 15,8 \cdot 10^9$ см·с⁻¹, тобто обидва розподіли електронів на відбитті схожі. Множник $\frac{2}{5}$ виникає тому, що в геометрії на відбиття кількість β -частинок за час вимірювання n_{β} більша, ніж в геометрії на відбиття в 5 разів, а кількість α -частинок n_{α} – в 2 рази. Це пов'язано з тим, що через розсіяння при проходженні α - і β -частинками мішені, в геометрії на пропускання на детектор МСР₁потрапляє в 2 рази менше α -частинок, а β -частинок – в 5 разів менше, ніж у режимі на відбиття, де МСР₁ розташовується безпосередньо за мішенню і цих втрат немає.

Вимірювання кутового розподілу e_f-електронів при опроміненні мішені β -частинками в режимі "на пропускання" для цілого набору енергій інтегральних спектрів $N_{\beta 1}(eU)$ показали, що для усіх них кутовий розподіл направлений вперед і близький до косинусоїдального вигляду. Кутовий розподіл, але тільки коли eU = 0 eB, проведений і при збудженні атомів мішені α-частинками. Порівняння його з аналогічним розподілом при β-збудженні показало деяку подібність. Аналогічні вимірювання для e_f^A -електронів в режимі "на відбиття" не проводились через наявність великої кількості випадкових збігів β -частинок з e_f^A електронами. Втім, в геометрії "на відбиття", в роботі [3] для а-частинок було встановлено, що всі e_{f}^{A} -електрони, що вилетіли, мають ізотропний кутовий розподіл.

ISSN 0372-400Х. Укр. фіз. журн. 2013. Т. 58, № 1

Рис. 6. Функція F(E) інтегрального розподілу e_f електронів по енергії (див. формулу (4)) при струсі на різних підоболонках атома Ті

Інтегральний спектр електронів іонізації e_f^i в інтервалі енергії від 0 до E можна отримати після перетворення, яке відповідає зміні меж інтегрування $\int_0^E = \int_0^{E \max} - \int_E^{E \max}$, тобто $N_{\beta 4}(E) =$ $= N_{\beta 3}(0) - N_{\beta 3}(E)$, та порівняти його з теоретичним розподілом $N_{\beta 4}(E) = \sum_l A_{\beta l} F_l(E)$, де індекс l – позначає різні оболонки атома, які беруть участь в ефекті струсу, а множник $A_{\beta l}$, який не залежить від розподілу e_f^i по енергії, визначається як

$$A_{\beta l} = \eta \pi \frac{c}{V_{\beta}} \left(\frac{z_{\beta} e^2}{x_l} \right)^2 \left| \int \psi_f^* \psi_i^{(0)} dq \right|_l^2 b n_{\beta},$$

де η залежить від умов проведення експерименту і виражається як добуток ефективності реєстрації електронів ε та частки їх збирання δ_{eff} детектором MCP₂, а n_l – кількість електронів на lпідоболонці. При проходженні α -частинок потрібно тільки в формулі всі символи β замінити на α .

На рис. 6 наведено розрахунки інтегрального розподілу e_f^i -електронів за енергією для різних підоболонок атома титану, отримані за формулою (4). Як це буде видно в подальшому, тільки розподіли електронів, що струшуються з Мпідоболонок, порівнянні з експериментальним розподілом, а К- і L-оболонки виявляють невеликий вплив на струс у цьому інтервалі енергії e_f^i електронів.

На рис. 7 наведено порівняння експериментального і розрахункового розподілу за енергією, яке проводилось підгонкою за методом найменших квадратів для e_f^i -електронів при струсі від β частинок тритію. Експериментальні значення на-

ISSN 0372-400Х. Укр. фіз. журн. 2013. Т. 58, № 1

Рис. 7. Порівняння експериментального і розрахованого розподілу e_f -електронів при струсі від β -частинок тритію: 1 – при струсі на підоболонках M_{4,5} Ті, 2 – на M_{1,2,3}підоболонках, 3 – при врахуванні їх суміші. Пунктирними лініями показані диференціальні розподіли e_f -електронів по енергіях для M_{4,5} (4) і M_{1,2,3} (5)

Puc.8. Те саме, що і на рис. 7, але при струсі від
 α -частинок $^{238} \mathrm{Pu}$

ведені у вигляді точок з вказаною статистичною точністю. Крива 1 відповідає розрахунку, коли струс e_f^i -електронів відбувається тільки з $M_{4,5}$ підоболонок атома титану, а крива 3, коли тільки з $M_{1,2,3}$ -підоболонок. Жирна крива 2 відповідає розрахунку при їх суміщенні $N_{\beta 4}(E) = N_{\beta}(E) =$ $= xA_{M_{4,5}}F_{M_{4,5}}(E) + (1-x)A_{M_{1,2,3}}F_{M_{1,2,3}}(E)$, де x = 0,4 і (1-x) = 0,6.

Аналогічний аналіз було проведено і для струсу електронів з Ті-мішені при бомбардуванні її α частинками ²³⁸Pu. Результати наведено на рис. 8. Згідно з одержаними результатами, розподіли e_f^i електронів іонізації для β -частинок тритію і для α -частинок можна представити як такі, що відбуваються в основному при струсі електронів Моболонки, при цьому в 40% випадків це відбувається на $M_{4,5}$ -підоболонках, а інші 60% – на $M_{1,2,3}$ -підоболонках атомів Ті. Енергії зв'язку E_n , з урахуванням потенціалу іонізації для Ті – 6,8 еВ, приймались для $M_{4,5}$ -підоболонок як 10,5 еВ, а для $M_{1,2,3}$ – підоболонок як їх середнє значення 47,8 еВ. На рис. 7 та 8 пунктирними лініями показані також розрахункові диференціальні спектри e_f^i -електронів, отримані за формулою (3) для цих компонентів кривої $N_{\beta 4}$.

Таким чином, внесок кожного з двох електронів $M_{4,5}$ -підоболонок становить 20% від повної ймовірності струсу, а кожен з восьми електронів $M_{1,2,3}$ -підоболонок вносить внесок 7,5%. Таким же повинно бути і співвідношення між квадратами матричних елементів переходу з цих станів *i* в кінцевий стан *f*. Через невизначеність величини η (яка була прийнята нами за $\eta = 5 \cdot 10^{-3}$) ми можемо дати тільки оцінку матричних елементів переходів $|M_{fi}|_{M_{4,5}} = 3,6 \cdot 10^{-2}$ і $|M_{fi}|_{M_{1,2,3}} = 4,1 \cdot 10^{-2}$.

5. Висновок

Проведені дослідження розподілу за енергією e_f^i електронів, що вилітають з мішені титану при бомбардуванні її β -частинками тритію, показали гарне узгодження з розрахованим за формулою (1) розподілом. Це дозволяє зробити висновок про правильність опису іонізації атома пролітаючою частинкою як квантово-механічного переходу системи під дією раптового збурення з початкового стану в кінцевий з вильотом електрона в неперервний спектр і утворенням вакансії в атомі на місці електрона, що вилетів, тобто як ефект струсу. Раніше такий висновок було зроблено нами після дослідження іонізації для різних мішеней від пролітаючих α -частинок [4–6].

Проведено порівняння властивостей струсу при прольоті β - і α -частинок через мішень Ті. Для цього, в тих самих експериментальних умовах і з тою ж мішенню, що і для β -частинок, проведені вимірювання з α -частинками. Виявилось, що розподіли за енергією e_f^i -електронів подібні між собою, а повна ймовірність струсу пропорційна $(z_p e^2)^2/v_p$.

Процес струсу можна уявити як такий, що проходить у дві стадії [13]. На першій стадії відбувається раптове збудження системи і ми бачимо в експерименті відмінність ймовірності передачі збурення при проходженні α - і β -частинок, вона визначається першими двома співмножниками $\pi \frac{c}{v_p} \left(\frac{z_p e^2}{r_a}\right)^2$ у формулі (1). Під час другої стадії відбувається перехід системи з початкового стану *i* в кінцевий стан *f*. Друга стадія, яка являє решту членів формули (1), для різних частинок відбувається однаково, незалежно від першої стадії, хоча вона і не може відбуватись без її наявності. Це також було підтверджено під час порівняння результатів вимірювань в нашій роботі.

- 1. А.М. Дыхне, Г. Л. Юдин, УФН 125, 377 (1978).
- Л.Д. Ландау, Е.М. Лифшиц, Квантовая механика (Наука, Москва, 1974).
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, И.П. Шаповалова, Изв. РАН, сер. физ. 68, 1208 (2004).
- Л.П. Сидоренко, В.Т. Купряшкін, О.І. Феоктістов, С.П. Ровенських, УФЖ 55, 757 (2010).
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, Е.П. Ровенских, ЖЭТФ 139, 679 (2011).
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, Е.П. Ровенских, УФЖ 57, 5 (2012).
- А.С. Давыдов, Квантовая механика (Физматгиз, Москва, 1963).
- 8. О.І. Феоктістов, УФЖ **55**, 165 (2010).
- 9. О.І. Феоктістов, УФЖ **53**, 1043 (2008).
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, И.П. Шаповалов, Изв. РАН. сер. физ. 67, 1446 (2003).
- А.И. Феоктистов, А.А. Вальчук, В.Т. Купряшкин, Л.П. Сидоренко, И.П. Шаповалова, Изв. РАН, сер. физ. 72, 281 (2008).
- А.И. Феоктистов, А.А. Вальчук, В.Т. Купряшкин, Л.П. Сидоренко, И.П. Шаповалова, Изв. РАН, сер. физ. 72, 285 (2008).
- А.М. Дыхне, Г.Л. Юдин, УФН **121**, 157 (1977). Одержано 28.03.12

А.И. Феоктистов, В.Т. Купряшкин, Л.П. Сидоренко,

Η.Φ. Коломиец, А.В. Коваленко, В.А. Лашко
 НИЗКОЭНЕРГЕТИЧЕСКИЕ
 СПЕКТРЫ ЭЛЕКТРОНОВ, ВОЗНИКАЮЩИЕ
 ПРИ БОМБАРДИРОВКЕ ТИТАНОВОЙ
 МИШЕНИ β-ЧАСТИЦАМИ ТРИТИЯ
 И α-ЧАСТИЦАМИ ²³⁸Ри

Резюме

Методом временных (βe)-совпадений исследован низкоэнергетический спектр электронов, возникающий при бомбардировке мишени титана β -частицами из распада трития. Чтобы сравнить сходство или отличие влияния различных заряженных частиц на этот процесс, в тех же экспериментальных условиях и с той же мишенью, аналогичные измерения проведены с α -частицами из распада ²³⁸Pu. Показано, что ионизацию атомов при бомбардировке мишени заряженными частицами можно представить как эффект встряски в обоих случаях.

ISSN 0372-400X. Укр. фіз. журн. 2013. Т. 58, № 1

A.I. Feoktistov, V.T. Kupryashkin, L.P. Sidorenko, N.F. Kolomiets, A.V. Kovalenko, V.A. Lashko

LOW-ENERGY SPECTRUM OF ELECTRONS EMITTED AT IRRADIATION OF A TITANIUM TARGET WITH $\beta\text{-PARTICLES OF TRITIUM AND }\alpha\text{-PARTICLES OF }^{238}\mathrm{Pu}$

Summary

The low-energy spectrum of electrons emitted while bombarding a titanium target with β -particles obtained from a

tritium source has been studied using the (βe)-coincidence method. To reveal common features and distinctions of this process for different charged particles under the same experimental conditions, including the same target, similar measurements were carried out using α -particles ejected in the decay of 238 Pu. It was shown that the ionization of atoms in the target at its bombardment with charged particles can be represented in the both cases as a result of the shake-off process.