M'AKA PEHOBIHA

UDC 539

M.F. DIMIAN,' A.M. MEGAHED?

1 Department of Mathematics, Ain Shams University, Faculty of Science
(Cairo, Egypt; e-mail: mouradfadl@yahoo.com, ah _mg sh@yahoo.com)
2 Department of Mathematics, Faculty of Science
(Benha University (18518), Egypt)

EFFECTS OF VARIABLE FLUID PROPERTIES
ON UNSTEADY HEAT TRANSFER OVER A STRETCHING
SURFACE IN THE PRESENCE OF THERMAL RADIATION

The effect of radiation on the unsteady flow over a stretching surface with variable viscosity
and variable thermal conductivity is analyzed. Similar governing equations are obtained by
using suitable transformations and are then solved by applying the Chebyshev spectral method.
Numerical results for the dimensionless velocity profiles and the dimensionless temperature
are graphically presented for various values of the radiation parameter, viscosity, thermal
conductivity, space and time indices, Prandtl number, and unsteadiness parameter. It is shown
that both the skin friction and the rate of heat transfer decrease, as the Prandtl number and
the unsteadiness parameter decrease. But both decrease, as the radiation parameter increases.
The dimensionless temperature increases with the radiation parameter and the viscosity, but
it decreases as the space and time indices increase.
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1. Introduction

The continuous surface heat transfer problem has
many practical applications in industrial manufactur-
ing processes such as wire and fiber coating, food stuff
processing, reactor fluidization, transpiration cooling,
etc. Production of a thin liquid film either on the
surface of a vertical wall by means of the action of
gravity or on a rotating horizontal disk due to the
action of centrifugal forces has been studied consid-
erably in the literature (Sparrow and Gregg [1] and
Dandapot and Ray [2, 3]). Ali [4] investigated the
flow and heat transfer characteristics on a stretching
surface using the power-law velocity and temperature
distributions. A class of flow problems with the ob-
vious relevance to the polymer extrusion is presented
by the flows induced by the stretching motion of a
flat elastic sheet. Crane [5] was the first who stud-
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ied the motion set up in the ambient fluid due to
a linearly stretching surface. Several authors (e.g.,
Gupta [6] and Tsou et al. [7]) subsequently explored
various aspects of the accompanying heat transfer
occurring in the infinite fluid medium surrounding
the stretching sheet. They analyzed the stretching
problem with a constant surface temperature, while
Soundalgekar and Ramana [8] investigated the con-
stant surface velocity case with a power-law temper-
ature variation. Grubka and Bobba [9] analyzed the
stretching problem for a surface moving with linear
velocity and with variable surface temperature. Since
the pioneer work by Sakiadis [10] who developed a
numerical solution for the boundary layer flow field
of a stretched surface, many authors have attacked
this problem to study the hydrodynamic and thermal
boundary layers due to a moving surface (e.g., Mag-
yari and Keller [11]). The flow field of a stretching
wall with a power-law velocity variation was discussed
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by Banks [12]. Ali [13] extended Bank’s work to the
case of a porous stretching surface for different values
of the injection parameter. Abo-Eldahab and Gendy
[14] investigated the solution for the steady flow in
a boundary layer over the vertical stretching surface
with internal heat generation. Heat transfer over an
unsteady stretching surface with internal heat gener-
ation or absorption was studied by Elbashbeshy and
Bazid [15]. They solved numerically the governing
time-dependent boundary layer equations with con-
stant viscosity. The momentum and heat transfer in
a laminar liquid film on a horizontal stretching sheet
was analyzed by Andersson et al. [16]. The governing
time-dependent boundary layer equations are reduced
to a set of ordinary differential equations by means
of exact similarity transformations (which are used in
[15]). The resulting problem (with constant viscosity)
is solved numerically for some representative values of
the unsteadiness parameter and the Prandtl number.
Elbashbeshy and Dimian [17] studied the effect of ra-
diation on the problem of flow and heat transfer over
a wedge with variable viscosity. The effect of thermal
radiation on the free convection flow and heat trans-
fer over a variable plate in the presence of suction and
injection was discussed by Hassain et al. [18]. Elshe-
hawey et al. [19] investigated the problem of flow
and heat transfer over an unsteady stretching sheet
in a viscoelastic fluid with uniform suction at the wall
and heat transfer in the presence of a normal mag-
netic field. Elbashbeshy and Aldawody [20] investi-
gated the effects of thermal radiation and a magnetic
field on the unsteady boundary layer mixed convec-
tion flow and the heat transfer from a vertical porous
stretching surface. Bataller [21] presented the effects
of a non-uniform heat source on the viscoelastic fluid
flow and heat transfer over a stretching sheet. The
purpose of the present paper is to explore the effect
of radiation on the unsteady flow over a stretching
surface with variable properties. Accurate numerical
solutions will be provided for various values of radi-
ation parameter, viscosity, the unsteadiness parame-
ter, and the Prandtl number.

2. Formulation of the Problem

Consider the unsteady two-dimensional laminar
boundary layer flow over a stretching sheet immersed
in an incompressible fluid. The x axis is chosen along
the plane of the sheet, and the y axis is taken to be
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normal to the plane. We assume that the surface
starts stretching from rest with a velocity U(x,t).
The viscosity and the thermal conductivity of the
fluid is assumed to vary with the temperature as fol-
lows (Mahmoud and Megahed [22]):

= Mooe_a97 (1)
K = Koo(1 + €0), (2)

where Lo, Koo are the cofficients of viscosity and ther-
mal conductivity at the ambient, « is the viscosity pa-
rameter and e is the thermal conductivity parameter.
The governing time-dependent boundary layer equa-
tions for mass, momentum, and energy conservation
are given by

Oou  Ov

%—Fafy—(), (3)
ou_ ou, w10 (o "
ot Ox dy  poy “ay ’

or oTr or 1 0 oT 1 (0q.

— FUu— v =— (H) -— ( ), (5)
ot Ox dy pc, 0y \ Oy/) pcy, \ Oy

where v and v are the velocity components along the
x and y directions, respectively, ¢ is the time, p is the
fluid density, p is the viscosity, & is the thermal con-
ductivity, T is the temperature of the fluid, ¢, is the
radiative heat flux, and ¢, is the specific heat at con-
stant pressure. The appropriate boundary conditions
for the present problem are

u="U,

v=0, T=T, at y=0, (6)

u—=0, T—>Ty, as y— oo, (7)
where U is the surface velocity of the stretching sheet,
T, is the surface temperature, T, is the free stream
temperature, and the flow is caused by stretching the
elastic surface at y = 0 such that the continuous sheet

moves in the x direction with the velocity

bx

U=—,
1—at

(®)

where a and b are positive constants with dimension
(time~!). Our problem is valid only for at < 1, but
at > 1 has no physical meaning.
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The radiative heat flux g, is employed according to
the Roseland approximation [23| such that

4o* OT*
=3 oy (9)
where o* is the Stefan—Boltzmann constant, and k*
is the mean absorption coefficient. Following Rap-
tis [24], we assume that the temperature differences
within the flow are small and such that may be ex-
pressed as a linear function of the temperature. Ex-
panding T* in a Taylor series about T, and neglect-
ing higher-order terms, we have

T =413 T - 3T2. (10)

The equation of continuity is satisfied if we choose a
stream function ¢ (z,y) such that u = %}’ and v =

= fg—lf. The mathematical analysis of the problem is

simpliﬁed by introducing the following dimensionless
coordinates:

"= (%f/p))/ (1 — at) 12y, (1)
b= (“jjb)/ (1 - at) 22 f (), (12)
=T 4T <2(i”2m> (1 at)=™0(n), (13)
Ty = Too + T <2<i.:i;m> (1—at)™™. (14)

Here, f is the dimensionless stream function, 6 is the
dimensionless temperature of the fluid, d is constant,
and r and m are space and time indices, respectively.

Using Egs. (11)—(14), the mathematical problem
defined in Eqs. (4), (5) is then transformed into a set
of ordinary differential equations with the associated
boundary conditions:

S
efae(f/// - Oéelf”)+ff”*§77 f”*f/Q*Sf':O, (15)

1
—[(1+ R+ €0)0" + 0"+

Pr

+f9’—rf’9—5<;n9’+m9> =0, (16)
f(0)=0, f(0)=1, 6(0)=1, (17)
=0, 6—=0 as n— oo, (18)
348

where the prime denotes the differentiation with re-
spect to i, 6 = 72;7_758; is the dimensionless tem-
perature, S = a/b is the unsteadiness parameter,
Pr = % is the Prandtl number, and R = 136,;*:0%
the radiation parameter.

The physical quantities of interest are the skin-
friction coefficient Cy and the local Nusselt number
Nu, which are defined as

is

Oy = —2Re; /2 7(0),

1
Nu, = (1~ at)~Y?Re/20/(0), (19)
where Re, = pUT“" is the local Reynolds number.

3. Method of Solution

The domain of the governing boundary layer equa-
tions (15), (16) is the unbounded region [0, c0). How-
ever, for all practical reasons, this could be replaced
by the interval 0 < 1 < 15, Where 7o, is some large
number to be specified for the computational conve-
nience. Using the algebraic mapping

XZQi_la
Too

the unbounded region [0, 00) is finally mapped onto
the finite domain [—1, 1], and the problem expressed
by Egs. (15) and (16) is transformed into

eI (x) = abl (x) /" ()] +

+ (%) 100700 = (£2) £200-

~s| (%) koo () 1o =0 eo
S+ R e000)0 () + e ()

+ (%) 700000 = 7 (2) £ 00000 -

-5 {("g’) (000 +m () 0(x)} —0. (21)
The transformed boundary conditions are

fEn =0 f-= (%), o-n=1 (22
f(my=o, 6(1)=o, (23)
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where the differentiation in Egs. (20) and (21) will
be with respect to the new variable x. Our technique
is accomplished by starting with the Chebyshev ap-
proximation for the highest order derivatives, "/ and
6", and generating approximations to the lower order
derivatives f”, f’, f, ¢', and 0 as follows: Setting
" = é(x), and 8” = ((x) and then integrating we
obtain

7100 = / 6()dx + C (24)

f) = o()dxdx +C{(x +1)+C4,  (25)
/]

o) = / / / S0 dxdxdx+

+of (XJ;UQ +ci(x+1)+cd, (26)

o' (x) = / CO)dx + CY, (27)

b(x) = / / CO0dydy + Cox +1) +CL. (28)

From the boundary conditions (22) and (23), we have

1 x
1 o0
cf = —5//¢>(x)dxdx7 cy = (%) ci =0,
1-1

1 X
1 1
cf=—5-3 [ [ctodxax cf=1.
15
Therefore, we can give approximations to Eqgs. (20)
and (21) as follows:
=D thej+dl. £l ="t e; +dl",
i=0 §=0
n
Y0 = 12¢;+dl?, (29)
5=0
=D WG +dl, 000 =) 1¢+dl", (30)
j=0 7=0
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for all i = 0(1)n, where

1(x; +1)?

f _ 33 2 f _ To

lij_bij_§ 5 by d; (X1+1)(2)7

. 1 X

f1_ ;2 2 f1_ Teo

li; _bij_i( Xi + by, d; =50

1

12 = by — bi], df? = o,

ooz — Lo, @ =1- Lo

ij = 0ij 2(X2+ )by, di = 2(X1+ )s
1

10 =bij — bfu, dflz—ﬁ,

and b?j = (xi — x;)bi; and b;; are the elements of

the matrix B as given in [25]. By using Egs. (29)
and (30), one can transform Eqgs. (20) and (21) to
the following system of nonlinear equations with the
highest derivatives:

_a(EJ =0 z]<J+d9 (

(Zz G+ d‘“)

x (JZ::O lsz%‘ + df-cQ)) + (77%0) (Z lzqubj + df) y

j=0

X (i 2e; + de> - (%O)(zn: e+ dfl)Q—
3=0 3=0

=S [(1) (o + 1) (X 120, + )+

Jj=0

(5 st et -

J

[<1+R+e(21 <j+d“’))g+e(2191gj df1)2]+

) Bt ) o - )-

n

( )(leflqu—i—dfl) (Zz cj+d9)

P 5
B (1 )] =

This system is then solved with the use of Newton’s
iteration.

3

(31)

Il
=)

> +d§1)+

(32)

349



0.4

0.2

0.0

0.8

0.6

M.F. Dimian, A.M.

Megahed

$=0.8,1.0,1.2

a=0.2

n

0(n)

0 2 4 6 8
Fig. 1. Behavior of the velocity distribution for various
values of S

607)

1.0

0.8

0.6

0.4

0.2

$=0.8,1.0,

@=0.2, R=0.5, m=1

Pr=0.7,r=1, e=0.2
1.2

1.0

0.8

0.6

0.4

0.2

0.4

0.2

0.0

0.8

0.6

values of S

@=0.0,0.2,0.5

Fig. 2. Béhavior of the*

L L Il n T
temperature Qistribution 5

S$=0.8

4. Results and Discussion

The effect of the unsteadiness parameter S on the ve-
locity distribution is shown in Fig. 1. It is worth to
note that the velocity profile decreases with increase
in the value of unsteadiness parameter. The effect
of the unsteadiness parameter S on the temperature
can be seen from Fig. 2. The temperature decreases,
as S increases. This shows the important fact that
the rate of cooling is much faster for the higher val-
ues of unsteadiness parameter; whereas it may take
longer time of cooling for smaller values of unsteadi-
ness parameter. Figure 3 illustrates the effect of the
viscosity parameter « on the velocity profile. It can
be shown that the velocity decreases along the sur-
face with increase in the viscosity parameter. But the
temperature 6(n) increases with the viscosity param-
eter, as shown in Fig. 4. The effect of the thermal
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08]02|02|05|07|30]|1.0| 143163 | 1.26733
080202050750/ 10/ 143755 | 1.57237 (™
08]02|02|05|07]| 10| 1.0 | 1.42402 | 0.907794 4
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0.6 - m=5.0,3.0,1.0

conductivity parameter ¢ on the temperature profile [
0 is presented in Fig. 5. From this figure, it can [
be seen that the temperature distribution increases|
with the thermal conductivity parameter. Figureofzi —
represents the effect of the radiation parameter R on |
the dimensionless temperature. It is clear that thel

temperature increases with the radiation parameter.
So, it can be seen that the thermal boundary layer
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increases with the radiation parameter R. This re-
sult agrees with Elbashbeshy and Dimian [17] in
their special case (wedge angle is zero). The effect
of the Prandtl number on the temperature distri-
bution is demonstrated in Fig. 7. It can be observed
that the temperature profiles decrease for the increas-
ing values of Prandtl number. This is in agreement
with the physical fact that the thermal boundary
layer thickness decreases with increase of Pr. The in-
fluence of the space index r on temperature varia-
tions is shown in Fig. 8, which demonstrates that
the temperature raises to a higher value, as S de-
creases. This corresponds to the more strong inten-
sity of a heat flux specified at the surface. Likewise,
the temperature turns to a lower value, as m in-
creases, which is observed from Fig. 9. Table presents
the values of skin-friction coefficient and local Nus-
selt number for various values of the parameters gov-
erning the flow and the heat transfer. Based on this
table, we note that the skin friction coefficient and
the local Nusselt number increase with the unsteadi-
ness parameter, space index, time index, and Prandtl
number. Likewise, the local Nusselt number de-
creases with increase of the viscosity parameter, ther-
mal conductivity parameter, and radiation parame-
ter. Finally, the skin-friction coefficient is found to
be increased with the viscosity parameter, but the
reverse is true for the variable thermal conductivity
parameter.

5. Conclusions

Numerical solutions have been obtained to study the
effect of variable fluid properties on the flow and the
heat transfer in the laminar flow of an incompress-
ible fluid past an unsteady stretching surface in the
presence of thermal radiation. The obtained similar-
ity ordinary differential equations are solved numeri-
cally by using the Chebyshev spectral method. It is
found that

1. The skin friction coefficient increases with the
unsteadiness parameter, viscosity parameter, space
and time indices, and Prandtl number, but it de-
creases, as the thermal conductivity parameter and
the radiation parameter decrease.

2. The Nusselt number coefficient increases with
the unsteadiness parameter, Prandtl number, and
space and time indices, but it decreases, as the viscos-
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ity parameter, thermal conductivity parameter and
radiation parameter decrease.

3. The dimensionless velocity and the dimension-
less temperature decrease, as unsteadiness parameter
increases.

4. The dimensionless velocity and the dimension-
less temperature increase, as the radiation parameter
increases, but the effect on the velocity is very weak.
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BILJIUB 3MIHHUX BJIACTUBOCTEU PIAVHU
HA HECTAIIIOHAPHY TEIIVIOIIEPEIAYY
HAJI PO3TA>KHOIO ITOBEPXHEIO

B ITPUCYTHOCTI TEIIJIOBOT'O
BUITPOMIHIOBAHHS

Pezwowme

JocaimzKeHo BIUIMB BHIIPOMIHIOBaHHS Ha HECTAIlIOHAPHUN I10-
TIK HaJ] PO3TSIKHOIO ITOBEPXHEIO 3 MiHJIMBOIO B’SI3KIiCTIO i 3MiH-
HOIO TeNJIoNpoBiaHicTIO. Binmosigui BusHavasbHI piBHSHHS
OTPUMAaHO 3 BHUKODHCTAHHSM BiJIIIOBIJHUX II€PETBOPEHH i IO-
TimM Bupimeni crekrpanbHuM MeromoMm Uebmimena. Ha rpadi-
KaxX HaBEeJEHO Pe3yJIbTATU PO3PaxyHKiB 1podisis 6e3po3mipHol
MIBUJIKOCTI Ta 6E3PO3MipHOT TEMITEpATYPH I PISHUX 3HAYEHD
rmapamMeTpa BANPOMIHIOBAHHSI, B’sI3KOCTI, TEILJIOIPOBIAHOCTI, iH-
JIEKCiB IIpocTOpy-4acy, ducia [Ipanaris i mapaMerpa HecTalio-
HapHocTi. ITokazaHo, 1110 CKiH-TepTH 1 MBUIKICTH TeIIonepeaa-
9] 3MEHIIYIOThCS i3 3MeHIIeHHAM 4ncia llpanarias i napame-
Tpa HECTAI[IOHAPHOCTI IpU 3POCTaHHI mapaMeTpa BUIPOMIiHIO-
BaHHs. Be3po3mipHa TeMneparypa 3pocrae i3 361IbIIeHHIM Ta-
pameTrpa BUIIPOMiHIOBaHHSI 1 B’SI3KOCTi, ajile 3MEHIIYETHCSI TIPU
36ipIneHH] IHAEKCIB IpoCcTOpy-1dacy.

ISSN 0372-400X. Yxp. pis. orcypn. 2013. T. 58, N 4

M. D. Jumuan, A.M. Mezaxed

BJINAHUE IEPEMEHHBIX CBOMCTB »KUJIKOCTU
HA HECTAIIMOHAPHVYIO TEIIVIOIIEPEJIAYY

HAJI PACTSI2KNMOW [TOBEPXHOCTbBIO

B ITIPUCYTCTBHMU TEIIJIOBOI'O N3JIVUEHN A

PeszmowMme

Uccnenyercs BausiHve W3JIydYeHUs HA HECTAIMOHAPHBINA ITOTOK
Ha/l PACTAKUMOI IOBEPXHOCTBHIO C MEHSIONIENCs BA3KOCTHIO U
[IePEMEHHO TEIIONPOBOIHOCTHI0. COOTBETCTBYIONINE OIIpE/Ie-
JISIFOIIE€ YPABHEHUSI IOJIYYEeHBbl C HCIOJIB30BAHUEM ITOAXOs-
MUX TPeoOpa30BaHUl U 3aTEM PeIIeHbl CIEKTPAJIBHBIM Me-
TonoMm Yebwimea. Ha rpadukax mpencrabiieHbl pe3ybTaThbl
pacderoB mpodusieii Ge3pasMepHOl CKOpocTH W O6e3pasmep-
HOIl TeMIlepaTyphl /I PAa3HBIX 3HAYEHUI IIapaMeTpa U3JIyde-
HUSI, BSI3KOCTH, TEIJIOIPOBOIHOCTH, UHJIEKCOB IIPOCTPAHCTBA~
BpeMeHH, 4yncia [IpasjTisa u napaMerpa HeCTaIOHAPHO-
cru. [loka3zaHO, 4TO CKUH-TPEHHME W CKOPOCTHb TeIIonepea-
9M YMEHBIIAIOTCS C yMeHbleHueM 4ucia [Ipanarins u mapa-
MeTpa HECTAIMOHAPHOCTHA IPU POCTE MapamMeTpa W3JIydeHUsl.
Bespasmepnasi Temrieparypa pacTeT € yBeJMYEHUEM IapaMe-
Tpa U3JIy4YeHUs] U BA3KOCTH, HO YMEHBIIAETCS IIPHU yBeJTUIEHUHN
WHIEKCOB IIPOCTPAHCTBA-BPEMEHH.
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