
ПОЛЯ ТА ЕЛЕМЕНТАРНI ЧАСТИНКИ

ISSN 0372-400X. Укр. фiз. журн. 2015. Т. 60, № 10 985

V.M. SIMULIK
Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
(21, Universytets’ka Str., Uzhgorod 88000, Ukraine; e-mail: vsimulik@gmail.com)
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The new relativistic equations of motion for the particles with spin 𝑠 = 1, 𝑠 = 3/2, and 𝑠 = 2
and nonzero mass have been introduced. The description of the relativistic canonical quantum
mechanics of the arbitrary mass and spin has been given. The link between the relativistic
canonical quantum mechanics of the arbitrary spin and the covariant local field theory has been
found. The manifestly covariant arbitrary-spin field equations that follow from the quantum
mechanical equations have been considered. The covariant local field theory equations for a
spin 𝑠 = (1,1) particle-antiparticle doublet, spin 𝑠 = (1,0,1,0) particle-antiparticle multiplet,
spin 𝑠 = (3/2,3/2) particle-antiparticle doublet, spin 𝑠 = (2,2) particle-antiparticle doublet,
spin 𝑠 = (2,0,2,0) particle-antiparticle multiplet, and spin 𝑠 = (2,1,2,1) particle-antiparticle
multiplet have been introduced. The Maxwell-like equations for a boson with spin 𝑠 = 1 and
mass 𝑚 > 0 have been introduced as well.
K e yw o r d s: relativistic quantum mechanics, Schödinger–Foldy equation, Dirac equation,
Maxwell equations, arbitrary spin.

1. Introduction

The start of the relativistic quantum mechanics was
given by Paul Dirac with his well-known equation for
an electron [1]. More precisely, in this 4-component
model, the spin 𝑠 = (1/2, 1/2) particle-antiparticle
doublet of two fermions was considered (in par-
ticular, the electron-positron doublet). Nevertheless,
the quantum-mechanical interpretation of the Dirac
equation, which should be similar to the physi-
cal interpretation of the nonrelativistic Schrödinger
equation, is not evident and is hidden deeply in
the Dirac model. In order to visualize the quantum
mechanical interpretation of the Dirac equation, a
transformation to the canonical (quantum-mechani-
cal) representation was suggested [2]. In this Fol-
dy–Wouthuysen (FW) representation of the Dirac
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equation, the quantum-mechanical interpretation is
much clearer. Nevertheless, the direct and evident
quantum-mechanical interpretation of the spin 𝑠 =
= (1/2, 1/2) particle-antiparticle doublet can be ful-
filled only within the framework of the relativistic
canonical quantum mechanics (RCQM) (see, e.g., the
consideration in [3]).

Note that here only the first-order particle and
field equations (together with their canonical nonlo-
cal pseudodifferential representations) are considered.
The second-order equations (like the Klein–Gordon–
Fock equation) are not the subject of this investi-
gation.

Different approaches to the description of the par-
ticles of an arbitrary spin can be found in [4–13]. In
this article, only the approach started in [13] is the
basis for further applications. Other results given in
[4–12] are not analyzed, not considered, and not used
here. Note only one general deficiency of the known
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equations for arbitrary spin. For the spin 𝑠 > 1/2, the
existing equations should be complemented by some
additional conditions. The equations suggested and
considered here are free of this deficiency. The start of
such consideration is taken from [13], where the main
foundations of the RCQM are formulated. Below in
the text, the results of [13] are generalized and ex-
tended. Note that the cases 𝑠 = 3/2 and 𝑠 = 2 were
not presented in [13], especially in explicit demonstra-
tive forms.

Contrary to the times of works [2, 13, 14], the
RCQM today is the enough approbated and generally
accepted theory. The spinless Salpeter equation has
been introduced in [14]. The allusion on the RCQM
and the first steps are given in [13], where the Salpeter
equation for the 2𝑠+1-component wave function was
considered, and the cases of 𝑠 = 1/2 and 𝑠 = 1
were presented as examples. In [15], L. Foldy (prop-
erly, László Földi) continued his investigations [13] by
the consideration of the relativistic particle systems
with interaction. The interaction was introduced by
a specific group-theoretic method.

After that in the RCQM, the construction of math-
ematical foundations was realized, and the solution
of specific quantum-mechanical problems for different
potentials was executed. Some mathematical foun-
dations and the spectral theory of pseudodifferen-
tial operator

√︀
p2 +𝑚2 − 𝑍𝑒2/𝑟 were given in [16–

19]. The application of the RCQM to the quark-
antiquark bound state problem can be found in [20,
21]. The numerical solutions of the RCQM equation
for arbitrary confining potentials were presented in
[21]. In [22], the spinless Salpeter equation for the
𝑁 particle system of spinless bosons with gravita-
tional interaction was applied. In [23], a lower bound
on the maximum mass of a boson star on the ba-
sis of the Hamiltonian

√︀
p2 +𝑚2 − 𝛼/𝑟 was calcu-

lated. In [24], the results calculated by the author
with the spinless Salpeter equation are compared
with those obtained from the Schrödinger equation
for heavy-quark systems, heavy-light systems, and
light-quark systems. In each case, the Salpeter ener-
gies agree with experiment substantially better than
the Schrödinger energies. Work [25] dealt with an in-
vestigation of exact numerical solutions. The spin-
less Salpeter equation with the Coulomb potential is
solved exactly in the momentum space and is shown
to agree very well with a coordinate-space calcula-
tion. In [26, 27], the problem of calculations of the

spectrum of energy eigenvalues on the basis of the
spinless Salpeter equation was considered. The spin-
less relativistic Coulomb problem was studied. It was
shown how to calculate, by some special choices of
basis vectors in the Hilbert space of solutions, for the
rather large class of power-law potentials, at least up-
per bounds on these energy eigenvalues. The authors
of works [26, 27] proved that, for the lowest-lying lev-
els, this may be done even analytically. In work [28],
the spinless Salpeter equation was rewritten into inte-
gral and integro-differential equations. Some analyti-
cal results concerning the spinless Salpeter equation
and the action of the square-root operator have been
presented. Further F. Brau constructed an analyti-
cal solution of the one-dimensional spinless Salpeter
equation with a Coulomb potential supplemented by
a hard core interaction, which keeps the particle in
the 𝑥 positive region [29]. In the context of RCQM
based on the spinless Salpeter equation, it was shown
[30] how to construct a large class of upper limits
on the critical value, 𝑔(ℓ)𝑐 , of the coupling constant,
𝑔, of the central potential, 𝑉 (𝑟) = −𝑔𝑣(𝑟). In [31],
the lower bounds on the ground-state energy, in one
and three dimensions, for the spinless Salpeter equa-
tion applicable to potentials, for which the attrac-
tive parts are in Lp(Rn) for some 𝑝 > 𝑛 (𝑛 = 1 or
3), were found. An extension to confining potentials,
which are not in Lp(Rn), was also presented. In work
[32], the authors used the theory of fractional powers
of linear operators to construct a general (analytical)
representation theory for the square-root energy op-
erator 𝛾0

√︀
p2 +𝑚2 + 𝑉 of the FW canonical field

theory, which is valid for all values of spin. The ex-
ample of the spin 1/2 case, considering a few sim-
ple still solvable and physically interesting cases, was
presented in details in order to understand how to in-
terpret the operator. Note that the corresponding re-
sults for the RCQM can be found from the FW canon-
ical field theory results [32] (see Subsection 6.2 be-
low). Using the momentum space representation, the
authors of [33] presented an analytical treatment of
the one-dimensional spinless Salpeter equation with
a Coulomb interaction. The exact bound-state energy
equation was determined. The results obtained were
shown to agree very well with those of exact numerical
calculations existing in the literature. In [34], an ex-
act analytical treatment of the spinless Salpeter equa-
tion with a one-dimensional Coulomb interaction in
the context of quantum mechanics with a modified
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Heisenberg algebra implying the existence of a min-
imal length was presented. The problem was tackled
in the momentum space representation. The bound-
state energy equation and the corresponding wave
functions were exactly obtained. The probability cur-
rent for a quantum spinless relativistic particle was
introduced [35] on the basis of the Hamiltonian dy-
namics approach, by using the spinless Salpeter equa-
tion. The correctness of the presented formalism was
illustrated by examples of exact solutions to the spin-
less Salpeter equation including the new ones. Thus,
the following partial wave packet solutions of this
equation were presented in [35]: the solutions for free
massless and massive particles on a line, for a massless
particle in a linear potential, plane wave solution for
a free particle (these solution is given here in formula
(8) for 𝑁 -component case), and the solution for a free
massless particle in three dimensions. Further, other
time-dependent wave packet solutions of the free spin-
less Salpeter equation were given in [36]. With re-
gard for the relation of such wave packets to the
Lévy process, the spinless Salpeter equation (in the
one-dimensional space-time) was called the Lévy–
Schrödinger equation in [36]. The several examples of
the characteristic behavior of such wave packets have
been shown, in particular, the multimodality arising
in their evolutions: a feature at variance with the typ-
ical diffusive unimodality of both the corresponding
Lévy process densities and usual Schrödinger wave
functions. A generic upper bound is obtained [37]
for the spinless Salpeter equation with two different
masses. Analytical results are presented for systems
relevant for hadronic physics: Coulomb and linear po-
tentials when a mass is vanishing. A detailed study
for the classical and the quantum motion of a rela-
tivistic massless particle in an inverse square poten-
tial has been presented recently in [38]. The quantum
approach to the problem was based on the exact solu-
tion of the corresponding spinless Salpeter equation
for bound states. Finally in [38], the connection be-
tween the classical and the quantum descriptions via
the comparison of the associated probability densi-
ties for the momentum has been made. The goal of
the recent paper [39] is a comprehensive analysis of
the intimate relationship between jump-type stochas-
tic processes (e.g., Lévy flights) and nonlocal (due to
integro-differential operators involved) quantum dy-
namics. In [39], a special attention is paid to the spin-
less Salpeter (here, 𝑚 ≥ 0) equation and the evolu-

tion of various wave packets, in particular, to their
radial expansion in 3D. Foldy’s synthesis of “covari-
ant particle equations” is extended to encompass the
free Maxwell theory, which, however, is devoid of any
“particle” content. Links with the photon wave me-
chanics are explored. The authors of [39] considered
our results [40] presented also in more earlier preprint
(see the last reference in [39]).

In works [3, 40], where we started our investigations
in the RCQM, this relativistic model for the test case
of the spin 𝑠 = (1/2, 1/2) particle-antiparticle dou-
blet was formulated. In [40], this model was consid-
ered as a system of axioms on the level of the von
Neumann monograph [41], where the mathematically
well-defined consideration of the nonrelativistic quan-
tum mechanics was given. Furthermore, in [3, 40],
the operator link between the spin 𝑠 = (1/2, 1/2)
particle-antiparticle doublet RCQM and the Dirac
theory was given, and Foldy’s synthesis of “covariant
particle equations” was extended to the start from the
RCQM of the spin 𝑠 = (1/2, 1/2) particle-antiparticle
doublet.

Below, the same procedure is fulfilled for the spin
𝑠 = (1, 1), 𝑠 = (1, 0, 1, 0), 𝑠 = (3/2, 3/2), 𝑠 = (2, 2),
𝑠 = (2, 0, 2, 0), and spin 𝑠 = (2, 1, 2, 1) RCQM.
The corresponding equations, which follow from the
RCQM for the covariant local field theory, are intro-
duced.

In other words, the so-called Foldy synthesis [13]
of the covariant particle equations is extended here
by starting from the RCQM of arbitrary spin, and
the related equations of the covariant local field the-
ory are the final step of such program. The canonical
representation of the field equations (an analog of the
FW representation) is the intermediate step in this
method.

Therefore, I am not going to formulate here a new
relativistic quantum mechanics! The foundations of
the RCQM based on the spinless Salpeter equation
were already formulated in [13–40].

The relativistic quantum mechanics under con-
sideration is called canonical due to three main
reasons. (i) The model under consideration has di-
rect link with the nonrelativistic quantum mechan-
ics based on the nonrelativistic Schrödinger equa-
tion. The principles of heredity and correspondence
with other models of physical reality lead directly
to the nonrelativistic Schrödinger quantum mecha-
nics. (ii) The FW model is already called by many
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authors as the canonical representation of the Dirac
equation or a canonical field model, see, e.g., work
[13]. The difference between the field model given by
the FW model and the RCQM is minimal – in corre-
sponding equations it is only the presence or the ab-
sence of the beta matrix. (iii) The list of relativistic
quantum-mechanical models is long. The Dirac model
and the FW model are called by the “old” physi-
cists as the relativistic quantum mechanics as well
(one of my tasks in this paper is to show in a visual
and demonstrative way that these models have only
weak quantum-mechanical interpretation). Further,
the fractional relativistic quantum mechanics and the
proper-time relativistic quantum mechanics can be
listed, etc. Therefore, in order to avoid a confusion,
the model under consideration must have its proper
name. Due to reasons (i)–(iii) above, the best name
for it is RCQM.

The results are presented on three linking levels.

Covariant local field theory ← Canonical field
theory ← Relativistic canonical quantum mechanics

Here, the standard relativistic concepts, defini-
tions, and notations in the form convenient for our
consideration are chosen. For example, in the Min-
kowski space-time,

M(1, 3) = {𝑥 ≡ (𝑥𝜇) = (𝑥0 = 𝑡, x ≡ (𝑥𝑗))};

𝜇 = 0, 3, 𝑗 = 1, 2, 3,
(1)

𝑥𝜇 denotes the Cartesian (covariant) coordinates of
the points of the physical space-time in the arbitrary
fixed inertial reference frame (IRF). We use the sys-
tem of units with ~ = 𝑐 = 1. The metric tensor is
given by

𝑔𝜇𝜈 = 𝑔𝜇𝜈 = 𝑔𝜇𝜈 , (𝑔
𝜇
𝜈 ) = diag (1,−1,−1,−1) ;

𝑥𝜇 = 𝑔𝜇𝜈𝑥
𝜇,

(2)

and the summation over the twice repeated indices is
implied.

2. Foundations of the Relativistic
Canonical Quantum Mechanics of a Particle
with Nonzero Mass and Arbitrary Spin 𝑠

The equation of motion is the Schrödinger–Foldy
equation

𝑖𝜕𝑡𝑓(𝑥) =
√︀
𝑚2 −Δ𝑓(𝑥) (3)

for the 𝑁 -component wave function

𝑓 ≡ column(𝑓1, 𝑓2, ..., 𝑓N), N = 2𝑠+ 1. (4)

Equation (3) is a direct sum of one-component spin-
less Salpeter equations. This equation has been intro-
duced in formula (21) of [13].

The suggestion to call the main equation of the
RCQM as the Schrödinger–Foldy equation was given
in [40] and [3]. Our motivation was as follows. In
works [13, 15], the-two component version of Eq. (3)
is called the Schrödinger equation. Moreover, the one-
component version of Eq. (3) was suggested in [14]
and is called in the literature as the spinless Salpeter
equation (see, e.g., [25–31, 33–35, 37, 38] and ref-
erences therein). Nevertheless, in view of L. Foldy’s
contribution to the construction of the RCQM and
his proof of the principle of correspondence between
the RCQM and nonrelativistic quantum mechanics,
we propose to call the 𝑁 -component equations of this
type as the Schrödinger-Foldy equations.

The space of the states is taken as a rigged Hilbert
space

S3,N ≡ S(R3)× CN ⊂ H3,N ⊂ S3,N*. (5)

Here, S3,N is the 𝑁 -component Schwartz test function
space over the space R3 ⊂ M(1, 3), and H3,N is the
Hilbert space of the 𝑁 -component square-integrable
functions over the 𝑥 ∈ R3 ⊂ M(1, 3):

H3,N = L2(R
3)⊗ C⊗N = {𝑓 = (𝑓N) : R3 → C⊗N;∫︀

𝑑3𝑥|𝑓(𝑡,x)|2 <∞},
(6)

where 𝑑3𝑥 is the Lebesgue measure in the space
R3 ⊂ M(1, 3) of the eigenvalues of the position op-
erator x of the Cartesian coordinate of the parti-
cle in an arbitrary fixed IRF. Further, S3,N* is the
space of the 𝑁 -component Schwartz generalized func-
tions. The space S3,N* is conjugated to that of the
Schwartz test functions S3,N by the corresponding
topology (see, e.g. [42]).

In general, the mathematical correctness of consid-
eration demands to make the calculations in the space
S3,N* of generalized functions, i.e. with the applica-
tion of cumbersome functional analysis. Nevertheless,
one can consider the properties of the Schwartz test
function space S3,N in triple (5). The space S3,N is
dense both in the quantum-mechanical space H3,N

and in the space of generalized functions S3,N*.
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Therefore, any physical state 𝑓 ∈ H3,N can be ap-
proximated with an arbitrary precision by the corre-
sponding elements of the Cauchy sequence in S3,N,
which converges to the given 𝑓 ∈ H3,N. Further, with
regard for the requirement to measure the arbitrary
value of the quantum-mechanical model with nonab-
solute precision, this means that all specific calcula-
tions can be fulfilled within the Schwartz test function
space S3,N.

Furthermore, the mathematical correctness of the
consideration demands to determine the domain of
definitions and the range of values for any used op-
erator and for the functions of operators. Note that
if the kernel space S3,N ⊂ H3,N is taken as the com-
mon domain of definitions of the generating opera-
tors x = (𝑥𝑗), ̂︀p = (̂︀𝑝𝑗), s ≡ (︀

𝑠𝑗
)︀
= (𝑠23, 𝑠31, 𝑠12) of

coordinate, momentum, and spin, respectively, then
this space appears to be also the range of their val-
ues. Moreover, the space S3,N appears to be the com-
mon domain of definitions and values for the set of
all below-mentioned functions from the 9 operators
x = (𝑥𝑗), ̂︀p = (̂︀𝑝𝑗), s ≡

(︀
𝑠𝑗
)︀

(for example, for the
generators (̂︀𝑝𝜇,̂︀𝑗𝜇𝜈) of the irreducible unitary repre-
sentations of the Poincaré group 𝒫 and for different
sets of commutation relations). Therefore, in order
to guarantee the realization of the principle of cor-
respondence between the results of cognition and the
instruments of cognition in the given model, it is suf-
ficient to take the algebra AS of the all sets of ob-
servables of the given model in the form of Hermitian
power series of the 9 generating operators x = (𝑥𝑗),̂︀p = (̂︀𝑝𝑗), s ≡ (︀

𝑠𝑗
)︀

converged in S3,N.
Note that the Schrödinger–Foldy equation (3)

has generalized solutions, which do not belong to
the space H3,N (6). Therefore, the application of
the rigged Hilbert space S3,N ⊂ H3,N ⊂ S3,N* (5) is
necessary.

Some other details of motivations of the choice of
spaces (5) and (6) (and all necessary notations) are
given in [3], where the corresponding 4-component
spaces are considered.

The operator of particle spin is chosen in the com-
plete matrix form and is associated with the SU(2)
group. The orthonormalized diagonal Cartesian ba-
sis, in which the third component of the spin has the
diagonal form, is necessary. The corresponding gener-
ators of the SU(2) group irreducible representations
are chosen to be the spin operators of the correspond-
ing particle states.

Hence, the spin operator is given as

s ≡
(︀
𝑠𝑗
)︀
= (𝑠23, 𝑠31, 𝑠12) :

[︀
𝑠𝑗 , 𝑠𝑙

]︀
= 𝑖𝜀𝑗𝑙𝑛𝑠𝑛, (7)

where 𝜀𝑗𝑙𝑛 is the Levi-Civita tensor and 𝑠𝑗 = 𝜀𝑗ℓ𝑛𝑠ℓ𝑛
are the Hermitian N×N matrices – the generators of
the 𝑁 -dimensional representation of the spin group
SU(2) (universal covering of the SO(3)⊂SO(1,3)
group). Below, in Sections 3–6, the fixed specific rep-
resentations of the SU(2) group are associated with
the fixed particular spin values.

The general solution of the equation of motion (3)
is given by

𝑓(𝑥) =
1

(2𝜋)
3
2

∫︁
𝑑3𝑘𝑒−𝑖𝑘𝑥𝑎N (k) dN, (8)

where the notations

𝑘𝑥 ≡ 𝜔𝑡− kx, 𝜔 ≡
√︀
k2 +𝑚2, (9)

are used. The orts of the 𝑁 -dimensional Cartesian
basis have the form

d1 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
1
0
0
.
.
.
0

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒, d2 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
0
1
0
.
.
.
0

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒, ...., dN =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
0
0
0
.
.
.
1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒. (10)

Solution (8) is associated with the stationary com-
plete set of the operators (p, 𝑠3 = 𝑠𝑧, 𝑔) of momen-
tum, spin projection, and sign of the charge (in the
case of charged particles). It is easy to see from Sec-
tions 3–6 that, for the different 𝑁 , the spin projec-
tion operators are different. The stationary complete
set of operators is the set of all functionally indepen-
dent mutually commuting operators, each of which
commutes with the operator of energy (in this model
with the operator

√
𝑚2 −Δ).

The interpretation of the amplitudes 𝑎N (k) follows
from the equations for the eigenvalues of the oper-
ators (p, 𝑠3 = 𝑠𝑧, 𝑔). The functions 𝑎N (k) are the
quantum-mechanical momentum-spin amplitudes of a
single particle with corresponding momentum, spin,
and charge values (in the case of charged particle),
respectively.

The relativistic invariance of the model under con-
sideration requires, as a first step, the considera-
tion of its invariance with respect to the proper or-
thochronous Lorentz L↑

+ =SO(1,3)={Λ = (Λ𝜇
𝜈 )} and
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Poincaré P↑
+ = T(4)×)L↑

+ ⊃ L↑
+ groups. This invari-

ance in an arbitrary relativistic model is the imple-
mentation of Einstein’s relativity principle in the spe-
cial relativity form. Note that the mathematical cor-
rectness requires the invariance mentioned above to
be considered as the invariance with respect to the
universal coverings ℒ = SL(2,C) and 𝒫 ⊃ ℒ of the
groups L↑

+ and P↑
+, respectively.

For the group 𝒫, we choose real parameters 𝑎 =
= (𝑎𝜇) ∈M(1,3) and 𝜛 ≡ (𝜛𝜇𝜈 = −𝜛𝜈𝜇) with well-
known physical meaning. For the standard 𝒫 gener-
ators (𝑝𝜇, 𝑗𝜇𝜈) , we use commutation relations in the
manifestly covariant form

[𝑝𝜇, 𝑝𝜈 ] = 0, [𝑝𝜇, 𝑗𝜌𝜎] = 𝑖𝑔𝜇𝜌𝑝𝜎 − 𝑖𝑔𝜇𝜎𝑝𝜌,

[𝑗𝜇𝜈 , 𝑗𝜌𝜎] = −𝑖 (𝑔𝜇𝜌𝑗𝜈𝜎 + 𝑔𝜌𝜈𝑗𝜎𝜇 + (11)

+ 𝑔𝜈𝜎𝑗𝜇𝜌 + 𝑔𝜎𝜇𝑗𝜌𝜈).

The following assertion should be noted. Not a
matter of fact that noncovariant objects such as the
Lebesgue measure 𝑑3𝑥 and noncovariant generators
of algebras are explored, the model of RCQM of ar-
bitrary spin is a relativistic invariant in the following
sense. The Schrödinger–Foldy equation (3) and the
set of its solutions {𝑓} (8) are invariant with respect
to the irreducible unitary representation of the group
𝒫, the N× N matrix-differential generators of which
are given by the following nonlocal operators:

̂︀𝑝0 = ̂︀𝜔 ≡√︀
−Δ+𝑚2, ̂︀𝑝ℓ = 𝑖𝜕ℓ,̂︀𝑗ℓ𝑛 = 𝑥ℓ̂︀𝑝𝑛 − 𝑥𝑛̂︀𝑝ℓ + 𝑠𝑙𝑛 ≡ ̂︀𝑚ℓ𝑛 + 𝑠ℓ𝑛,

(12)

̂︀𝑗0ℓ = −̂︀𝑗ℓ0 = 𝑡̂︀𝑝ℓ − 1

2
{𝑥ℓ, ̂︀𝜔} − (︂

𝑠ℓ𝑛̂︀𝑝𝑛̂︀𝜔 +𝑚
≡ 𝑠ℓ

)︂
, (13)

where the orbital parts of the generators are not
changed under the transition from one spin to an-
other. Under such transitions, only the spin parts (7)
of expressions (12) and (13) are changed. Indeed, the
direct calculations visualize that generators (12) and
(13) commute with the operator of Eq. (3) and sat-
isfy the commutation relations (11) of the Lie algebra
of the Poincaré group 𝒫. In formulae (12) and (13),
the SU(2)-spin generators 𝑠ℓ𝑛 have particular specific
forms for each representation of the SU(2) group (see
the examples in Sections 3–6).

Note that generators (12) and (13) are known from
formulae (B-25)—(B-28) in [13].

Note also that, together with generators (12) and
(13), another set of 10 operators commutes with the
operator of Eq. (3), satisfies the commutation rela-
tions (11) of the Lie algebra of Poincaré group 𝒫,
and, therefore, can be chosen as the Poincaré sym-
metry of the model under consideration. This second
set is given by the generators ̂︀𝑝 0, ̂︀𝑝ℓ from (12) to-
gether with the orbital parts of the generators ̂︀𝑗ℓ𝑛, ̂︀𝑗0ℓ
from (13).

Thus, the irreducible unitary representation of the
Poincaré group 𝒫 in space (5), with respect to which
the Schrödinger–Foldy equation (3) and the set of its
solutions {𝑓} (8) are invariant, is given by a series
converging in this space

(𝑎,𝜛)→ 𝑈(𝑎,𝜛) =

= exp

(︂
−𝑖𝑎0̂︀𝑝0 − 𝑖â︀p− 𝑖

2
𝜛𝜇𝜈̂︀𝑗𝜇𝜈)︂, (14)

where the generators (̂︀𝑝𝜇, ̂︀𝑗𝜇𝜈) are given in (12) and
(13) with the arbitrary values of the SU(2) spins s =
= (𝑠ℓ𝑛) (7).

The validity of this assertion is verified by the fol-
lowing three steps. (i) The calculation that the 𝒫-
generators (12) and (13) commute with the opera-
tor 𝑖𝜕0 − ̂︀𝜔 of the Schrödinger–Foldy equation (3).
(ii) The verification that the 𝒫-generators (12) and
(13) satisfy the commutation relations (11) of the Lie
algebra of the Poincaré group 𝒫. (iii) The proof that
generators (12) and (13) realize the spin 𝑠(𝑠+1) rep-
resentation of this group. Therefore, the Bargmann–
Wigner classification on the basis of the calculation
of corresponding Casimir operators should be given.
These three steps can be made by direct and noncum-
bersome calculations.

Expression (14) is well known, but rather formal.
In fact, in the case of non-Lie operators the transition
from a Lie algebra to a finite group of transformations
is a rather nontrivial action. The mathematical jus-
tification of (14) can be fulfilled in the framework of
the Schwartz test function space and will be given in
a next special publication.

The corresponding Casimir operators have the form

𝑝2 = ̂︀𝑝𝜇̂︀𝑝𝜇 = 𝑚2IN, (15)

𝑊 = 𝑤𝜇𝑤𝜇 = 𝑚2s2 = s(s + 1)𝑚2IN, (16)

where IN is the N × N unit matrix, and 𝑠 = 1/2, 1,
3/2, 2, ... .
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Below in the next sections, the particular examples
of spins 𝑠 = 1/2, 1, 3/2, 2 singlets and spins 𝑠 = (1, 1),
(1,0), (1,0,1,0) multiplets are considered briefly.

The partial cases 𝑠 = 1/2, 1, 3/2, 2 and 𝑠 = (1, 1),
𝑠 = (1, 0), 𝑠 = (1, 0, 1, 0), 𝑠 = (3/2, 3/2), 𝑠 = (2, 2),
𝑠 = (2, 0, 2, 0), 𝑠 = (2, 1, 2, 1) can be presented on the
level of the axiomatic approach [43]. The way of such
consideration was demonstrated in [3] on the test ex-
ample of the spin 𝑠 = (1/2, 1/2) particle-antiparticle
doublet of fermions.

3. On the Relativistic Canonical
Quantum Mechanics of the Arbitrary Mass
and Spin Particle Multiplets

In view of the step-by-step consideration of the dif-
ferent partial examples, which are given in [44] in
Sections 7–17, the generalization for the particle mul-
tiplet of arbitrary spin can be formulated.

The theory is completely similar to that given
above in Section 2, where the RCQM of the particle
singlet of arbitrary spin is presented. The specifica-
tion is only in the application of the reducible repre-
sentation of the SU(2) and the Poincaré 𝒫 groups.

Furthermore, the simple particle multiplets are
constructed as the ordinary direct sum of the cor-
responding particle characteristics. The particle-an-
tiparticle doublets and multiplets are constructed as
the specific direct sum of the particle and antiparticle
characteristics, in which the antiparticle is considered
as the mirror reflection of the particle and the infor-
mation about equal and positive masses of the parti-
cle and the antiparticle is inserted. According to the
Pauli principle, the third component of the antiparti-
cle spin has the opposite sign to the third component
of the particle spin. The partial examples are given in
[44] in formulas (64), (91), (153), (154), (172), (178),
(179), (190), (191), (201), (202), (212), and (213).

Thus, for the general form of the arbitrary
particle-antiparticle doublet, the Schrödinger–Foldy
equation has the form 𝑖𝜕𝑡𝑓(𝑥) =

√
𝑚2 −Δ𝑓(𝑥),

where 𝑓 ≡ column(𝑓1, 𝑓2, ..., 𝑓2N), N = 2s + 1.
The corresponding 2N × 2N spin operator is given
by s2N =

⃒⃒
sN 0
0 −𝐶sN𝐶

⃒⃒
. The 2N-dimensional rigged

Hilbert space and the ordinary Hilbert space are the
corresponding direct sums of spaces (5) and (6), re-
spectively. Other necessary formulas follow from for-
mulas (7)–(16) of Section 2 after the substitutions of
2N instead of N and the above-given 2N × 2N spin

operators instead of N × N spin operators from Sec-
tion 2.

The general description for other arbitrary multi-
plets considered in Sections 12, 13, 16, and 17 of [44]
is formulated by similar minimal efforts.

4. On the Transition
to the Nonrelativistic Canonical Quantum
Mechanics of the Arbitrary Mass and Spin

In the nonrelativistic limit, the Schrödinger–Fol-
dy equation (3) is transformed into the or-
dinary Schrödinger equation

(︁
𝑖𝜕0 − p2

2𝑚

)︁
𝜓(𝑥) =

= 0 for the 𝑁 -component wave function 𝜓 ≡
≡ column(𝜓1, 𝜓2, ..., 𝜓N), N = 2s + 1.

Each of the equations considered in [44] of the
RCQM (2-, 3-, 4-, 5-, 6-, 8-, 10-, 12-, and 16-
component ones) is transformed into the ordinary
Schrödinger equation with the corresponding num-
ber of components. Moreover, here, the SU(2) spin
operator is the same as in the RCQM and is given by
formulae (7). Therefore, here as in the RCQM, the
SU(2) generators for the spin 𝑠 = 1/2 are given in
[44] in formulae (19) and (20), for the spin 𝑠 = 1 in
(29), for the spin 𝑠 = 3/2 in (39), for the spin 𝑠 = 2
in (48) of [44], etc. for the multiplet SU(2) spins.

Therefore, the equation of motion of nonrelativis-
tic quantum mechanics is invariant with respect to
the same representations of the SU(2) group, with
respect to which the relativistic equation (3) is in-
variant. The difference is in the application of the
Galilean group and its representations instead of the
Poincaré 𝒫 group and its representations.

For the models with interaction, it is much more
easier to solve the ordinary Schrödinger equation with
interaction potential 𝑉 (𝑥) instead of the pseudodiffer-
ential equation (3). Moreover, the solutions of a non-
relativistic equation with interaction can be useful for
obtaining the corresponding solutions of Eq. (3).

Thus, the nonrelativistic equation can be useful not
only by itself, but for various approximations of the
relativistic equation (3) as well.

5. The Example of Relativistic
Canonical Quantum Mechanics of the Spin
𝑠 = (1/2, 1/2) Particle-Antiparticle Doublet

The main example of the RCQM of the arbitrary mass
and spin particle multiplet is the model of the spin
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𝑠 = (1/2, 1/2) particle-antiparticle doublet (𝑒−𝑒+-
doublet in partial case). In [44], this example was for-
mulated on the level of modern axiomatic approaches
to quantum field theory. The axioms of this relativis-
tic model are considered on the level of correctness
of von Neumann’s nonrelativistic approach [41]. The
list of main assertions is given as the following ax-
ioms: on the space of states, on the time evolution of
the state vectors, on the fundamental dynamical vari-
ables, on the external and internal degrees of freedom,
which are considered in the form similar to that in
[45], on the algebra of observables, on the relativis-
tic invariance of the theory, with the modern defini-
tion of the symmetry of partial differential equations
[46], on the main and additional conservation laws,
on the stationary complete sets of operators, on the
solutions of the Schrödinger–Foldy equation, on the
Clifford–Dirac algebra, on the dynamic and kinematic
aspects of the relativistic invariance, on the mean
value of the operators of observables, on the princi-
ples of heredity and the correspondence, the physical
interpretation.

Here, the definition of the pseudodifferential (non-
local) operator from Eq. (3), which was given in [44]
in the consideration of the axiom on the time evo-
lution of the state vectors, can be clarified as
follows.

The action (see, e.g., [35]) of the pseudodifferential
(nonlocal) operator

̂︀𝜔 ≡√︀̂︀p2 +𝑚2 =
√︀
−Δ+𝑚2 ≥ 𝑚 > 0;̂︀p ≡ (̂︀𝑝𝑗) = −𝑖∇, ∇ ≡ (𝜕ℓ),

(17)

in the coordinate representation is given by

̂︀𝜔𝑓(𝑡,x) = ∫︁
𝑑3𝑦𝐾(x− y)𝑓(𝑡,y), (18)

where the function 𝐾(x − y) has the form 𝐾(x−
−y) = − 2𝑚2𝐾2(𝑚|x−y|)

(2𝜋)2|x−y|2 and 𝐾𝜈(𝑧) is the modified
Bessel function (Macdonald function), |a| designates
the norm of the vector a. Further, the integral form

(̂︀𝜔𝑓)(𝑡,x) = 1

(2𝜋)
3
2

∫︁
𝑑3𝑘𝑒𝑖kx̃︀𝜔 ̃︀𝑓(𝑡,k);

̃︀𝜔 ≡ √k2 +𝑚2, ̃︀𝑓 ∈ ̃︀H3,4,

(19)

of the operator ̂︀𝜔 is used often (see, e.g., [13]), where
𝑓 and ̃︀𝑓 are linked by the 3-dimensional Fourier trans-

formations

𝑓(𝑡,x) =
1

(2𝜋)
3
2

∫︁
𝑑3𝑘𝑒𝑖kx ̃︀𝑓(𝑡,k)⇔

⇔ ̃︀𝑓(𝑡,k) = 1

(2𝜋)
3
2

∫︁
𝑑3𝑥𝑒−𝑖kx ̃︀𝑓(𝑡,x), (20)

(in (20), k belongs to the spectrum R3
k of the operator̂︀p, and the parameter 𝑡 ∈ (−∞,∞) ⊂ M(1, 3)).

Further, the axiom on the Clifford–Dirac alge-
bra is updated here to the following form.

The Clifford–Dirac algebra of the 𝛾-matrices must
be introduced into the FW representations. The rea-
sons are as follows.

A part of the Clifford–Dirac algebra operators
is directly related to the spin 1/2 doublet opera-
tors ( 12𝛾

2𝛾3, 1
2𝛾

3𝛾1, 1
2𝛾

1𝛾2) (in the anti-Hermitian
form). In the FW representation for the spinor field
[2], these spin operators commute with the Hamilto-
nian and with the operator of the equation of motion
𝑖𝜕0 − 𝛾0̂︀𝜔. In the Pauli–Dirac representation, these
operators do not commute with the Dirac equation
operator. Only the sums of the orbital operators and
such spin operators commute with the Diracian. So,
if we want to relate the orts 𝛾𝜇 of the Clifford–Dirac
algebra with the actual spin, we must introduce this
algebra into the FW representation.

In the quantum-mechanical representation (i.e., in
the space {f} of 4-component solutions (8) of the 4-
component Schrödinger–Foldy equation (3)), the 𝛾-
matrices are obtained by the transformation 𝑣 given
in formula (22) below.

Moreover, we use a generalized algebra of the
Clifford–Dirac type over the field of real num-
bers. This algebra was introduced in [47–51]. The use
of 29 orts of this real algebra SO(8) gives the addi-
tional possibilities in comparison with only 16 ele-
ments of the standard Clifford–Dirac algebra SO(1,5)
(see, e.g., [47–51]).

The definitions of spin matrices (64) in [44] de facto
determine the so-called “quantum-mechanical” repre-
sentation of the Dirac matrices

𝛾�̂� : 𝛾�̂�𝛾𝜈 + 𝛾𝜈𝛾�̂� = 2𝑔�̂�𝜈 ;

𝛾−1
0 = 𝛾0, 𝛾

−1
𝑙 = −𝛾𝑙,

𝑔�̂�𝜈 ≡ (+−−−−), �̂� = 0, 1, 2, 3, 4.

(21)

The matrices 𝛾𝜇 (21) of this representation are linked
with the Dirac matrices 𝛾�̂� in the standard Pauli–
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Dirac (PD) representation:

𝛾0 = 𝛾0, 𝛾1 = 𝛾1𝐶, 𝛾2 = 𝛾0𝛾2𝐶,

𝛾3 = 𝛾3𝐶, 𝛾4 = 𝛾0𝛾4𝐶;

𝛾�̂� = 𝑣𝛾�̂�𝑣, 𝑣 ≡
⃒⃒⃒
I2 0
0 𝐶I2

⃒⃒⃒
= 𝑣−1,

(22)

where the standard Dirac matrices 𝛾�̂� are given by

𝛾0 =
⃒⃒⃒
I2 0
0 −I2

⃒⃒⃒
, 𝛾𝑘 =

⃒⃒⃒⃒
0 𝜎𝑘

−𝜎𝑘 0

⃒⃒⃒⃒
,

𝛾4 ≡ 𝛾0𝛾1𝛾2𝛾3, 𝛾0𝛾1𝛾2𝛾3𝛾4 = −I4,
(23)

𝐶 is the operator of complex conjugation.
Note that, in terms of 𝛾𝜇 matrices (22), the RCQM

spin operator (64) of [44] has the form

s =
𝑖

2
(𝛾2𝛾3, 𝛾3𝛾1, 𝛾1𝛾2). (24)

Therefore, the complete analogy with the particle-
antiparticle doublet spin in the FW representation
exists

sFW =
𝑖

2
(𝛾2𝛾3, 𝛾3𝛾1, 𝛾1𝛾2). (25)

The 𝛾𝜇 matrices (22) together with the matrix
𝛾4 ≡ 𝛾0𝛾1𝛾2𝛾3, imaginary unit 𝑖 ≡

√
−1, and op-

erator 𝐶 of complex conjugation in H3,4 generate the
quantum-mechanical representations of the general-
ized algebras of the Clifford–Dirac type over the field
of real numbers, which were put into consideration in
[47] (see also [48–51]).

Recall that, in [47–51] for the purposes of finding
the links between the fermionic and bosonic states,
not 5 (as in (21)–(23)), but 7 generating 𝛾 matrices
were used. In addition to 𝛾1, 𝛾2, 𝛾3, 𝛾4 matrices from
(23), 3 new 𝛾 matrices were introduced. Therefore,
the set of 7 generating 𝛾 matrices is given by

𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5 ≡ 𝛾1𝛾3𝐶, 𝛾6 ≡ 𝑖𝛾1𝛾3𝐶,

𝛾7 ≡ 𝑖𝛾0; 𝛾1𝛾2𝛾3𝛾4𝛾5𝛾6𝛾7 = I4.
(26)

Matrices (26) generate the 64-dimensional 𝐶𝑙R(0,6)
algebra over the field of real numbers.

Here, in the quantum-mechanical representation,
these 𝛾 matrices (in terms of the standard 𝛾 matrices)
have the form
𝛾1, 𝛾2, 𝛾3, 𝛾4 ≡ 𝛾0𝛾1𝛾2𝛾3, 𝛾5 ≡ 𝛾1𝛾3𝐶,

𝛾6 ≡ −𝑖𝛾2𝛾4𝐶, 𝛾7 ≡ 𝑖;

𝛾1𝛾2𝛾3𝛾6𝛾5𝛾6𝛾7 = I4,

(27)

and satisfy the anticommutation relations in the form

𝛾A𝛾B + 𝛾B𝛾A = −2𝛿AB, A = 1, 7. (28)

The Clifford–Dirac anticommutation relations for
matrices (26) are similar.

The 𝛾 matrices (26), (27) generate also the rep-
resentation of 29 dimensional real algebra SO(8)
(the dimension of the standard Clifford–Dirac algebra
SO(1,5) is 16), which was introduced in [47–51]. Note
also that SO(8) from [47–51] is the algebra with com-
plex elements over the field of real numbers. Both the
fundamental representation 𝑆AB = 1

4 [𝛾
A, 𝛾B] and the

RCQM representation 𝑆AB = 1
4 [𝛾

A, 𝛾B] are gener-
ated by matrices (26) and (27), respectively. As for
the structure, subalgebras, and different representa-
tions of the 𝐶𝑙R(0,6) algebra, see, e.g., [51].

The additional possibilities, which are open by
the 29 orts of the algebra SO(8) in comparison
with 16 orts of the standard Clifford–Dirac alge-
bra SO(1,5), are principal in the description of
Bose states in the framework of the Dirac theory
[47–51]. The algebra SO(8) includes two indepen-
dent SU(2) subalgebras 1/2(𝛾2𝛾3, 𝛾3𝛾1, 𝛾1𝛾2) and
1/2(𝛾5𝛾6, 𝛾6𝛾4, 𝛾4𝛾5), when the standard Clifford–
Dirac algebra includes only one given by the elements
(𝛾2𝛾3, 𝛾3𝛾1, 𝛾1𝛾2).

The subalgebra SO(6) of the algebra SO(8) (see
the details in [51]) has all characteristic properties
of the Clifford algebra and includes both above-
mentioned SU(2) subalgebras. Moreover, all elements
of SO(6) commutes with the operator of the equation
of motion.

Therefore, the quantum-mechanical representation
of the algebra SO(8) over the field of real numbers
should be taken as the extended algebra of 𝛾 matrices
of the RCQM and its subalgebra SO(6) can be useful
in the role of the Clifford–Dirac algebra.

Other axioms of the relativistic description of the
spin 𝑠 = (1/2, 1/2) particle-antiparticle doublet can
be found in [44].

6. General Description
of the Arbitrary Spin Field Theory

6.1. Transition from the nonlocal
relativistic canonical quantum mechanics
to the covariant local relativistic field theory

The above-formulated RCQM has the independent
meaning as a useful model for elementary particle
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physics. However, another application of the RCQM
model has the important meaning as well. Each
model of the quantum-mechanical particle singlet or
multiplet considered above can be formulated also
in the framework of the covariant local relativis-
tic field theory. Moreover, it is not difficult to find
the link between the RCQM and the covariant local
relativistic field theory. For the partial case of spin
𝑠 = (1/2, 1/2) particle-antiparticle doublet, such link
was already given in [44] by 4× 4 matrix-differential
operators 𝑣 (102) multiplied by 𝑉 (119) or resulting
𝑊 (120)–(123) of [44]. Further, in [44] for the case
of higher spins doublets and multiplets, the corre-
sponding 6 × 6, 8 × 8, 10 × 10, 12 × 12, and 16 × 16
transition operators were found. Therefore, the rela-
tionship between the Schrödinger–Foldy equations for
different multiplets and the Dirac equation (or the
Dirac-like equations) for these multiplets has been in-
troduced in [44]. On this basis, the general method
of derivation of the different equations of the co-
variant local relativistic field theory is formulated in
what follows. The start of such derivation is given
from the corresponding Schrödinger–Foldy equations
of the RCQM. Note that the derivation of the covari-
ant particle equations from equations in the FW rep-
resentation (the so-called Foldy synthesis [13]) is well
known. Here, the new possibilities to fulfill the deriva-
tion of the covariant particle equations starting from
the RCQM (therefore, not from the FW representa-
tion) are open. The new covariant equations of the lo-
cal relativistic field theory for the spin 𝑠 = (3/2, 3/2),
𝑠 = (1, 0, 1, 0), 𝑠 = (2, 0, 2, 0), 𝑠 = (2, 1, 2, 1) particle-
antiparticle doublets and multiplets are found here by
this method (the explicit forms were demonstrated in
[44]). The new equations for the spin 𝑠 = (1, 1) and
𝑠 = (2, 2) particle-antiparticle doublets in the FW
representation are introduced as well (see [44] for de-
tails). In the general form embracing the arbitrary
spin, these results are presented below.

6.2. The canonical (FW type) model
of the arbitrary spin particle-antiparticle field

The step-by-step consideration of the different par-
tial examples in Sections 21–27 of [44] enabled us to
rewrite them in the general form, which is valid for
arbitrary spins. Therefore, the generalization of the
consideration given in Sections 21–27 of [44] leads to
the general formalism of the arbitrary spin fields. The
formalism presented below in this section is valid for

an arbitrary particle-antiparticle multiplet in general
and for the particle-antiparticle doublet in particular.

The operator, which transforms the RCQM of
the arbitrary spin particle-antiparticle multiplet (Sec-
tion 3) into the corresponding canonical particle-
antiparticle field and vice versa, has the form

𝑣2N =
⃒⃒⃒
IN 0
0 𝐶IN

⃒⃒⃒
, N = 2𝑠+ 1, (29)

where 𝐶 is the operator of complex conjugation. As it
was explained already in Section 9 of [44], the transi-
tion with the help of operator (29) is possible for the
anti-Hermitian operators. It was demonstrated [47–
51] that the prime (anti-Hermitian) generators play a
special role in the group-theoretic approach to quan-
tum theory and symmetry analysis of the correspond-
ing equations. It is due to the anti-Hermitian gen-
erators of the groups under consideration that the
additional bosonic properties of the FW and Dirac
equations have been found in [47–51]. The mathemat-
ical correctness of the appealing to the anti-Hermitian
generators is considered in [52, 53] in detail.

Formulae (30)–(34) below are found from the cor-
responding formulas of the RCQM with the help
of operator (29). The way of the generalization of
the RCQM to the 2𝑁 -component particle-antiparticle
multiplet is given in Section 3.

For the general form of an arbitrary spin canonical
particle-antiparticle field, the equation of motion of
the FW type is given by(︀
𝑖𝜕0 − Γ0

2N̂︀𝜔)︀𝜑(𝑥) = 0, Γ0
2N ≡ 𝜎3

2N =
⃒⃒⃒
IN 0
0 −IN

⃒⃒⃒
, (30)

The general solution is given by

𝜑(𝑥) =
1

(2𝜋)
3
2

∫︁
𝑑3𝑘×

×
[︁
𝑒−𝑖𝑘𝑥𝑎N(k)dN + 𝑒𝑖𝑘𝑥𝑎*N̆(k)dN̆

]︁
,

N = 1, 2, ...,N, N̆ = N + 1,N+ 2, ..., 2N,

(31)

where 𝑎N(k) are the quantum-mechanical momen-
tum-spin amplitudes of the particle, and 𝑎N̆(k) are
the quantum-mechanical momentum-spin amplitudes
of the antiparticle, {d} is the 2𝑁 -component Carte-
sian basis (10).

The spin operator has the form

s2N =
⃒⃒⃒
sN 0
0 sN

⃒⃒⃒
, N = 2𝑠+ 1, (32)

where sN are the N×N generators of arbitrary spin ir-
reducible representations of the SU(2) algebra, which
satisfy the commutation relations (7).
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The generators of the reducible unitary representa-
tion of the Poincaré group 𝒫, with respect to which
the canonical field equation (30) and the set {𝜑} of
its solutions (31) are invariant, are given by

̂︀𝑝 0 = Γ0
2N̂︀𝜔 ≡ Γ0

2N

√︀
−Δ+𝑚2, ̂︀𝑝ℓ = −𝑖𝜕ℓ,̂︀𝑗ℓ𝑛 = 𝑥ℓ̂︀𝑝𝑛 − 𝑥𝑛̂︀𝑝ℓ + 𝑠ℓ𝑛2N ≡ ̂︀𝑚ℓ𝑛 + 𝑠ℓ𝑛2N,

(33)

̂︀𝑗0ℓ = −̂︀𝑗ℓ0 = 𝑥0̂︀𝑝ℓ−
− 1

2
Γ0
2N

{︀
𝑥ℓ, ̂︀𝜔}︀+ Γ0

2N

(s2N × p)ℓ̂︀𝜔 +𝑚
, (34)

where arbitrary spin SU(2) generators s2N = (𝑠ℓ𝑛2N)
have the form (32), Γ0

2N is given in (30).
Note that, together with generators (33) and (34),

another set of 10 operators commutes with the oper-
ator of Eq. (30), satisfies the commutation relations
(11) of the Lie algebra of the Poincaré group 𝒫, and,
therefore, can be chosen as the Poincaré symmetry
of the model under consideration. This second set is
given by the generators ̂︀𝑝 0, ̂︀𝑝ℓ from (33) together with
the orbital parts of the generators ̂︀𝑗ℓ𝑛, ̂︀𝑗0ℓ from (33)
and (34).

The calculation of the Casimir operators 𝑝2 =
= ̂︀𝑝𝜇̂︀𝑝𝜇, 𝑊 = 𝑤𝜇𝑤𝜇 (𝑤𝜇 is the Pauli–Lubanski pseu-
dovector) for the fixed value of spin completes the
brief description of the model.

6.3. The locally covariant model
of the arbitrary spin particle-antiparticle field

The operator, which transforms the canonical (FW
type) model of the arbitrary spin particle-antiparticle
field into the corresponding locally covariant particle-
antiparticle field, is a generalized FW operator and is
given by

𝑉 ∓ =
∓Γ2N · p+ ̂︀𝜔 +𝑚√︀

2̂︀𝜔(̂︀𝜔 +𝑚)
, 𝑉 − = (𝑉 +)†,

𝑉 −𝑉 + = 𝑉 +𝑉 − = I2N, N = 2𝑠+ 1,

(35)

where

Γ𝑗
2N =

⃒⃒⃒⃒
0 Σ𝑗

N

−Σ𝑗
N 0

⃒⃒⃒⃒
, 𝑗 = 1, 2, 3, (36)

where Σ𝑗
N are the N × N Pauli matrices. Of course,

for the matrices Γ𝜇
2N (30) and (36), the relations

Γ𝜇
2NΓ

𝜈
2N + Γ𝜈

2NΓ
𝜇
2N = 2𝑔𝜇𝜈 (37)

are valid.
Note that, in formulas (35)–(37) and before the end

of the section, the values of 𝑁 are only even. There-
fore, the canonical field equation (30) describes the

larger number of multiplets than the generalized Di-
rac equation (38).

Formulas (38)–(42) below are found from the cor-
responding formulas (30)–(34) of the canonical field
model on the basis of operator (35).

For the general form of an arbitrary spin locally co-
variant particle-antiparticle field, the Dirac-like equa-
tion of motion follows from Eq. (30) after transforma-
tion (35) and is given by[︀
𝑖𝜕0 − Γ0

2N(Γ2N · p+𝑚)
]︀
𝜓(𝑥) = 0. (38)

The general solution has the form

𝜓(𝑥) = 𝑉 −𝜑(𝑥) =
1

(2𝜋)
3
2

∫︁
𝑑3𝑘×

×
[︁
𝑒−𝑖𝑘𝑥𝑎N(k)v−N(k) + 𝑒𝑖𝑘𝑥𝑎*N̆(k)v+

N̆
(k)

]︁
, (39)

where amplitudes and the notation N̆ are the same
as in (31);

{︁
v−N(k), v

+

N̆
(k)

}︁
are 2𝑁 -component Dirac

basis spinors [54, 55] (for 𝑁 = 8, see formulae (357)
in [44]).

The spin operator is given by

sD = 𝑉 −s2N𝑉
+. (40)

where the operator s2N is known from (32). The ex-
plicit forms of few spin operators (40) are given in
[44] in formulae (259)–(261), (284)–(286), and (359)
for the particle-antiparticle multiplets 𝑠 = (1, 0, 1, 0),
𝑠 = (3/2, 3/2), 𝑠 = (2, 1, 2, 1), respectively.

The generators of the reducible unitary representa-
tion of the Poincaré group 𝒫, with respect to which
the covariant field equation (38) and the set {𝜓} of
its solutions (39) are invariant, have the form̂︀𝑝 0 = Γ0

2N(Γ2N · p+𝑚), ̂︀𝑝ℓ = −𝑖𝜕ℓ,̂︀𝑗ℓ𝑛 = 𝑥ℓD̂︀𝑝𝑛 − 𝑥𝑛D̂︀𝑝ℓ + 𝑠ℓ𝑛D ≡ ̂︀𝑚ℓ𝑛 + 𝑠ℓ𝑛D ,
(41)

̂︀𝑗0ℓ = −̂︀𝑗ℓ0 = 𝑥0̂︀𝑝ℓ−
− 1

2

{︀
𝑥ℓD, ̂︀𝑝 0

}︀
+

̂︀𝑝 0(sD × p)ℓ̂︀𝜔(̂︀𝜔 +𝑚)
, (42)

where the spin matrices sD = (𝑠ℓ𝑛D ) are given in (40),
and the operator xD has the form

xD = x+
𝑖Γ2N

2̂︀𝜔 − sΓ2N × p̂︀𝜔(̂︀𝜔 +𝑚)
− 𝑖p(Γ2N · p)

2̂︀𝜔2(̂︀𝜔 +𝑚)
, (43)

where the spin matrices sΓ2N = 𝑖
2 (Γ

2
2NΓ

3
2N,Γ

3
2NΓ

1
2N,

Γ1
2NΓ

2
2N).

The last step in the brief description of the model
is the calculation of the Casimir operators 𝑝2 = ̂︀𝑝𝜇̂︀𝑝𝜇,
𝑊 = 𝑤𝜇𝑤𝜇 (𝑤𝜇 is the Pauli–Lubanski pseudovector)
for the fixed value of spin.
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6.4. The example of spin
𝑠 = (0, 0) particle-antiparticle doublet

The completeness of the consideration of the simplest
spin multiplets and doublets [44] is achieved by the
presentation of this example. The formalism follows
from the general formalism of arbitrary spin after the
substitution 𝑠 = 0.

The Schrödinger–Foldy equation of the RCQM is
the same as in (17) of [44]. The solution is the same as
in (22) of [44]. The generators of the Poincaré group
𝒫, with respect to which Eq. (17) from [44] for 𝑠 =
= (0, 0) is invariant, are given by (12) and (13) taken
in the form of 2 × 2 matrices with spin terms equal
to zero.

The corresponding FW-type equation of the canon-
ical field theory is given by(︀
𝑖𝜕0 − 𝜎3̂︀𝜔)︀𝜑(𝑥) = 0, 𝜎3 =

⃒⃒⃒
1 0
0 −1

⃒⃒⃒
. (44)

The general solution is given by

𝜑(𝑥) =
1

(2𝜋)
3
2

∫︁
𝑑3𝑘×

×
[︀
𝑒−𝑖𝑘𝑥𝑎1(k)d1 + 𝑒𝑖𝑘𝑥𝑎*2(k)d2

]︀
. (45)

The generators of the Poincaré group 𝒫, with re-
spect to which Eq. (44) and the set {𝜑} of its solutions
(45) are invariant, have the form

̂︀𝑝 0 = 𝜎3̂︀𝜔 ≡ 𝜎3
√︀
−Δ+𝑚2, ̂︀𝑝ℓ = −𝑖𝜕ℓ,̂︀𝑗ℓ𝑛 = 𝑥ℓ̂︀𝑝𝑛 − 𝑥𝑛̂︀𝑝ℓ, (46)

̂︀𝑗0ℓ = −̂︀𝑗ℓ0 = 𝑥0̂︀𝑝ℓ − 1

2
𝜎3

{︀
𝑥ℓ, ̂︀𝜔}︀. (47)

Generators (46) and (47) are the partial 2× 2 matrix
form of operators (33) and (34) taken with the spin
terms equal to zero.

Below, the validity of the general formalism under
consideration is demonstrated on the important ex-
ample of spin 𝑠 = 3/2.

7. A Brief Scheme of the Relativistic
Canonical Quantum Mechanics of the Single
Spin 𝑠 = 3/2 Fermion

The Schrödinger–Foldy equation is given by

𝑖𝜕𝑡𝑓(𝑥) =
√︀
𝑚2 −Δ𝑓(𝑥), 𝑓 =

⃒⃒⃒⃒
⃒⃒⃒𝑓

1

𝑓2

𝑓3

𝑓4

⃒⃒⃒⃒
⃒⃒⃒. (48)

The space of states is as follows S3,4 ⊂ H3,4 ⊂ S3,4*.
The generators of the SU(2)-spin in the most spread
explicit form are given by

𝑠1 =
1

2

⃒⃒⃒⃒
⃒⃒⃒ 0

√
3 0 0√

3 0 2 0
0 2 0

√
3

0 0
√
3 0

⃒⃒⃒⃒
⃒⃒⃒,

𝑠2 =
𝑖

2

⃒⃒⃒⃒
⃒⃒⃒ 0 −

√
3 0 0√

3 0 −2 0
0 2 0 −

√
3

0 0
√
3 0

⃒⃒⃒⃒
⃒⃒⃒,

(49)

𝑠3 = 1
2diag(3, 1,−1,−3). It is easy to verify that

the commutation relations
[︀
𝑠𝑗 , 𝑠ℓ

]︀
= 𝑖𝜀𝑗ℓ𝑛𝑠𝑛 of the

SU(2)-algebra are valid. The Casimir operator for
this representation of the SU(2)-algebra is given by
s2 = 15

4 I4 = 3
2

(︀
3
2 + 1

)︀
I4, where I4 is a 4 × 4 unit

matrix.
The general solution of the Schrödinger–Foldy

equation (48) is given by

𝑓(𝑥) =
1

(2𝜋)
3
2

∫︁
𝑑3𝑘𝑒−𝑖𝑘𝑥𝑏�̌�(k)d�̌�, (50)

�̌� = 1, 2, 3, 4, {d�̌�} are the orts of the 4-dimensional
Cartesian basis (10) and notations (9) are used. So-
lution (50) is associated with the stationary complete
set p, 𝑠3 = 𝑠𝑧 of the momentum and spin projection
operators of a spin 𝑠 = 3/2 fermion, respectively.

The equations for the spin projection operator 𝑠3 =
= 1

2diag(3, 1,−1,−3) eigenvalues are given by

𝑠3d1 =
3

2
d1, 𝑠

3d2 =
1

2
d2,

𝑠3d3 = −1

2
d3, 𝑠

3d4 = −3

2
d4.

(51)

The interpretation of the amplitudes 𝑏𝛼(k) in (50)
follows from Eqs. (51) and similar equations for the
operator p eigenvalues. The functions 𝑏1(k), 𝑏2(k),
𝑏3(k, 𝑏4(k) are the quantum-mechanical momentum-
spin amplitudes of a fermion with the spin projection
eigenvalues 3

2 ,
1
2 , −

1
2 , −

3
2 , respectively.

The Schrödinger–Foldy equation (48) and the set
{f} of its solutions (50) are invariant with respect
to the irreducible unitary spin 𝑠 = 3/2 representation
(14) of the Poincaré group 𝒫. The corresponding 4×4
matrix-differential generators are given by (12) and
(13), where the spin 3/2 SU(2) generators s = (𝑠ℓ𝑛)
are given in (49).
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The validity of this assertion is verified by three
steps already explained in Section 2 after formula
(14). The corresponding Casimir operators have the
form 𝑝2 = ̂︀𝑝𝜇̂︀𝑝𝜇 = 𝑚2I4, 𝑊 = 𝑤𝜇𝑤𝜇 = 𝑚2s2 =
= 3

2

(︀
3
2 + 1

)︀
𝑚2I4.

8. A Brief Scheme of the Relativistic
Canonical Quantum Mechanics of the
8-Component Fermionic Spin 𝑠 = (3/2, 3/2)
Particle-Antiparticle Doublet

This model is constructed in the complete anal-
ogy with the RCQM of the 4-component spin 𝑠 =
= (1/2, 1/2) particle-antiparticle doublet, which is
given in Section 7 of [44] in details (see some impor-
tant addition in Section 5). Moreover, the principles
of constructing and describing such particle-antipar-
ticle multiplet within the framework of the RCQM
are in a complete analogy with the principles of de-
scription and construction of the spin 𝑠 = (1, 1) par-
ticle-antiparticle doublet considered in Section 11 of
[44]. The difference is only in the dimensions of the
corresponding spaces and matrices. Therefore, the
details can be omitted. The model below is useful for
the Σ-hyperon description.

The 8-component fermionic spin 𝑠 = (3/2, 3/2)
particle-antiparticle doublet is constructed as a direct
sum of two spin 𝑠 = 3/2 singlets. The spin 𝑠 = 3/2
singlet was considered above in Section 7.

The most important fact is that here the link with
the Dirac-like equation is similar to that between the
spin 𝑠 = (1/2, 1/2) particle-antiparticle doublet and
the standard 4-component Dirac equation, which was
demonstrated in Sections 9 and 10 of [44]. Therefore,
the spin 𝑠 = (3/2, 3/2) particle-antiparticle doublet
is of special interest.

The Schrödinger–Foldy equation and the space of
states are given by

(𝑖𝜕0 − ̂︀𝜔)𝑓(𝑥) = 0, 𝑓 = column
(︀
𝑓1, 𝑓2, ..., 𝑓8

)︀
, (52)

S3,8 ⊂ H3,8 ⊂ S3,8*. The general solution of Eq. (52)
for the spin 𝑠 = (3/2, 3/2) particle-antiparticle dou-
blet is given by

𝑓(𝑥)=

⃒⃒⃒⃒
𝑓part

𝑓antipart

⃒⃒⃒⃒
=

1

(2𝜋)
3/2

∫︁
𝑑3𝑘𝑒−𝑖𝑘𝑥𝑏A(k)dA, (53)

A = 1, 8, {dA} are the orts of the 8-component Carte-
sian basis (10) and the amplitudes 𝑏A(k) correspond

to the spin 𝑠 = (3/2, 3/2) particle-antiparticle dou-
blet.

The generators of the corresponding SU(2)-spin
that satisfy the commutation relations (7) of the
SU(2) algebra are as follows:

s8 =
⃒⃒⃒
s 0
0 −𝐶s𝐶

⃒⃒⃒
, (54)

where 𝐶I4 is the diagonal 4 × 4 operator of complex
conjugation, and the matrices s for the single spin
𝑠 = 3/2 particle are given in (49). In the explicit form,
the SU(2) spin operators (54) are given by formulae
(179) in [44]. The Casimir operator has the form of
the 8 × 8 diagonal matrix s2 = 15

4 I8 = 3
2

(︀
3
2 + 1

)︀
I8,

where I8 is the 8× 8 unit matrix.
The stationary complete set of operators is given by

𝑔 =
⃒⃒⃒−I4 0

0 I4

⃒⃒⃒
, 𝑝𝑗 = −𝑖𝜕𝑗 , (55)

𝑠38 = 1
2diag(3, 1,−1,−3,−3,−1, 1, 3), where 𝑔 is the

charge sign operator, p = (𝑝𝑗) is the momentum op-
erator, and 𝑠38 = 𝑠𝑧 is the operator of the spin (54)
projection on the axis 𝑧.

The equations for eigenvalues of the operators
𝑔, 𝑠38 = 𝑠𝑧 have the form

𝑔d1 = −d1, 𝑔d2 = −d2, 𝑔d3 = −d3, 𝑔d4 = −d4,

𝑔d5 = +d5, 𝑔d6 = +d6, 𝑔d7 = +d7, 𝑔d8 = +d8,
(56)

𝑠38d1 =
3

2
d1, 𝑠

3
8d2 =

1

2
d2, 𝑠

3
8d3 = −1

2
d3,

𝑠38d4 = −3

2
d4, 𝑠

3
8d5 = −3

2
d5, 𝑠

3
8d6 = −1

2
d6,

𝑠38d7 =
1

2
d7, 𝑠

3
8d8 =

3

2
d8.

(57)

The equations for eigenvalues of the momentum op-
erator p can be found in [44].

Therefore, the functions 𝑏1(k), 𝑏2(k), 𝑏3(k), 𝑏4(k)
in solution (53) are the momentum-spin amplitudes
of a massive fermion with the spin 𝑠 = 3/2 and
the spin projection (3/2, 1/2,−1/2,−3/2), respec-
tively; 𝑏5(k), 𝑏6(k), 𝑏7(k), 𝑏8(k) are the momentum-
spin amplitudes of the antiparticle (antifermion)
with the spin 𝑠 = 3/2 and the spin projection
(−3/2,−1/2, 1/2, 3/2), respectively.

In addition to the bosonic 𝒫 invariance, which was
considered in Section 13 in [44], the Schrödinger–
Foldy equation (52) (and the set {f} of its solutions
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(53)) is invariant with respect to the reducible uni-
tary fermionic representation (14) of the Poincaré
group 𝒫, whose Hermitian 8 × 8 matrix-differential
generators are given by (12) and (13), where the spin
𝑠 = (3/2, 3/2) SU(2) generators s = (𝑠ℓ𝑛) are given
in (54).

The proof is similar to that given in Section 2 after
formula (14). The Casimir operators of this reducible
fermionic spin 𝑠 = (3/2, 3/2) representation of the
group 𝒫 have the form 𝑝2 = ̂︀𝑝𝜇̂︀𝑝𝜇 = 𝑚2I8, 𝑊 =
= 𝑤𝜇𝑤𝜇 = 𝑚2s28 = 3

2

(︀
3
2 + 1

)︀
𝑚2I8.

9. Covariant Field Equation
for the 8-Component Spin 𝑠 = (3/2, 3/2)
Fermionic Particle-Antiparticle Doublet

The model is constructed in a complete analogy with
the consideration in Section 22 of [44].

The start of this derivation is given in Section 8
above, where the RCQM of the 8-component fermio-
nic spin 𝑠 = (3/2, 3/2) particle-antiparticle doublet
is considered. The second step is the transition from
the Schrödinger–Foldy equation (52) to the canoni-
cal field equation. This step, as shown in Section 6,
is possible only for the anti-Hermitian form of the
operators. Nevertheless, the resulting operators can
be chosen in the standard Hermitian form and do
not contain the operator 𝐶 of complex conjugation.
The last step of the transition from the canonical
field equation to the covariant local field equation is
fulfilled in analogy with the FW transformation [2]
(transition operator (35) for 𝑁 = 4).

Thus, the canonical field equation for the 8-compo-
nent spin 𝑠 = (3/2, 3/2) fermionic particle-antipartic-
le doublet (8-component analogy of the FW equation)
is found from the Schrödinger–Foldy equation (52) on
the basis of the transformation 𝑣8:

𝑣8 =
⃒⃒⃒
I4 0
0 𝐶I4

⃒⃒⃒
, 𝑣−1

8 = 𝑣†8 = 𝑣8, 𝑣8𝑣8 = I8; 𝜑 = 𝑣8𝑓,

𝑓 = 𝑣8𝜑; 𝑣8𝑞
anti−Herm
qm 𝑣8 = 𝑞anti−Herm

cf ,

𝑣8𝑞
anti−Herm
cf 𝑣8 = 𝑞anti−Herm

qm ,

and is given by

(𝑖𝜕0 − Γ0
8̂︀𝜔)𝜑(𝑥) = 0, 𝜑 = column(𝜑1, 𝜑2, ..., 𝜑8),

(58)
where

Γ0
8 =

⃒⃒⃒
I4 0
0 −I4

⃒⃒⃒
. (59)

Above in the definition of the operator 𝑣8, 𝑞anti−Herm
qm

is an arbitrary operator from the RCQM of the 8-
component particle-antiparticle doublet in the anti-
Hermitian form, e.g., the operator (𝜕0 + 𝑖̂︀𝜔) of the
equation of motion, the operator of spin (54), etc.,
𝑞anti−Herm
cf is an arbitrary operator from the canonical

field theory of the 8-component particle-antiparticle
doublet in the anti-Hermitian form, and 𝐶I4 is the
4× 4 operator of complex conjugation.

The general solution of Eq. (58) in the case of spin
𝑠 = (3/2, 3/2) fermionic particle-antiparticle dou-
blet is found with the help of the above-given trans-
formation 𝑣8 from the general solution (53) of the
Schrödinger–Foldy equation (52) and is given by

𝜑(𝑥) =
1

(2𝜋)
3
2

∫︁
𝑑3𝑘×

×
[︀
𝑒−𝑖𝑘𝑥𝑏A(k)dA + 𝑒𝑖𝑘𝑥𝑏*B(k)dB

]︀
, (60)

where A = 1, 4, B = 5, 8, the orts of the 8-component
Cartesian basis are given in (10) with 𝑁 = 8, and the
quantum-mechanical interpretation of the amplitudes
(𝑏A(k), 𝑏*B(k)) is given according to (56) and (57).

The SU(2) spin operators, which satisfy the com-
mutation relations (7) and commute with the oper-
ator (𝑖𝜕0 − Γ0

8̂︀𝜔) of the equation of motion (58), are
derived from the corresponding RCQM operators (54)
on the basis of the transformations 𝑣8. These canon-
ical field spin operators are given by

s8 =
⃒⃒⃒
s 0
0 s

⃒⃒⃒
, s28 =

3

2

(︂
3

2
+ 1

)︂
I8, (61)

where the 4 × 4 operators s are given in (49). In the
explicit form, the SU(2) spin operators (61) are given
by formulae (279) in [44].

The stationary complete set of operators is given by
the operators 𝑔,p, 𝑠38 = 𝑠𝑧 of the charge sign, momen-
tum, and spin projection, respectively (see Section 8
for details). The equations for eigenvectors and eigen-
values of the spin projection operator 𝑠38 = 𝑠𝑧 from
(61) have the form

𝑠38d1 =
3

2
d1, 𝑠

3
8d2 =

1

2
d2, 𝑠

3
8d3 = −1

2
d3,

𝑠38d4 = −3

2
d4, 𝑠

3
8d5 =

3

2
d5, 𝑠

3
8d6 =

1

2
d6,

𝑠38d7 = −1

2
d7, 𝑠

3
8d8 = −3

2
d8.

(62)
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Therefore, the functions 𝑏1(k), 𝑏2(k), 𝑏3(k), and
𝑏4(k) in solution (60) are the momentum-spin am-
plitudes of a massive fermion with the spin 𝑠 =
= 3/2 and the spin projection (3/2, 1/2,−1/2,−3/2),
respectively; 𝑏5(k), 𝑏6(k), 𝑏7(k), and 𝑏8(k) are the
momentum-spin amplitudes of the antiparticle (an-
tifermion) with the spin 𝑠 = 3/2 and the spin projec-
tion (3/2, 1/2,−1/2,−3/2), respectively.

Note that the direct quantum-mechanical interpre-
tation of the amplitudes in solution (60) should be
given in the framework of the RCQM. Such interpre-
tation is already given in Section 8 after Eqs. (57).

The generators of the reducible unitary fermionic
spin 𝑠 = (3/2, 3/2) doublet representation of the
Poincaré group 𝒫, with respect to which the canoni-
cal field equation (58) and the set {𝜑} of its solutions
(60) are invariant, are derived from the RCQM set
of generators (12) and (13) with spin (54) on the ba-
sis of the transformations 𝑣8. These Hermitian 8× 8
matrix-differential generators are given by

̂︀𝑝 0 = Γ0
8̂︀𝜔 ≡ Γ0

8

√︀
−Δ+𝑚2, ̂︀𝑝ℓ = −𝑖𝜕ℓ,̂︀𝑗ℓ𝑛 = 𝑥ℓ̂︀𝑝𝑛 − 𝑥𝑛̂︀𝑝ℓ + 𝑠ℓ𝑛8 ≡ ̂︀𝑚ℓ𝑛 + 𝑠ℓ𝑛8 ,

(63)

̂︀𝑗0ℓ = −̂︀𝑗ℓ0 = 𝑥0̂︀𝑝ℓ−
− 1

2
Γ0
8

{︀
𝑥ℓ, ̂︀𝜔}︀+ Γ0

8

(s8 × p)ℓ̂︀𝜔 +𝑚
, (64)

where the explicit form of SU(2) spin 𝑠 = (3/2, 3/2)
is given in (61).

It is easy to prove by the direct verification that
generators (63) and (64) commute with the operator
(𝑖𝜕0 − Γ0

8̂︀𝜔) of the canonical field equation (58) and
satisfy the commutation relations (11) of the Lie alge-
bra of the Poincaré group 𝒫. The Casimir operators
for representation (63), (64) with SU(2) spin (61) are
given by 𝑝2 = ̂︀𝑝𝜇̂︀𝑝𝜇 = 𝑚2I8, 𝑊 = 𝑤𝜇𝑤𝜇 = 𝑚2s28 =
= 3

2

(︀
3
2 + 1

)︀
I8.

Thus, due to the eigenvalues in Eqs. (62), forms
of solution (60) with positive and negative frequen-
cies, and the above-given Bargmann–Wigner analysis
of the Casimir operators, one can come to a conclu-
sion that Eq. (58) describes the 8-component canon-
ical field (the fermionic particle-antiparticle doublet)
with the spins 𝑠 = (3/2, 3/2) and 𝑚 > 0.

The operator of the transition to the covariant lo-
cal field theory representation (the 8 × 8 analogy of
the 4 × 4 FW transformation operator [2]) is given
by: 𝑉 ∓

8 = ∓Γ8·p+̂︀𝜔+𝑚√
2̂︀𝜔(̂︀𝜔+𝑚)

, 𝑉 −
8 = (𝑉 +

8 )†, 𝑉 −
8 𝑉

+
8 =

= 𝑉 +
8 𝑉

−
8 = I8, 𝜓 = 𝑉 −

8 𝜑, 𝜑 = 𝑉 +
8 𝜓; 𝑞D = 𝑉 −

8 𝑞CF𝑉
+
8 ,

𝑞CF = 𝑉 +
8 𝑞D𝑉

−
8 , where 𝑞D is an arbitrary operator

(both in the Hermitian and anti-Hermitian form) in
the covariant local field theory representation. The
inverse transformation is valid as well. Thus, on the
basis of the transformation 𝑉 −

8 , the 8-component
Dirac-like equation is found from the canonical field
equation (58) in the form[︀
𝑖𝜕0 − Γ0

8(Γ8 · p+𝑚)
]︀
𝜓(𝑥) = 0. (65)

In the formulae for the operator transformation 𝑉 −
8

and in Eq. (65), the Γ𝜇
8 matrices are given by

Γ0
8 =

⃒⃒⃒
I4 0
0 −I4

⃒⃒⃒
, Γ𝑗

8 =

⃒⃒⃒⃒
0 Σ𝑗

−Σ𝑗 0

⃒⃒⃒⃒
, (66)

where Σ𝑗 are the 4× 4 Pauli matrices

Σ𝑗 =

⃒⃒⃒⃒
𝜎𝑗 0
0 𝜎𝑗

⃒⃒⃒⃒
, (67)

and 𝜎𝑗 are the standard 2×2 Pauli matrices. The ma-
trices Σ𝑗 satisfy the similar commutation relations as
the standard 2×2 Pauli matrices and have other sim-
ilar properties. The matrices Γ𝜇

8 (66) satisfy the anti-
commutation relations of the Clifford–Dirac algebra
in the form (37) with 𝑁 = 4.

Note that Eq. (65) is not the ordinary direct sum of
two Dirac equations. Therefore, it is not the complex
Dirac–Kähler equation [56]. Moreover, it is not the
standard Dirac–Kähler equation [57].

The solution of Eq. (65) is derived from solution
(60) of this equation in the canonical representation
(58) on the basis of the transformation 𝑉 −

8 and is
given by

𝜓(𝑥) = 𝑉 −
8 𝜑(𝑥) =

1

(2𝜋)
3/2

∫︁
𝑑3𝑘×

×
[︀
𝑒−𝑖𝑘𝑥𝑏A(k)v−A(k) + 𝑒𝑖𝑘𝑥𝑏*B(k)v+B (k)

]︀
, (68)

where A = 1, 4, B = 5, 8, and the 8-component
spinors (v−A(k), v

+
B (k)) are given by (257) in [44].

The spinors (v−A(k), v
+
B (k)) are derived from the

orts {d𝛼} of the Cartesian basis (10) for the case of
𝑁 = 8 with the help of the transformation 𝑉 −

8 . The
spinors (v−A(k), v

+
B (k)) satisfy the relations of or-

thonormalization and completeness similar to the cor-
responding relations for the standard 4-component
Dirac spinors (see, e.g., [55]).

The direct quantum-mechanical interpretation of
the amplitudes in solution (68) should be given in

ISSN 0372-400X. Укр. фiз. журн. 2015. Т. 60, № 10 999



V.M. Simulik

the framework of the RCQM. Such interpretation is
already given in Section 8 after Eqs. (57).

In the covariant local field theory, the operators of
the SU(2) spin, which satisfy the corresponding com-
mutation relations [𝑠𝑗8D, 𝑠

ℓ
8D] = 𝑖𝜀𝑗ℓ𝑛𝑠𝑛8D and com-

mute with the operator [𝑖𝜕0 − Γ0
8(Γ8 · p + 𝑚)] of

Eq. (65), are derived from the pure matrix opera-
tors (61) with the help of the transition operator
𝑉 −
8 : s8D = 𝑉 −

8 s8𝑉
+
8 . The explicit form of these

𝑠 = (3/2, 3/2) SU(2) generators was given already
by formulae (284)–(287) in [44].

The equations for eigenvectors and eigenvalues of
the operator 𝑠38D (286) in [44] follow from Eqs. (62)
and the transformation 𝑉 −

8 . In addition, the action of
the operator 𝑠38D (formula (286) in [44]) on the spinors
(v−A(k), v

+
B (k)) (257) in [44] also leads to the result

𝑠38Dv
−
1 (k) =

3

2
v−1 (k), 𝑠

3
8Dv

−
2 (k) =

1

2
v−2 (k),

𝑠38Dv
−
3 (k) = −

1

2
v−3 (k), 𝑠

3
8Dv

−
4 (k) = −

3

2
v−4 (k),

𝑠38Dv
+
5 (k) =

3

2
v+5 (k), 𝑠

3
8Dv

+
6 (k) =

1

2
v+6 (k),

𝑠38Dv
+
7 (k) = −

1

2
v+7 (k), 𝑠

3
8Dv

+
8 (k) = −

3

2
v+8 (k).

(69)

In order to verify Eqs. (69), the identity (�̃�+𝑚)2 +
+(k)2 = 2�̃�(�̃� + 𝑚) is used. In the case v+B (k), the
substitution k→ −k is made in the expression 𝑠38D(k)
(formula (286) of [44]).

Equations (69) determine the interpretation of the
amplitudes in solution (68). This interpretation is
similar to the given above after Eqs. (62). Neverthe-
less, the direct quantum-mechanical interpretation of
amplitudes should be made in the framework of the
RCQM (see Section 8).

The explicit form of the 𝒫-generators of the fer-
mionic representation of the Poincaré group 𝒫, with
respect to which the covariant equation (65) and the
set {𝜓} of its solutions (68) are invariant, is derived
from generators (63) and (64) with the SU(2) spin
(61) on the basis of the transformation 𝑉 −

8 . The cor-
responding generators are given by

̂︀𝑝 0 = Γ0
8(Γ8 · p+𝑚), ̂︀𝑝ℓ = −𝑖𝜕ℓ, (70)

̂︀𝑗ℓ𝑛 = 𝑥ℓD̂︀𝑝𝑛 − 𝑥𝑛D̂︀𝑝ℓ + 𝑠ℓ𝑛8D ≡ ̂︀𝑚ℓ𝑛 + 𝑠ℓ𝑛8D,̂︀𝑗0ℓ=−̂︀𝑗ℓ0=𝑥0̂︀𝑝ℓ − 1

2

{︀
𝑥ℓD, ̂︀𝑝 0

}︀
+

̂︀𝑝 0(s8D × p)ℓ̂︀𝜔(̂︀𝜔 +𝑚)
,

(71)

where the spin matrices s8D = (𝑠ℓ𝑛8D) are given by
(284)–(286) in [44], and the operator xD has the form

xD = x+
𝑖Γ8

2̂︀𝜔 − sΓ8 × p̂︀𝜔(̂︀𝜔 +𝑚)
− 𝑖p(Γ8 · p)

2̂︀𝜔2(̂︀𝜔 +𝑚)
, (72)

with the spin matrices s8 = 𝑖
2 (Γ

2
8Γ

3
8,Γ

3
8Γ

1
8,Γ

1
8Γ

2
8).

It is easy to verify that generators (71) and (72)
with the SU(2) spin (formulae (284)–(286) from [44])
commute with the operator

[︀
𝑖𝜕0 − Γ0

8(Γ8 · p+𝑚)
]︀

of
Eq. (65), satisfy the commutation relations (11) of
the Lie algebra of the Poincaré group, and the corre-
sponding Casimir operators are given by 𝑝2 = ̂︀𝑝𝜇̂︀𝑝𝜇 =
= 𝑚2I8, 𝑊 = 𝑤𝜇𝑤𝜇 = 𝑚2s28D = 3

2

(︀
3
2 + 1

)︀
𝑚2I8.

As was already explained in details in the previous
sections, the conclusion that Eq. (65) describes the
local field of a fermionic particle-antiparticle doublet
of the spin 𝑠 = (3/2, 3/2) and mass 𝑚 > 0 (and
its solution (68) is the local fermionic field of the
above-mentioned spin and nonzero mass) follows from
the analysis of Eqs. (69) and the above-given calcula-
tion of the Casimir operators 𝑝2, 𝑊 = 𝑤𝜇𝑤𝜇. Hence,
Eq. (65) describes the spin 𝑠 = (3/2, 3/2) particle-
antiparticle doublet on the same level, on which
the standard 4-component Dirac equation describes
the spin 𝑠 = (1/2, 1/2) particle-antiparticle doublet.
Moreover, the external argument in the validity of
such interpretation is the link with the correspond-
ing RCQM of spin 𝑠 = (3/2, 3/2) particle-antiparticle
doublet, where the quantum-mechanical interpreta-
tion is direct and evident. Therefore, the fermionic
spin 𝑠 = (3/2, 3/2) properties of Eq. (65) are proved.

Contrary to the bosonic spin 𝑠 = (1, 0, 1, 0) prop-
erties of Eq. (65) found in [44] (Section 22), the
fermionic spin 𝑠 = (1/2, 1/2, 1/2, 1/2) properties of
this equation are evident. The fact that Eq. (65) de-
scribes the multiplet of two fermions with the spin
𝑠 = 1/2 and two antifermions with that spin can
be proved much more easier than the above-given
consideration. The proof is similar to that given in
the standard 4-component Dirac model. The detailed
consideration can be found in Sections 7, 9, and 10 of
[44]. Therefore, Eq. (65) has more extended property
of the Fermi–Bose duality than the standard Dirac
equation [47–51]. This equation has the property of
the Fermi–Bose triality. The property of the Fermi–
Bose triality of the manifestly covariant equation (65)
means that this equation describes on equal level (i)
the spin 𝑠 = (1/2, 1/2, 1/2, 1/2) multiplet of two spin
𝑠 = (1/2, 1/2) fermions and two spin 𝑠 = (1/2, 1/2)
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antifermions, (ii) the spin 𝑠 = (1, 0, 1, 0) multiplet
of the vector and scalar bosons together with their
antiparticles, (iii) the spin 𝑠 = (3/2, 3/2) particle-an-
tiparticle doublet.

It is evident that Eq. (65) is new in comparison
with the Pauli–Fierz [58], Rarita–Schwinger [59], and
Davydov [60] equations for the spin 𝑠 = 3/2 particle.
Contrary to the 16-component equations from [58–
60], Eq. (65) is 8-component and does not need any
additional condition. Formally, Eq. (65) has likely
some similar features with the Bargmann–Wigner
equation [61] for arbitrary spin, when the spin value
is taken 3/2. The transformation 𝑉 ∓

8 = ∓Γ8·p+̂︀𝜔+𝑚√
2̂︀𝜔(̂︀𝜔+𝑚)

looks like the transformation of Pursey [62] in the case
of 𝑠 = 3/2. Nevertheless, the difference is clear. The
model given here is derived from the first principles of
the RCQM (not from the FW-type representation of
the canonical field theory). Our consideration is origi-
nal and new. The link with the corresponding RCQM,
the proof of the symmetry properties and relativistic
invariance, the well-defined spin operator (284–286)
in [44], the features of the Fermi–Bose duality (trial-
ity) of Eq. (65), the interaction with an electromag-
netic field, and many other characteristics are sug-
gested firstly.

The interaction, quantization, and Lagrange ap-
proach in the above-given spin 𝑠 = (3/2, 3/2) model
are completely similar to the Dirac 4-component the-
ory and standard quantum electrodynamics. For ex-
ample, the Lagrange function of the system of an
interacting 8-component spinor and the electromag-
netic field (in the terms of the 4-vector potential
𝐴𝜇(𝑥)) is given by

𝐿=−1
4
𝐹𝜇𝜈𝐹𝜇𝜈+

𝑖

2

(︂
𝜓(𝑥)Γ𝜇

8

𝜕𝜓(𝑥)

𝜕𝑥𝜇
− 𝜕𝜓(𝑥)

𝜕𝑥𝜇
Γ𝜇
8𝜓(𝑥)

)︂
−

−𝑚𝜓(𝑥)𝜓(𝑥) + 𝑞𝜓(𝑥)Γ𝜇
8𝜓(𝑥)𝐴𝜇(𝑥), (73)

where 𝜓(𝑥) is the independent Lagrange variable,
and 𝜓 = 𝜓†Γ0

8 in the space of solutions {𝜓}. In La-
grangian (73), 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇 is the electromag-
netic field tensor in terms of the potentials, which
play the role of variational variables in this Lagrange
approach.

Therefore, the covariant local quantum field theory
model for the interacting particles with spin 𝑠 = 3/2
and photons can be constructed in a complete analogy
to the construction of the modern quantum electro-
dynamics. This model can be useful for the investiga-

tions of the processes with interacting hyperons and
photons.

10. Interaction
In general, this paper is about free noninteracting
fields and particle states. Note, at first, that the free
noninteracting fields and particle states are the phys-
ical reality of the same level as the interacting fields
and the corresponding particle states. Nevertheless,
this means that the interaction between a fields can
be easily introduced on the every step of considera-
tion. One test model with interaction is considered
in explicit form in Section 9. The interaction cannot
be a deficiency in these constructions and can be in-
troduced in many places by the method similar to
formula (73).

11. Discussions and Conclusions
In the presented article, our experience [3, 40, 47–51,
63–65] in the time span 2002–2014 in the investiga-
tion of the spin 𝑠 = 1/2 and 𝑠 = 1 fields is applied
for the first time to the higher spin cases 𝑠 = 3/2
and 𝑠 = 2 (in the form of electronic preprint, it has
been presented for the first time in [44]). Thus, our
“old” papers are augmented by the list of new results
for higher spins and the generalization to arbitrary
spins. Moreover, the system of different vertical and
horizontal links between the descriptions of particles
with arbitrary spin on the levels of relativistic quan-
tum mechanics, canonical field theory (of the FW
type), and locally covariant field theory is suggested.

Among the results of this paper, the original
method of derivation of the Dirac (and the Dirac-
like equations for higher spins) is suggested. In order
to determine the place of this derivation among the
other known methods given in [3], the different ways
of the derivation of the Dirac equation [66–83] have
been reviewed (for completeness, we mention addi-
tionally works [84–86]). Thus, a review of the different
derivations of the Dirac equation demonstrates that
the general method presented in Section 6 is original
and new. Here, the Dirac equation is derived from the
4-component Schrödinger–Foldy equation (3) of the
RCQM. The RCQM model of the spin 𝑠 = (1/2, 1/2)
particle-antiparticle doublet is mentioned in Section 5
and is considered in details in Section 7 of [44]. Hence,
the Dirac equation is derived here from the more fun-
damental model of the same physical reality, which
is presented by the RCQM of the spin 𝑠 = (1/2, 1/2)
particle-antiparticle doublet.
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The system of vertical and horizontal links between
the RCQM and field theory, which is proved above,
has different useful applications. One of the funda-
mental applications is the participation in the dis-
cussion about the antiparticle negative mass. We em-
phasize [3] that the model of the RCQM and the
corresponding field theory do not need the appeal-
ing to the antiparticle negative mass concept [87–90].
Further, the application of the RCQM can be useful
for the analysis of the experimental situation found
in [91]. Such analysis is of interest due to the fact
that (as it is demonstrated here) the RCQM is the
most fundamental model of the fermionic particle-
antiparticle doublet. Another interesting application
of the RCQM is inspired by work [92], where the
quantum electrodynamics is reformulated in the FW
representation. The author of work [92] essentially
used the result in [88] on the negative mass of antipar-
ticles. Starting from the RCQM, we are able not to
appeal to the concept of antiparticle’s negative mass.

One of the general fundamental conclusions is as
follows. It is shown by the corresponding compari-
son that the customary FW representation cannot
give a complete quantum mechanical description of a
relativistic particle (or particle multiplet). Compare,
e.g., the equations for eigenvectors and eigenval-
ues of the third component of the spin operator in
each quantum-mechanical and canonical field theory
model above. It is useful also to compare the gen-
eral solutions in the RCQM and in field theory (it is
enough to consider the field theory in the FW repre-
sentation). Contrary to the RCQM, the general solu-
tion in the FW representation consists of positive and
negative frequency parts. As a consequence, contrary
to the RCQM, the energy has an indefinite sign in
the FW representation. Hence, the complete quan-
tum mechanical description of a relativistic particle
(or particle multiplet) can be given only in the frame-
work of the RCQM. Therefore, the customary FW
transformation is extended here to the form, which
gives the link between the locally covariant field the-
ory and the RCQM. Hence, such extended inverse
FW transformation is used here to fulfill the synthe-
sis of covariant particle equations. The start of such
synthesis is given here from the RCQM and not from
the canonical field theory in the representations of the
Foldy–Wouthuysen type.

Comparison of the RCQM and the FW represen-
tation visualizes the role of von Neumann’s axiomat-

ics [41] in this presentation. Therefore, the relation
of von Neumann’s axiomatics [41] to the overall con-
tents of the paper is direct and unambiguous. It
is shown that, among the above-considered models,
only the RCQM of arbitrary spin can be formulated
in von Neumann’s axiomatics, whereas the canonical
and covariant field theories cannot be formulated in
its framework.

The new operator links 𝑣N =
⃒⃒⃒
IN 0
0 𝐶IN

⃒⃒⃒
, N = 2𝑠+1,

found here between the RCQM of arbitrary spin and
the canonical (FW type) field theory enabled ones to
translate the result found in these models from one
model to another. For example, the results of [28–31]
from the RCQM can be translated into the canon-
ical field theory. Contrary, the results of [32] from
the canonical field theory can be translated into the
RCQM (for free noninteracting cases and in the form
of anti-Hermitian operators).

The partial case of the Schrödinger–Foldy equa-
tion, when the wave function has only one component,
is called the spinless Salpeter equation and is under
consideration in many recent works [30, 31, 33–39].
The partial wave packet solutions of this equation
are given in [35]. The solutions for free massless or
massive particle on a line, massless particle in a lin-
ear potential, plane wave solution for a free particle
(this solution is given here in (8) for the𝑁 -component
case), free massless particle in three dimensions have
been considered. Further in work [36], other time-
dependent wave packet solutions of the free spinless
Salpeter equation are given. In view of the relation of
such wave packets to the Lévy process, the spinless
Salpeter equation (in the one-dimensional space) is
called in [36] as the Lévy–Schrödinger equation. The
several examples of the characteristic behavior of such
wave packets have been shown, in particular, the
multimodality arising in their evolutions: a feature
at variance with the typical diffusive unimodality of
both the corresponding Lévy process densities and
usual Schrödinger wave functions. Therefore, the in-
teresting task is to extend such consideration to the
equations of the 𝑁 -component relativistic canonical
quantum mechanics considered above and to use the
links given here in order to transform the wave packet
solutions [35, 36] into the solutions of the equations
of the locally covariant field theory.

In this article, the original FW transformation [2] is
used and slightly generalized for the many-component
cases. The improvement of the FW transformation [2]
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was the task of many authors from the 1950s till now
(see, e.g., the recent works [93–96]). Nevertheless, this
transformation for the free case of noninteracting spin
1/2 particle-antiparticle doublet is not changed from
1950 (the year of the first publication) till today.
A. Silenko was successful in the FW transformation
for single particles with spin 0 [93], spin 1/2 [94],
and spin 1 [95, 96] interacting with external electric,
magnetic, and other fields. In the case of noninter-
acting particle, when the external electric, magnetic
and other external fields are equal to zero, all results
of [93–96] and other works are reduced to the ear-
lier results [2, 97]. Therefore, the choice of the exact
FW transformation from 1950 in this paper as the
initial one (and the basis for further generalizations
for arbitrary spins) is evident and well-defined. In our
subsequent works, we will consider interacting fields
and will use the results in [93–96] and the other re-
cent results, which generalize the FW formulas in the
case of interaction.

A few remarks should be added about the choice
of the spin operator. The authors of work [98] con-
sidered all spin operators for a Dirac particle satisfy-
ing some logical and group-theoretic conditions. The
discussion of other spin operators proposed in the lit-
erature has been presented as well. As a result, only
one satisfactory operator has been chosen. This op-
erator is equivalent to the Newton–Wigner spin op-
erator and the FW mean-spin operator. Contrary to
such way, the situation here is evident. Above, the
choice of the spin operator for a spin 𝑠 = 1/2 particle-
antiparticle doublet is unique. The explicit form for
such operator follows directly from the main prin-
ciples of the RCQM of a spin 𝑠 = 1/2 particle-
antiparticle doublet, which are formulated in Section
7 of [44] and here. This operator is given in formulae
(24). After that, the links between the RCQM, FW
representation, and Dirac model unambiguously give,
at first, the FW spin (25) and finally spin (141) in
[44], which is the FW mean-spin operator. Therefore,
the similar consideration for the higher spin dou-
blets gives unambiguously the well-defined higher
spin operators, which are presented in Sections 22–27
of [44]. These new mean-spin operators (259)–(261),
(284)–(286), and (359) in [44] for the 𝑁 -component
Dirac-type equations for higher spins 1, 3/2 and 2 are
the interesting independent results.

The goal of work [39] is a comprehensive analysis of
the intimate relationship between jump-type stochas-

tic processes (e.g. Lévy flights) and nonlocal (due to
integro-differential operators involved) quantum dy-
namics. A special attention is paid to the spinless
Salpeter equation and the various wave packets, in
particular, to their radial expression in 3D. Further-
more, Foldy’s approach [13] is used to encompass free
Maxwell theory. The consideration in [44] (see, e.g.,
Sections 13, 22, and 23) demonstrates another link
between the Maxwell equations and the RCQM. In
the generalization of the Foldy’s synthesis of covariant
particle equations given here, the Maxwell equations
and their analogy for nonzero mass are related to the
RCQM of spin 𝑠 = (1, 1) and spin 𝑠 = (1, 0, 1, 0)
particle-antiparticle doublets (see another approach
in [99, 100]). The electromagnetic field equations that
follow from the corresponding relativistic quantum
mechanical equations have been found in [44]. The
new electrodynamical equations containing the hypo-
thetical antiphoton and massless spinless antiboson
have been introduced. The Maxwell-like equations for
the boson with spin 𝑠 = 1 and 𝑚 > 0 (W-boson) have
been introduced as well. In other words, the Maxwell
equations for the field with nonzero mass have been
introduced in [44].

The covariant consideration of the arbitrary spin
field theory given here and in Sections 21–28 of [44]
contains the noncovariant representations of the Poin-
caré algebra. Nevertheless, it is not the deficiency of
the given model. For the generators of the Poincaré
group 𝒫 of spin 𝑠 = (1/2, 1/2), the covariant form
(146) of [44] is well-known. Only in order to have
the uniform consideration, the Poincaré generators
for spin 𝑠 = (1, 0, 1, 0), (3/2,3/2), (2,0,2,0), (2,1,2,1)
are given in formulae (265), (266), (331), (332), (361),
and (362) of [44] in uniform forms of noncovariant
operators in covariant theory. After further transfor-
mations of sets of these generators in the direction of
finding the covariant forms (like (146) of [44]), some
sets of generators can be presented in the manifestly
covariant forms. For other sets of generators, the co-
variant forms are extrinsic. Some sets of generators
can be presented only in the forms, which are similar
to that given in [47–51], where the prime anti-Hermi-
tian operators and specific eigenvectors – eigenvalues
equations (with imaginary eigenvalues) are used (see,
e.g., formula (21) in [48]).

The second reason for the stop on the level of for-
mulae (265), (266), (331), (332), (361), and (362) of
[44] is to conserve the important property of the Poin-
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caré generators in the canonical FW type representa-
tion. Similarly to the FW-type Poincaré generators,
both angular momenta (orbital and spin) in the sets
(265), (266), (331), (332), (361), and (362) of [44]
commute with the operator of the Dirac-like equa-
tion of motion (38). Contrary to it, in the covariant
form (146) of [44], only the total angular momentum,
which is the sum of orbital and spin angular momenta,
commutes with the Diracian.

The main point is as follows. The noncovariance
is not the barrier for the relativistic invariance! Not
a matter of fact that the noncovariant objects such
as the Lebesgue measure 𝑑3𝑥 and the noncovariant
Poincaré generators are explored, the model of local-
ly covariant field theory of arbitrary spin presented
in Section 6 is a relativistic invariant in the follow-
ing sense. The Dirac-like equation (38) and the set
{𝜓} of its solutions (39) are invariant with respect
to the reducible representation of the Poincaré group
𝒫, the nonlocal and noncovariant generators of which
are given by (41) and (42). Indeed, the direct calcula-
tions visualize that generators (41) and (42) commute
with the operator of Eq. (38) and satisfy the commu-
tation relations (11) of the Lie algebra of the Poincaré
group 𝒫.

The partial case of zero mass has been considered
briefly in Section 28 of [44].

The 8-component manifestly covariant equation for
the spin 𝑠 = 3/2 field found here is the 𝑠 = 3/2 ana-
log of the 4-component Dirac equation for the spin
𝑠 = 1/2 doublet. It is shown that the synthesis of this
equation from the relativistic canonical quantum me-
chanics of the spin 𝑠 = 3/2 particle-antiparticle dou-
blet is completely similar to the synthesis of the Dirac
equation from the relativistic canonical quantum me-
chanics of the spin 𝑠 = 1/2 particle-antiparticle doub-
let. The difference is only in the value of spin (3/2 and
1/2). On this basis and on the basis of the investiga-
tion of solutions and transformation properties with
respect to the Poincaré group, this new 8-component
equation is suggested and is well defined for the de-
scription of spin 𝑠 = 3/2 fermions. Note that the
known Rarita–Schwinger (Pauli–Fierz) equation has
16 components and needs the additional condition.

The properties of the Fermi–Bose duality, triality
and quadro Fermi–Bose properties of equations found
have been discussed briefly.

The results, which are not presented in this small-
scale article, can be found in [44] and [101].

The author is much grateful for both anonymous
referees for their very useful remarks and suggestions.
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В.М.Симулик

ВИВIД РIВНЯННЯ
ДIРАКА ТА ДIРАКОПОДIБНИХ
РIВНЯНЬ ДОВIЛЬНОГО СПIНУ
З ВIДПОВIДНОЇ РЕЛЯТИВIСТСЬКОЇ
КАНОНIЧНОЇ КВАНТОВОЇ МЕХАНIКИ

Р е з ю м е

Одержано новi релятивiстськi рiвняння руху частинок зi
спiнами 𝑠 = 1, 𝑠 = 3/2, 𝑠 = 2 та ненульовою масою. На-
ведено опис релятивiстської канонiчної квантової механiки
для частинок довiльної маси та спiну. Знайдено зв’язок мiж
релятивiстською канонiчною квантовою механiкою для ча-
стинок довiльного спiну та коварiантною локальною тео-
рiєю поля. Розглянуто явно коварiантнi польовi рiвняння
довiльного спiну, що слiдують з квантово-механiчних рiв-
нянь. Запропоновано коварiантнi локальнi польовi рiвнян-
ня для дублету частинка–античастинка спiнiв 𝑠 = (1, 1),
мультиплету частинка–античастинка спiнiв 𝑠 = (1, 0, 1, 0),
дублету частинка–античастинка спiнiв 𝑠 = (3/2, 3/2), ду-
блету частинка–античастинка спiнiв 𝑠 = (2, 2), мультиплету
частинка–античастинка спiнiв 𝑠 = (2, 0, 2, 0) та мультипле-
ту частинка–античастинка спiнiв 𝑠 = (2, 1, 2, 1). Також за-
пропоновано максвеллподiбнi рiвняння для бозону зi спiном
𝑠 = 1 та масою 𝑚 > 0.

В.М.Симулик

ВЫВОД УРАВНЕНИЯ
ДИРАКА И ДИРАКОПОДОБНЫХ
УРАВНЕНИЙ ПРОИЗВОЛЬНОГО СПИНА
ИЗ СООТВЕТСТВУЮЩЕЙ РЕЛЯТИВИСТСКОЙ
КАНОНИЧЕСКОЙ КВАНТОВОЙ МЕХАНИКИ

Р е з ю м е

Получены новые релятивистские уравнения движения час-
тиц со спинами 𝑠 = 1, 𝑠 = 3/2, 𝑠 = 2 и ненулевой массой.
Приведено описание релятивистской канонической кван-
товой механики для частиц произвольной массы и спина.
Найдена связь между релятивистской канонической кван-
товой механикой для частиц произвольного спина и кова-
риантной локальной теорией поля. Рассмотрены явно ко-
вариантные полевые уравнения произвольного спина, сле-
дующие из квантово-механических уравнений. Предложе-
ны ковариантные локальные полевые уравнения для ду-
блета частица–античастица спинов 𝑠 = (1, 1), мультиплета
частица–античастица спинов 𝑠 = (1, 0, 1, 0), дублета части-
ца–античастица спинов 𝑠 = (3/2, 3/2), дублета частица–ан-
тичастица спинов 𝑠 = (2, 2), мультиплета частица–античас-
тица спинов 𝑠 = (2, 0, 2, 0) и мультиплета частица–античас-
тица спинов 𝑠 = (2, 1, 2, 1). Также предложены максвелл-
образные уравнения для бозона со спином 𝑠 = 1 и мас-
сой 𝑚 > 0.
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