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ON THE WORK FUNCTION
AND SCHOTTKY BARRIER HEIGHTS OF METAL
NANOFILMS IN A DIELECTRIC ENVIRONMENT

We suggest a method for self-consistent calculations of the characteristics of metal films in
a dielectric environment. Within a modified Kohn—Sham method and the stabilized jellium
model, the most interesting case of asymmetric metal-dielectric sandwiches is considered, for
which the dielectric media are different on the two sides of the film. We calculate the spectrum,
electron work function, and surface energy of polycrystalline and crystalline films of Na, Al,
and Pb placed into passive isolators. It is found that a dielectric environment generally leads
to a decrease of both the electron work function and the surface energy. It is revealed that the
change of the work function is determined only by the average of dielectric constants on both
sides of the film. We introduced the position of a conduction band in the dielectric as a parame-
ter in the self-consistency procedure. The calculations with the use of the image potential for an
aluminum film with ideal interfaces vacuum/Al(111)/5i0> and vacuwum/Al(111)/Al, Os and
the sandwich Si0;/Al(111)/Al O3 are performed. As a result, the effective potential profiles
and the Schottky barrier heights are calculated.
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1. Introduction

Thin metal films and flat islands on semiconductor
or dielectric substrates can be considered as two-
dimensional electron systems with properties, which
are of interest both from the fundamental point of
view and from the perspective of their application to
nanoscale electronic devices.

There are a limited number of experimental works
focused on quantum size effects in such systems (for
reviews, see [1-9]) due to difficulties in the fabrication
of samples, as well as because of the lack of suitable
experimental methods. One of the most important
characteristics of metal nanostructures is the electron
work function.

As a rule, the calculations of electron work func-
tions for films are performed for the idealized case
of films in vacuum. Similarly to clusters, the work
function defines an ionization potential. There are
different methods, which enable one to calculate the
electron structure of slabs (in vacuum) consisting
of a few monoatomic layers (ML). Let us combine
them into three groups according to the complexity
of computations: I — Sommerfeld electrons in the box
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model (analytical calculations, slabs and wires) [10-
15]; II — self-consistent calculations within various
versions of the jellium model (slabs and wires) [16—
20]; III — ab initio calculations (slabs) [21-24]. The
obtained results are illustrated in Fig. 1 for all these
three groups. An important ingredient of approaches
within group III is the monolayer number in the film
(see dots in Fig. 1). For groups I and II, L changes
continuously.

In group I, the Fermi energy (kinetic energy) er (L)
is reckoned from the flat bottom of the conduction
band, while the work function W (L) is reckoned from
the vacuum level. Therefore, their size dependences
are “asymmetric’. In addition to quantum oscilla-
tions, these quantities contain monotonic size con-
tributions, which, at small film thicknesses, together
show up through inequalities 0 < W(L) < Wy and
erp(L) > &g > 0, where Wy and &y correspond to a
three-dimensional (3D) metal (allowing for the energy
counting for £r).

In [25,26], the asymptotic behavior of the electron
chemical potential for spherical clusters of radius R
was determined. It yields

W(R) = Wy — %} < W, (1)
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where ¢; ~ 2.5eV X ag for simple metals, and ay =
= h?/(me?). It is expectable that such a monotonic
contribution must appear for films as well. However,
in contrast to the case of group I, the self-consistent
calculations of groups II and IIT (see Fig. 1) at
small film thicknesses point out to the suppression
of the monotonic dependence (with asymptotic (1))
by corrections of higher orders of smallness. For in-
stance, the compensation of terms —ci/L + c2/L?
occurs at L* = e¢y/c;, and L* is large, provided
cy >cp > 0.

The experimental results also do not allow one to
draw unambiguous conclusions on the character of the
monotonic component of W (L): in experiments [3], it
is absent (Yb films on Si substrate), while, according
to [2, 5], it coincides with the one of group I. Note
that the comparison of a measured work function for
the sandwich consisting of an Ag film on Fe(100) in
[2, 5] with calculated results for slabs in vacuum is
rather relative.

Let the film placed on a substrate be considered. In
order to determine the characteristics of contacts in
the easiest case, it is necessary to know the dielectric
constant € as well as the position of the conduction
band —x (x is the electron affinity) in a dielectric ma-
terial. The approximation y = 0 was widely used for
the work function, polarizability, and surface plasmon
resonance of jellium spheres and wires embedded in
different dielectric matrices (see [19,27-29] and refer-
ences therein).

The aim of this work is to compute the energy cha-
racteristics of metal films in dielectrics. A method
for self-consistent calculations of the equilibrium pro-
files of the electron concentration, effective poten-
tial, energy spectrum, and integral characteristics of
metal films in dielectrics and dielectric substrates
is suggested. The developed method is based on
the stabilized jellium model [30] and the local den-
sity approximation for an exchange-correlation po-
tential [31], which were used by us [32] to analyze
the characteristics of a semi-infinite metal with di-
electric coating. For our problem, in the spirit of
Serena et al. [33], we introduce a nonlocal poten-
tial matched at the image-plane positions to the lo-
cal exchange-correlation potential. We also intro-
duce the position of a conduction band in the di-
electric as a parameter in the self-consistency proce-
dure and perform calculations of the effective poten-
tial profiles and the Schottky barrier heights for the
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Fig. 1. Illustration of the computation results for groups I, 11,
and III (data for group I are deduced from [12])

Fig. 2. Scheme of a film in the dielectric environment

vacuum/Al(111)/SiO2 and vacuum/Al(111)/Al,03
and the sandwich SiO»/Al(111)/Al;03.

This paper is organized as follows. In Section II,
we formulate our model. In Section III, we present
our main results and provide a discussion of them.
The conclusions are drawn in Section IV.

2. Model

Let us consider a metallic film of thickness L at zero
temperature. We direct the z-axis perpendicularly to
the film surface (Fig. 2, £ > L).

The main identities for a film can be obtained
within the model of a rectangular well for conduction
electrons. To perform a preliminary analysis, we sup-
pose that the bottom of the potential well is flat, and
we reckon energies starting from its value. The final
expression for the kinetic energies of conduction elec-
trons depends only on energy differences; therefore,
the counting of energies in such a way is allowable.

We study a film of thickness L comparable in mag-
nitude to the Fermi wavelength Ap = 27/ kp of an
electron in a 3D metal. The longitudinal sizes of the
sample are assumed to be considerably larger than
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ik

Fig. 3. Scheme for the occupation of electronic states in the
k space

the film thickness (L <« L, L,), which leads to the
pronounced quantization of the transverse component
of the electron momentum. The three-dimensional
Schrédinger equation for a quantum box can be sep-
arated into one-dimensional equations.

The eigenenergies are given by

k2

ik = €i + %, kﬁ
where ¢; is the eigenvalue of the i-th perpendicular
state 1;(z) (hereafter, the Hartree atomic units are
used: # = m = e = 1). The eigenvalue ¢; is the
bottom of the i-th subband. For finite and periodic
systems in the z-direction, the Dirichlet and periodic
boundary conditions are used, respectively. There-
fore, possible allowed electron states k., ky, k. form a
system of parallel planes in the k-space, k, = k;.

The occupation of electron states starts from the
point {0,0, %} and follows an increase of the radius-
vector. As a result, it turns out that all occupied
states are contained within the area of the k-space
confined between the plane k£, = k; and a semi-sphere
of the radius kr = /2¢r(see Fig. 3).

The number of states dZ in each of the circles
formed by the intersection of the Fermi semisphere
with the planes k., = k; of the area S = L, L,,, within
the interval of wave vectors (kj, k) + dk)) and tak-
ing both possible spin projections into account, is
dZ(ky) = = 25d(71’k?ﬁ)/(2ﬂ')2. The maximum value
of k| in each circle numbered by ¢ is equal to the cir-
cle radius kg = (k& — k?)'/2. In order to find the
number of occupied states, which coincides with the
number of valence electrons N in the film, one should
integrate dZ over k|| in each circle, and then sum up
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12 4 32
=k, +ky, (2)

the contributions of all circles:
P ir
; 0/ dhky by = o~ (Zpk% —~ ; kf) BENG))
With regard for the electron kinetic energy %(kﬁ +

+ k?), the total kinetic energy of the electron subsys-
tem equals

. kF(i)
S &
L=5-3 / dkyy (K +K7) =
i=1 0
S <&, (R
=1 > ki ( (4)
i=1

where ir is the number of the last occupied or par-
tially occupied subband.

In the frame of the density-functional theory and
the stabilized jellium model (SJ), the total energy of
a metal sample is represented by the functional of the
inhomogeneous electron concentration n(r):

Esz[n(r)] = Ts + Exc + En + Eps + By, (5)

where Ty is the (non-interacting) electron kinetic en-
ergy, Fy. is the exchange-correlation energy, Ey is the
Hartree (electrostatic) energy, Eps is the pseudopo-
tential (Ashcroft) correction, and Ey; is the Madelung
energy. The sum of first three terms in expression (5)
corresponds to the “ordinary” jellium energy Ej. The
average energy per valence electron in the bulk of
a metal is g3, 5 = Esy,3[A]/N, where N is the total
number of free electrons with concentration 7 defined
by the valence and the atomic density.

The positive (ionic) charge distribution can be
modeled by the step function

= nf(L/2 - |2)). (6)

Solving the Kohn—Sham equations

p(z)

SV ) el (i () = s (), (D)
= 0(2) + o) + 00Dy, O(L/2— |2) (8)

together with the Poisson equation

Vetr[2,1(2)]

4
[0) [n(z) = p(2)]; (9)
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with the step function

1, 2<—=L/2,|2|<L/2,z>L]2,
e; —L/2<z<—-LJ2,

e; L/2<2z<L]2,

f(z) = (10)

we obtain the single-electron wave function and the
eigenvalue ¢; self-consistently.

It is generally believed that the more “physical” the
potential, the better the result of computations for
the location of the Fermi energy (as the eigenvalue of
the highest occupied state). One of the limitations of
the method of effective potentials in LDA is its fail-
ure in reproducing a correct behavior of image poten-
tials outside metal surfaces (see [34,35] and references
therein). Therefore, we introduce the nonlocal po-
tential v)F(z) matched at the image-plane positions
to the local exchange-correlation potential viP (z) =
= d[n(2)exc(2)]/dn(z) in the spirit of work [33]:

vre'(2), 2 < Z,
Uxe(2) = CVEP(2), Z'<2< 77,

’l))lch7r(z), z Z Zr)

(11)

where Z! = —L/2—2}, Z* = L/2+ 2}, and the image-
plane positions (z;" > 0) are reckoned from the left
and right sides of film surfaces,

1

NL,l 1
N 12
UXC X + 461(2 _ Zl) ? ( )
2=2Z"| ,~(z=2") /A
NL,r r 1- |:1 + A ] © ( )/ (13)
v r — —
xe X de (z — Z7)

For instance, far from the surface, (13) has a correct
asymptotic behavior {—x" — [4e,(z— Z7)] 71}, which is
an image potential. From the condition of the match-
ing of potential (11), as well as its first derivatives in
the image planes from left and right sides, we obtain
simple relations:

N 3
BT T 166, [oLD (Z07) + (]

‘dU,IZP(Z)/dZL:Zm 16
= —€].r-
PEP(Z) + XM~ 9

(14)

(15)

The relation in (15) is treated as an equation for zj".
The values of z5" at the left and right sides out of
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the film are calculated self-consistently by solving the
Kohn—Sham equations at each iteration. In this way,
the effective potential is matched self-consistently to
its image-potential-like form at large distances. The
result of work [33] for the semiinfinite metal is repro-
duced for e =1 and x = 0.

The term (dv)gace in (8), which makes it possible to
distinguish different crystal faces, represents the dif-
ference between the potential of the ionic lattice and
the electrostatic potential of the positively charged
background averaged over the Wigner—Seitz cell:

€ n
(B0)tace = (B0)ws — (5 + ),

where d is the distance between the atomic planes
parallel to the surface. The term (dv)ws describes
a polycrystalline sample [30]. In Eq. (10), ¢ and €,
are dielectric constants of isolators from the left and
right side of the film, respectively.

The electron density profile n(z) is expressed in
terms of the wave functions ¢;(z) as

1 & [i(2)]”
=D ko=
2 ; ()fjoo dz|¢,(z’)|2

The values of ir and ef are determined by solving the
equation

n(z) (16)

wF
ﬂ'L’ﬁ-{-Zé‘i—iFEF =0; ¢ <ep; 1=1,2,...,ip, (17)
i=1

which follows from the normalization condition (3)
and definition of the Fermi energy. In this equation,
the integration over k) is already performed, and,
therefore, the summation is made only over the sub-
band number.

In nanofilms, the spatial oscillation of the electronic
density is significant throughout the sample. There-
fore, the energies are reckoned from the vacuum level,
which is the energy of the electron in rest in the area
|z| > L£/2. For bound states, the energies are nega-
tive, including er.

We use the iterative procedure (see Appendix A)
allowing us to solve self-consistently the system of
equations (7), (9), (16) and to find the optimal pro-
files n(z), ¢(z), as well as the spectrum of one-
particle energies. As a result, the metal/vacuum and
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Fig. 4. Results of self-consistent calculations of the profiles of
the electron density n(z)/7, the one-electron effective poten-

tial veg(2), and the electrostatic potential ¢(z) for sandwiches:
{1]A1]1}, {1|Al|5} and {3|Al|3} with L = 2)p

metal /dielectric work functions are defined in the
form

W = —€F,
Wyt = —er(en X" — X" (19)

There are two situations, when |ep| > x'" and < x!'*.
The value Wy is the Schottky barrier height.

3. Results and Discussion

We perform calculations for both polycrystalline and
crystalline films made of Na, Al, and Pb with the
electron concentration 7 = 3/4wr? with the corre-
sponding electron parameter ry = 3.99, 2.07, and 2.30
ao- The minimal thickness of “crystalline” sandwiches
should be not less than 2d, and d is comparable to
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Ar/2 (Ap = 13.06, 6.78, and 7.53 ap for Na, Al, and
Pb, respectively).

Let us firstly perform calculations: (i) with regard
for formulas (11)-(15), in which it is formally as-
sumed that xy = 0 and v, = v2P; (ii) using (11)—(15)
and y # 0.

(i) For a symmetric sandwich, the effect of a dielec-
tric coating on the surfaces is reduced to the “elon-
gation” of the electron distribution tail and the effec-
tive potential beyond the surface of a metal (polycrys-
talline films {1|Al|1} and {3|Al|3} on Fig. 4). The cal-
culations were performed for € = 1, ..., 12. Inside the
film, one can see the Friedel oscillations of the elec-
tron density with peaks near the geometrical bound-
aries. The period of oscillations is close to %XF and
only weakly depends on the presence of dielectric
coatings. The situation is similar for Na and Pb films.

At the boundaries between the metal film and the
coatings, there are jumps in the derivative of the elec-
trostatic potential ¢'(z), which disappear, provided
the dielectric constants of the coatings are equal to
1. These jumps are due to the boundary conditions
(A2) at z = £L/2. The jumps are also reflected on
the veg (2) profile, since ¢(z) is one of its components.
In addition, at the borders, there are another jumps
of not only the derivative v/ (2), but also of ver(2)
profile itself for any values of €, including e = 1. Such
jumps have another origin compared to the first ones.
This fact is linked to some features of the model [30],
namely to the presence of the effective potential com-
ponent (dv)g, . 0(L/2—|z|). These nonphysical jumps
should not be taken into account in the estimation of
the effective force

Fe(2) = —Vouer(2).

It is seen from Fig. 4 that the force orientations are
opposite at both sides of the film, so that the film
on the whole must be stressed. The existence of the
force should lead to an increase of the spacings be-
tween some lattice planes d, while the spacings be-
tween other planes must become narrower.

The depth of the potential well, in which the elec-
trons are located in a metal film, decreases “on the av-
erage” with increasing € and, as a result, the electron
work function W = —8F(617r,xl7r = 0) also decreases
(see Fig. 5).

The film {1]|Al;|1} spectra are presented in Fig. 5.
For comparison, in the same figure, we also show the
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results obtained within the electrons-in-a-box model
with the well depth Uy = —(Wy + &r) < 0.

It is seen from Fig. 5 that the dependence of the
eigenstate energies on the film thickness, within the
SJ model, is oscillating and decreasing. For subbands
with large numbers ¢ = 10, 11, there are gaps due to
the algorithm instability in a vicinity of the vacuum
level. Within the rectangular-box model, this depen-
dence is only decreasing. Due to smoother edges of
the self-consistent well, it contains more subbands
compared to the model of a rectangular box. Dif-
ference in subbands numbers significantly affects the
calculated dielectric function and the optical conduc-
tivity of a nanofilm [14].

Within the rectangular-box model, in contrast to
the SJ model, er(L) is always located above one for
a 3D metal. The amplitudes of oscillations decrease
as L increases. Within both models, the maximum
Fermi energies (minimum work functions (18)) corre-
spond to the points, at which the curves of eigenener-
gies intersect Fermi energies. Within the SJ model, in
contrast to the rectangular-box model, the minimum
Fermi energies correspond to the points, at which the
Fermi energy is located between two nearest eigenen-
ergies (magic film thicknesses similar to magic num-
bers in clusters).

The asymmetric sandwiches {e|Mele;} and
{1|Mele}, which are in contact with air or vacuum,
are of particular interest from the viewpoint of
experimental investigations due to the perspective
of their use in technological applications (see, for
example, [5]).

Let us consider both the electron density and po-
tential profiles for the polycrystalline film {1|Al|5}.
The presence of a dielectric at the right side of the
film leads to the asymmetry of the electron distribu-
tion (see the insets in Fig. 4), so that there appears
a hump in both the electrostatic and effective po-
tentials at the left side above the vacuum level. This
should result, for example, in the anisotropy of a field
emission along the z-axis. It is worth noting that the
bottoms of wells for sandwiches {1|Al|5} and {3|Al|3}
are essentially the same, some difference appears only
in the “tails” of potential profiles.

It is of interest to compare the heights of humps
at L = 10,12,13.5 and 20, 22, 23.5 ag. These thick-
nesses correspond to the minimum and maximum of
the dependence W (L) for {1|Al|5}. It turns out that,
with the increase of L, the hump height weakly oscil-
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Fig. 5. Results of calculations for the energy spectrum (sub-
bands) and the Fermi energy ep(L) of the film {1|Al|1} by the
self-consistent method (solid lines) and in the rectangular-box
model (dashed lines)

lates and decays similarly to the work function, but
the maxima of the hump height correspond to the
minima of W (L). For the values of L, as given above,
these heights are 0.176, 0.148, 0.170 and 0.158, 0.139,
0.156 eV, respectively.

In order to analyze such a behavior of the poten-
tial profiles, it is necessary to go beyond the isotropic
model based on a defined (6) distribution of the ho-
mogeneous positively charged background, i.e. one
has to consider not only the reaction of the electron
subsystem, but also the reaction of the ion subsystem
to the presence of a dielectric. The spacings between
the lattice planes are determined by the balance of
forces from the right and left sides for each plane. A
simplest realization of this idea is to disregard vari-
ations of spacings between the lattice planes and to
vary the profile of the ion jellium distribution (6). We
found that such a procedure leads to a significant de-
formation of the well bottom, but does not result in
considerable changes of both the spectrum and the
hump height.

Figure 6 shows the results of our calculations of
the electron work function for crystalline sandwiches
using expression (18). Horizontal lines correspond to
semiinfinite samples. In contrast to the surface en-
ergy, the size dependences W (L) have deep and pro-
nounced minima. It is easier to analyze them us-
ing a simple model [12]. The amplitudes of largest
work function “oscillations” are smaller than 0.5 eV.
By considering the dependences for different metals,
it is easy to see that all the differences are due to
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Fig. 6. Work function for crystalline sandwiches {¢|Me|e;}
and a semiinfinite metal covered by a dielectric {Meqs |€} (Me =
= Na, Al, Pb), x =0

Table 1. The examples of a simple coating
and substrates [37, 38]

Material | He Ne | Ar | Kr | Xe |SiOs | AloO3 | Si
€ 1.10 | 1.20 [ 1.50 | 1.65 | 1.90 4 9 13
X, eV —1.0{0.10|0.20 | 0.45 [ 0.68 | 1.1 1.35 |4.05

values of rs. For Al, which has the smallest r,, work
function oscillations are maximum, while the period
is minimum. Positions of both maxima and minima
depend weakly on € of a dielectric and slightly shift
toward smaller L with increase in €.
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The unexpectable result of self-consistent calcula-
tions is the coincidence of the dependences W (L) for
sandwiches {1|Me|12} and {6.5|Me|6.5}. The com-
putations for {1|Me|5} and {3|Me|3} give a similar
result. This means that the electron work function
for asymmetric sandwiches {¢|Mele, } coincides with
high accuracy with the work function for symmet-
ric sandwiches {()|Me|(e)} with the averaged value
() = (e + ).

The work function has both the bulk and sur-
face contributions. Because the bulk metal contribu-
tions W (L) for sandwiches {1|Mer |12} (like to vac-
uum,/metal/Si) and {6.5|Me|6.5} are the same by
definition. The same are the contributions of dipole
surface barriers. We here imply the total contribution
of both sides of a sandwich, since the work function is
an “isotropic” characteristic [36]. The coincidence of
the work functions is most likely a geometric effect.
This feature will be addressed elsewhere.

The results obtained by using the developed itera-
tion procedure enable us to draw a conclusion about
its efficiency. Moreover, one can follow the behavior
of electron spatial profiles and potentials, as well as
calculate a spectrum. The results for y = 0 and in
LDA provide reference data for simplified treatments.

(ii) Let us apply this approach (x # 0) to study
the energetics of three samples with “ideal” interfaces:
the film Al(111) on SiO5 and on Al,Os, as well as
the sandwich SiO,/Al/Al,O3. For such a structure,
we use the values of Y from Table 1. x' = 0 and
e = 1 for the vacuum/metal interface. For illustra-
tive purposes, we present the results of self-consistent
calculations of potential profiles in Fig. 7.

It turns out that all approaches give the same po-
tential well depth and its profile near the bottom.
The dependences vy.(z) at the left side of the film
(in vacuum) are essentially the same according to ap-
proaches (i) and (ii). For the right side of the plane,
they differ due to the presence of the conduction band
(x # 0) in the dielectric.

It should be noted that the use of the nonlocal
exchange-correlation potential in the iterative proce-
dure leads to the essential disappearance of the po-
tential hump in the effective potential (but not in the
electrostatic one), which appears at the left side of
the film, see Fig. 4.

In Table 2, we present our data, which correspond
to scheme (ii) only. In both approaches (i) and (ii),
er and surface energies differ from each other by less
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than 1 percent, while the values of matching param-
eters can be rather different: for instance, z; = 5.95
and A' = 0.998 for ML = 1 the film Al(111) on SiO, of
the method (i). As a result, we conclude that our ma-
nipulations with the exchange-correlation potential
did not lead to any noticeable changes of the Fermi
level position, i.e. ep((€), x** = 0) = ep({€), x'* # 0).

We also performed computations for infinite-size
systems (L = co): W] = 2.00 and 1.48 eV for Al/SiO,
and Al/Al,Os, respectively. However, in these cal-
culations, it is not taken into account that the vac-
uum/metal interface exists at the left side of the sam-
ples. Therefore, the comparison with the data of Ta-
ble 2 is not possible, since the results do depend on
the average dielectric constant of two media (e}, and
not only on €.

Our results point out that it is possible to con-
trol the Schottky barrier by tuning the metal film
thickness (in the metal-insulator-semiconductor de-

Table 2. Calculated values for a film

Al(111) of thickness L (in monolayers) on SiO2
(upper numbers), Al2O3 (middle numbers),

and the sandwich SiO2/A1/Al203 (lower numbers)

L 2y | 2 Al x| who| owe v
[ML] | [ao] | [a0] | [ao] | [ao] | [eV] | [eV] | [J/m?]
1 | 1.05 | 3.35 | 0.977 | 0.706 | 3.43 | 2.33 | 0.82
1.00 | 4.25 | 0.962 | 0.518 | 3.01 | 1.66 | 0.76
3.30 | 4.15 | 0.707 | 0.519 | 1.79 | 1.54 | 0.61
2 | 095|285 | 0.946 | 0.643 | 3.26 | 2.16 | 0.76
0.95 | 3.60 | 0.945 | 0.474 | 2.84 | 1.49 | 0.70
2.85 | 3.60 | 0.640 | 0.479 | 1.62 | 1.37 | 0.55
3 | 085|260 | 0921 | 0.606 | 2.94 | 1.84 [ 0.73
0.85 | 3.50 | 0.919 | 0.476 | 2.63 | 1.28 | 0.70
2.95 | 3.80 | 0.672 | 0.512 | 1.56 | 1.31 | 0.56
4 10.90 | 3.05 | 0.933 | 0.683 | 3.23 | 2.13 | 0.78
0.95 | 4.05 | 0.948 | 0.531 | 2.86 | 1.51 | 0.74
3.10 | 4.05 | 0.688 | 0.535 | 1.69 | 1.44 | 0.58
5 090 | 295 | 0932 | 0.661 | 3.23 | 2.13 | 0.76
0.95 | 3.85 | 0.948 | 0.507 | 2.84 | 1.49 | 0.72
3.00 | 3.85 | 0.671 | 0.512 | 1.65 | 1.40 | 0.56
6 | 0.90 | 2.85 | 0.934 | 0.651 | 3.13 | 2.03 [ 0.75
0.90 | 3.65 | 0.933 | 0.489 | 2.73 | 1.38 | 0.71
2.85 | 3.65 | 0.645 | 0.491 | 1.54 | 1.29 | 0.55
7 1090 | 2.95 | 0.934 | 0.669 | 3.17 | 2.07 | 0.77
0.90 | 3.90 | 0.933 | 0.520 | 2.80 | 1.45 | 0.73
3.05 | 3.95 | 0.684 | 0.527 | 1.65 | 1.40 | 0.57
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Fig. 7. Self-consistent profiles of the electrostatic, ex-

change-correlation and effective potentials for the sandwiches
vacuum/Al(111)/Al>03 and SiO2/Al(111)/Al>03. The film
thickness L = 3 ML. IML = 4.4 ag

vices, the thickness of a gate insulating film is a tool
to control the current in the channel [39]). For the
evaluation of the Fowler-Nordheim tunneling current
[40], it is necessary to know a spatial profile of the
effective potential, which should be added to the ex-
ternal electrostatic potential @ext(z), starting from
points at z = Zbr.

Let us compare our results with experimental
data. The calculated work function for the inter-
face Al(111) /vacuum is 4.12 eV; the experimental one
€ (3.11,4.26) eV [41]; and 4.28 €V for polycrystalline
Al [42]. The recommended x = 3.03 and 3.3 eV in
[43], corresponding for SiOy and Al,Og, differ from
data in Table 1. The measured Schottky barrier
height [43] for Au/Al,O3 equals 3.5 & 0.1 eV. Note
that experimental values of work function for Au and
Al in Ref. [41] are close to each other, while they
differ by almost 1 eV, according to Ref. [42].
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On the other hand, the measured Schottky barrier
heights in Ref. [44] for Al, Ag, and Cu, placed on a
thick (35 nm in thickness) film of AlO3, equal 1.66,
1.72, and 1.80 eV, respectively. It is in accordance
with 1.5 eV for Al/Al,O3 [38] and the results from Ta-
ble2. As we see, experimental data are rather diverse.

An important question is about the conditions, un-
der which our approach becomes questionable. When
ler| < < X', our model does not work. In accordance
with Fig. 5 and Table 1, values W4 € (0.4,0.75) eV
for Al/Si, Pb/Si [38] and Wy € (0.49,0.6) eV for thick
films of Ti (L € (50,90) nm) on the Si-substrate [45]
should correspond to the regime |ey| < x'F. The
efficient approach in this case is the local density for-
malism pseudopotential method [46-49]. In our ap-
proach, it is also not possible to consider the role of
virtual gap states and defects in metal-dielectric con-
tacts [50]. Nevertheless, we expect that our method
provides a correct estimate for the size dependence of
characteristics of films in contact with dielectrics, for
which € and x are not large.

We use the simplest model, in which the dielectric
constant is approximated by the step function. This
approximation grasps main physical properties of the
system. However, the dielectric constant should be a
function of the coordinate, €(z). In order to make the
model more realistic, one can replace the step fun-
ction by the smooth distribution €(z) with variatio-
nal parameters. As a result, the obtained dependen-
ces on € should be weaker. From our experience, we
expect that such a modification should lead to the
weaker effect.

The effect of the temperature was studied earlier
in Ref. [26], when determining the ionization poten-
tial of a metallic cluster. It turns out that the effect
is not significant at room temperature, as it can be
expected. For the film-dielectric contact, of impor-
tance is the ratio of —x* and the Fermi energy. If
these quantities are comparable, the result should be
sensitive to the temperature of the system.

4. Summary and Conclusions

We have proposed a method for self-consistent cal-
culations of the spectra, electron work function, and
surface energy of metal films placed into passive di-
electrics. As typical examples, we considered Na, Al,
and Pb films.
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The effective force acting on the film from out-
side is due to the inhomogeneous electron distribu-
tion. This force should lead to the film stressing in a
transverse direction. The effect of the stressing gen-
erally becomes more significant with increase in the
film thickness.

In contrast to the surface energy, the size depen-
dences of the work function have deep and strongly
pronounced minima. The smaller r,, the more dif-
ficult the problem of numerical analysis of the size
dependences in vicinities of these minima.

With increase in the film thickness up to a few
Ar, size variations of both the work function and the
surface energy occur near their average values (for
symmetric sandwiches, these values correspond to 3D
metals and do not contain significant monotonous size
contributions). A dielectric environment generally
leads to a decrease of the electron work function and
the surface energy.

We also considered asymmetric metal-dielectric
sandwiches with different dielectrics at both sides of
the film. One of the examples of such systems is a film
on a dielectric substrate. We found that the presence
of a dielectric from one side of the film leads to such a
“deformation” of the electron distribution that there
appears a “hump” above the vacuum level both in the
electrostatic and effective potentials. The potential
profile asymmetry should lead to an anisotropy of the
field emission. In addition to the size dependences,
the shift of the work function is generally determined
by the average dielectric constants of environments.

We introduced the position of the conduction band
in a dielectric as a parameter in the self-consistency
procedure and performed calculations for the alu-
minum film on SiO, and Al;Ogs, using a nonlocal
exchange-correlation potential. As a result, the pro-
files of electron concentration, the effective potential,
and the energy spectrum are calculated.

Finally, let us formulate some methodological con-
clusions:

(i) The introduction of a nonlocal potential, as well
as the position of the conduction band in a dielec-
tric material does not lead to significant changes of
the Fermi level of a metal film contacting with a
dielectric.

(ii) Accounting for the conduction band in a di-
electric and self-consistency condition for the poten-
tial well shape, one changes the spectrum (subbands
number), as well as the density of states. Therefore,
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the matrix elements of optical transitions are also
changed, which leads to a modification of the optical
absorption coefficient [14]. The equilibrium profile of
electrons and the electrostatic potential are involved
in the calculation of the field emission of electrons,
as well as annihilation characteristics of positrons in
nanostructures.

We thank V.V. Pogosov and P.V. Vakula for read-
ing the manuscript.

APPENDIX A
Self-consistent procedure

The initial approximation n(z) is chosen for solving the Kohn—
Sham equations in the form of a one-parametric trial function
n(0(z) = a®(z), where

_%e(z—L/Q)//\ + %6(2+L/2)/>\7 2 < —L/2,
d(z)={1— %e(sz/m/A _ %ef(erL/Z)/%, |2| < L/2,
_%ef(erL/Z)/A + %ef(szﬂ)/A7 z>L/2,

A is a variational parameter, which is found through the min-
imization of the surface energy. The solution by a direct vari-
ational method is an independent problem, which is not ad-
dressed in this paper (for simple metals, A is closed to 1lag).
As a result of the integration of Eq. (9) within the initial ap-
proximation, we obtain ¢(©)(z) = —4wAA2®(z).

Each wave function ¢(z) is constructed as

Y(z) = {wlef‘c(z), z < 2o,

wright(z)r z > 20,

under the condition of continuity of the functions e (20) =
= Yright(20), as well as of their derivatives . (20) =
= ;ight(zo). zp is an arbitrary point in the interval z €
€ [~L/2;+L/2], while tiest(2) and righs(2) are functions,
which are found by the numerical solution of Eq. (7) by
the Numerov‘s method from z = z_ to z = 29 and from
z = z4+ to z = zo, respectively. It is sufficient to take val-
ues zx = F(L + 20) ag. At these points, the potential profile
Vesr(2) is cut off. The boundary conditions (7) here are deter-
mined by the behavior of the wave function ¢ under the barrier
from the left (ez\/m) and right (efzm) sides from the slab
(Jz| > |z5|), respectively. Boundary conditions provide the
wave function, as well as its derivative, at z = zx. This pe-
culiarity of our computations is due to the fact that the errors
of the numerical method for the wave function rign¢(2) and
Y1es(2) near the right and left boundaries of the interval grow,
since the round-off errors also increase and lead to the instabil-
ity of the algorithm under the motion toward the exponential
damping.

In order to solve the system of equations (7), (9), and (16)
self-consistently with a relatively small number of iteration
steps, the Poisson equation (9) should be modified, in par-
ticular, by introducing a perturbation [51].
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Equation (9) is solved by the Lagrange method in the form

. o (i 4 . o (i
¢ g2pl-b = e [n(]) _ p] 2l (A1)
with the boundary conditions
oo (-5) =) (- 3), oz =0,
Y N Ny
aotr (-%) =02 (=%), oGk (Fo0) =0, (A2)

o (5) = 9% (8). o2 (£) = xel'(5).

The term g?¢ was introduced as a small perturbation; ¢out(2)
and ¢in(z) are the potentials outside and inside the film, re-
spectively. In Eq. (Al), at each step of the iteration j =
= 1, 2, 3, ..., the electrostatic potential profile depends not
only on the electronic concentration profile, but also on its
own profile at the previous iteration. It is convenient to take
q equal to the electron wave number at the Fermi sphere
kp = (3720)1/3 of a homogeneous electron liquid.

In view of the multimolecular thicknesses of dielectric coat-
ings on the metal film surfaces and the rapid fall of the electron
distribution outside a film (approximately at a distance of 10—
15 ap), we formally neglected the effect of the thickness of the
coatings, whose minimum thicknesses must be much greater
than that of a monatomic (molecular) layer of a dielectric. The
solution of Eq. (A1) for £ — oo has the simple form

z gl
(f o f1d2’+A1> el +

z Z’
+ < f e;q frdz’ +B1> e~ < —LJ2,

( T f2d2’+A2> el 4
—L/2

¢ (2) = (A3)

z Z,
+ ( [ fzdz'+Bz> 70, |2 < L/2,
—L/2

g4z
(*f — f3d3'+143) e?* +

+(
where f,(2') = —4x[n(z') — p(z")]Dm — ¢*¢U~V(2’) and
Dy, = 61—17 1, el for m = 1,2, 3, respectively. The choice
of values By = 0 and Az = 0 immediately follows from the
condition of finiteness of the potentials far away from the film.

z>1LJ/2,

n\_‘g

z!
g ),

The values of coefficients A and B are found from the solu-
tion of the system of equations (A2):

L2 L2
2A 1-— q\z -9z
A = 222 a / ¢ frde' — / S hde,
1+61 I—I—El 2(] 2(]

— 00 — 00
L/2 ,
2B> 1 / el ,
B3z = — — fad2'+
8 1+ e 1+ e q Jadz
—L/2
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e—a(z'-L)

1— €

‘](i) = Y() |:Y1261(1 F er)

+

+

oo (=] ’
/ dz’ /equd’
z — _— Z .
2 f3 2 2

L/2 L/2

1+ €

Let us introduce the notation
—L/2
dz'eqz’f1+
—o0
L/2
Ya(l £ e)(1 + ) dz'e™ %% o +
—L/2
L/2
Ya(lte)(l —e) d'e??' fy +
—L/2

)
+Y426r(1:|:€1) / lee_qZ’f3:|,

L/2
where Yo = {2¢[(1 — €])(1 — ex)e™ 2L — (1 4 €)(1 + er)e?L]} 1.
Then AQ = J(+) for Y1,3 = 1, Y2’4 = eqL and B2 = J(_) for
Yau=1,7%1 =etl =Vt

In the case of the symmetric sandwich €; = €, the accuracy

of calculations is verified by the examination of the stationarity
conditions n/(z) = 0 and qﬁi(li])’(z) = 0 at the center of the slab
(z=0).
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ITPO POBOTY BUXO/AY I BUCOTY
BAP’E€PA IMTOTTKI METAJIEBIIX HAHOIIJIIBOK
B JIEJIEKTPUYHOMY KOH®AVMTHMEHTI

Peswowme

3amponoHOBAHO METOJ CAMOY3TOIKEHIX OOYHCIIEHb XapaKTe-
PHUCTHK MeTaJieBOl ILUIIBKM B Ji€JIeKTPUKAX. Y MeXKax MOJIH-
dikosanoro merogy Koma-Illema i momeni crabinpHOro »xe-
Jie PO3IVISHYTO HAWIIKABIIINI BHMAJIOK ACHMETPHUIHIX METaJl-
JeJIeKTPUYHUX CAHJABIYIB, JJIsi SKUX J(ieJIeKTPUKU Pi3HI 110
o6uaBi cTopoHH MmiiBKh. J[jig mosti- i MOHOKPHUCTAIIIHUX ILTi-
Bok Na, Al i Pb, nmomimenux y macusHi i3omsTopu, ob4aucie-
HO CIIEKTD, pOOOTY BHXOJY €JIEKTPOHIB i IOBEPXHEBY €HEpTilo.
JliesleKTpUYHEe OTOYEHHS B IIIOMY HOPUBOJUATH 0 3MEHIIEH-
He K pOOOTH BHXOAY €JIEKTPOHIB, Tak i mosepxHeBoi eHeprii.
Bussieno, mo 3miHa pob0TH BUXOLY BHU3HAYAETHCS CEPETHBO-
apudMETHIHAM 3HAUEHHAM Ji€JIEKTPHIHUX KOHCTAHT IO O0H-
BI CTOPOHH IJIiBKH. Y CaMOY3TOKeHiil mponenypi K mapa-
MeTp OyJIO BBeJEeHO ITOJIOKEHHSI 30HH IIPOBIJHOCTI JieeKTpu-
Ka. 3 ypaxyBaHHSM CHJI 300paskeHHsI OyJI0 BUKOHAHO OO4ncIe-
HHS /I HAHOIUIIBOK aJIIOMIiHIIO 3 imeanbHuME iHTepdeiicamu
Bakyym/Al(111) /SiO», Bakyym/Al(111) /Al»O3 i camgsiua
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SiO2/Al(111)/Al2O3. B pesyabrari 6ys10 po3paxoBaHo mpodi-
i edexruBHEX morenniasis i Bucoru Gap’epis IllorTku.

A.B. Babuu

O PABOTE BBIXOJIA I BEICOTE BAPLEPA
IMIOTTKU METAJIJINMYECKNX HAHOIIJIEHOK
B JIUSJIEKTPUYECKOM KOH®ANTHMEHTE

Pesmowme

IIpemyioxken MeTo[ CAMOCOIVIACOBAHHBIX BBIYHCIEHUN XapaKTe-
PUCTHK METAJUIMYECKON IJIEHKH B JMAJIEKTPHKAX. B pamkax
moguduiupoBanHoro Meroga Kona—Illsma u mogesnu crabusib-
HOTO 2KeJIleé PACcCMOTDEeH Haubosiee MHTEDPECHBIH Ciydail acuM-
METPHUIHBIX METAJIJI-AUJIEKTPHIECKUX CAHIBUYEH, sl KOTO-
PBIX QUJIEKTPUKHU PA3HbIE IO 00e CTOPOHBI mIeHKH. JIj1s1 mosu-
¥ MOHOKpPHUCTAJIMYeCKuX IieHOK Na, Al u Pb, momenieHHBIX
B IACCHBHBIE H30JISITOPHI, BLIMUCIIEHBI CIEKTDP, PabOTa BBIXO-
J1a JIEKTPOHOB W IOBEPXHOCTHAs Heprus. Jlmdjexrpuueckoe
OKPYJKEeHHe B I[€JIOM [PUBOAUT K YMEHBIIEHHIO KAaK PabOTHI
BBIXO/a 3JIEKTPOHOB, TaK ¥ IIOBEPXHOCTHOW 3Hepruu. Bbias-
JIEHO, ITO W3MEHEHHe PAOOTHI BBIXOAA OIIPEIEJISIETCS CpPEeIHe-
a,pI/I(bMeTI/I‘{eCKI/IM 3HAYCHUEM [QUIJIEKTPUICCKUX KOHCTAHT IIO
obe CTOpOHBI IJIEHKH. B camocorsiacoBaHHOU MpOIeaype Kak
mapaMerp ObLJIO BBEJEHO IOJIOXKEHHE 30HBI IPOBOJUMOCTH [IH-
ssiekTpuka. C yderoMm cuyi u300pakeHusi OBLIU BBIIIOJHEHBI
BBIUHCJIEHUS JJIsl HAHOIIEHOK AJIIOMUHUS C UI€AJTHHBIMA HH-
repdeiicamu Bakyym/Al(111)/SiO2, Bakyym/Al(111)/Al2 O3 u
canzasuua SiO2/Al(111)/Al2O3. B pesyabrare Gblin paccaura-
HBI TpoduIu 3hHEKTHBHBIX ITOTEHIIHAJIOB U BHICOTHI OapbepoB
HTorTku.
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