А.П. ЛАШКО, ¹ Т.М. ЛАШКО, ¹ В.О. МАРТИНИШИН ²

¹ Інститут ядерних досліджень НАН України

(Просп. Науки, 47, Київ 03680; e-mail: anatolii.lashko@gmail.com)

 2 Київський національний університет ім. Тараса Шевченка

(Просп. Академіка Глушкова, 2, Київ 03022)

УДК 539.163

ДОСЛІДЖЕННЯ РОЗПАДУ ¹⁷⁵Нf

За допомогою магнітного β -спектрометра типу $\pi\sqrt{2}$ та двох коаксіальних HPGe-deтекторів поміряні інтенсивності ліній електронів внутрішньої конверсії та γ -променів із розпаду ¹⁷⁵ Hf ($T_{1/2} = 70$ днів). Ґрунтуючись на цих результатах, розраховані інтенсивності гілок електронного захвату та log ft β -переходів. Вперше отримані обмеження для log ft β -переходів на рівні $9/2^+$ 113,8 кеВ, $9/2^-$ 396,3 кеВ та $9/2^+$ 546,6 кеВ ¹⁷⁵ Lu.

Kлючові слова: радіоактивність, ¹⁷⁵ Нf, γ -спектри, НРGе-детектори, внутрішня конверсія, магнітний спектрометр, інтенсивності γ -променів, інтенсивності ліній електронів внутрішньої конверсії, log ft.

1. Вступ

Згідно з останніми експериментальними даними [1] розпад ¹⁷⁵Hf ($T_{1/2} = 70$ днів) відбувається шляхом електронного захвату на збуджені стани ¹⁷⁵Lu з енергією 514,6; 432,8; 353,3 та 343,4 кеВ (див. рис. 1). Як материнське, так і дочірнє ядро належать до деформованих ядер ($\beta_2 \approx 0,3$). Частина рівнів ¹⁷⁵Lu ідентифікована як одночастинкові і їм поставлені у відповідність певні значення квантових чисел $K^{\pi}[Nn_Z\Lambda]$, інші є членами ротаційних смуг. Це дозволяє класифікувати β -переходи не лише за правилами добору по спіну, а й правилами добору за асимптотичними квантовими числами. Розрахувавши log ft β -переходів, їх можна порівняти з відповідною систематикою.

Повна енергія електронного захвату становить 686,8 ± 1,9 кеВ, тому можливий розпад ¹⁷⁵Нf і на рівні 396,3 та 546,6 кеВ, перший з яких є одночастинковим станом $\pi 9/2^{-9}/2$ [514], а другий – членом ротаційної смуги, побудованої на стані $\pi 5/2^{+}5/2$ [402]. В цьому випадку повинні спосте-

© А.П. ЛАШКО, Т.М. ЛАШКО, В.О. МАРТИНИШИН, 2015

В.О. МАРТИНИШИН, 2015

ISSN 0372-400Х. Укр. фіз. журн. 2015. Т. 60, № 10

рігатися переходи з енергіями 203 та 396 кеВ. На рис. 1 вони показані пунктиром. Пошук цих переходів також був метою наших досліджень.

2. Методика експерименту

Оскільки ймовірності β -переходів залежно від їх типу відрізняються на кілька порядків, настільки ж відрізняються й інтенсивності переходів між рівнями дочірнього ядра. Ця обставина значно ускладнює проведення подібних вимірів, потребуючи використання спектрометрів з високою роздільною здатністю.

Джерела випромінювання ¹⁷⁵Нf були отримані в реакції (n, γ) на дослідницькому реакторі ІЯД НАН України. Використовували гафнієві мішені як з природним вмістом ізотопів, так і збагачені до 13,9 % ¹⁷⁴Hf.

Виміри γ -спектрів проводили на γ -спектрометрі, що складався з двох горизонтальних коаксіальних детекторів із надчистого германію (GEM-40195 та GMX-30190 з роздільною здатністю 1,73 і 1,89 кеВ на лінії γ 1332 ⁶⁰Со відповідно) та багатоканального буфера 919 SPECTRUM MASTER фірми ORTEC. Було виконано ретельне градуювання де-

Puc. 1. Фрагмент схеми розпаду 175 Hf

Рис. 2. Спектр ЕВК γ 343 кеВ на К-оболонці ¹⁷⁵Lu. Приведено число відліків за 1520 с вимірів у кожній точці

текторів по ефективності реєстрації за допомогою еталонних спектрометричних джерел γ -випромінювання ⁶⁰Co, ¹³³Ba, ¹³⁷Cs, ¹⁵²Eu, ²²⁸Th та ²⁴¹Am в діапазоні енергій від 26 до 1620 кеВ. Форма кривої ефективності реєстрації добре описується функцією Кемпбела [2], похибка градуювання для обох детекторів не перевищує 2% в усьому діапазоні енергій.

Основна увага була приділена коректному визначенню інтенсивностей слабких γ -ліній. Щоб звести до мінімуму можливі систематичні похибки, вимірювання проводили серіями на детекторах різних типів, при різних коефіцієнтах підсилення та різних ширинах каналу амплітудно-цифрового перетворювача (8192 і 16384 рівня квантування вхідного сигналу). Усього було виконано 38 серій вимірювань.

електронів внутрішньої конверсії Спектри (ЕВК) на К- та L-оболонках ¹⁷⁵Lu вивчали за допомогою магнітного β -спектрометра типу $\pi\sqrt{2}$ з залізним ярмом і радіусом рівноважної орбіти 50 см. Знімали залежність швидкості лічби електронів від прикладеної напруги між джерелом випромінювання та камерою спектрометра. При цьому магнітне поле залишалося постійним і стабілізувалося в трьох точках вздовж радіуса методом ядерного магнітного резонансу. Система стабілізації забезпечувала стабільність поля спектрометра на рівні 10⁻⁵ протягом доби. Висока напруга, яка подається на джерело випромінювання, також стабілізувалася з відносною точністю $5 \cdot 10^{-5}$.

Система реєстрації спектрометра складається з двох лічильників Гейгера-Мюллера, розміщених вздовж електронних траєкторій на відстані 170 мм один від одного. Лічильники рознесені для зменшення фону спектрометра при роботі в режимі збігів. Перший лічильник має внутрішній діаметр 15 мм і розміщений вертикально, а другий – діаметром 46 мм, розміщений горизонтально. Власний фон лічильника №1 становить 10 відліків за хвилину, а в режимі збігів – в середньому 4 відліки за годину.

Роздільна здатність спектрометра дорівнює 0,03% по імпульсу при тілесному куті 0,07% від 4π . Характеристики спектрометра дозволяють виміряти відносні інтенсивності конверсійних ліній з точністю до 1% [3].

Краща роздільна здатність β -спектрометра та значно нижчий фон в районі можливого знаходження ліній ЕВК γ -переходів з енергіями 203 та 396 кеВ дозволили більш ніж на два порядки покращити обмеження на інтенсивності цих переходів в порівнянні з результатами γ -спектроскопії. Ділянки спектрів ЕВК переходів γ 343 та γ 203 кеВ на К-оболонці ¹⁷⁵Lu наведені на рис. 2 та рис. 3 відповідно.

Усього було проведено дві серії вимірів подібних приведеним на рис. 3. Сумарна експозиція становить 16000 с у кожній точці спектра.

Настільки ж ретельно досліджували й спектр EBK в районі можливого знаходження лінії L_1396 кеВ. Більш висока енергія електронів внутрішньої конверсії цього переходу дозволяє проводити вимі-

ISSN 0372-400Х. Укр. фіз. журн. 2015. Т. 60, № 10

1008

<i>Е</i> с кеВ	Інтенсивності, відн. од.							
	Наша робота	[6]	[7]	[8]	[9]	[10]	[11]	
89,362	$34,5\pm1,5$	$28,86 \pm 0,22$	_	$26,1 \pm 3,4$	29 ± 5	_	40	
113,801	$3,\!46\pm0,\!20$	$3,52 \pm 0,32$	_	$3,6\pm0,5$	$3,5\pm0,6$	-	3,6	
161,20	$0,\!45\pm0,\!14$	_	_	$0,27\pm0,10$	-	-	0,3	
229,609	$8{,}29\pm0{,}19$	$8,13\pm0,20$	_	$8,9 \pm 1,8$	$8,8 \pm 1,8$	-	7,3	
318,971	$1{,}57 \pm 0{,}23$	-	-	$2,1\pm0,5$	-	-	_	
343,410	1000	1000	1000	1000	1000	1000	1000	
353,3	$2{,}66\pm0{,}18$	$2,72 \pm 0,20$	$2,1 \pm 0,2$	$2,7\pm0,5$	-	2	_	
432,771	$17,5\pm0,4$	$17,09 \pm 0,31$	_	$17,1 \pm 2,3$	19 ± 4	-	16,0	

Таблиця 1. Інтенсивності γ -променів із розпаду ¹⁷⁵Нf

ри в режимі збігів, що значно зменшує величину фону. Сумарна експозиція цих вимірів становить 8960 с у кожній точці спектра.

3. Результати та їх обговорення

Обробку γ -спектрів проводили по програмі WinSpectrum [4]. Спектри були проаналізовані також за періодом напіврозпаду, щоб виключити можливі впливи домішкових радіонуклідів. Остаточні значення інтенсивностей γ -ліній визначали як зважене середнє з 38 серій вимірів. В ролі невизначеності експериментальних значень використана або вагова похибка, або похибка розкиду, залежно від того, яка з них була більшою. Результати вимірів разом з даними кращих робіт наведені в табл. 1. Енергії γ -переходов взяті з роботи [5].

Як видно з таблиці, отримані нами дані добре узгоджуються з результатами інших експериментальних робіт. Застосування різних типів детекторів дозволило покращити точність визначення відносних інтенсивностей γ-променів.

Обробку спектрів ЕВК проводили за розробленими нами програмами [3]. Як і в γ -спектрі ¹⁷⁵Hf, ми не спостерігали ліній ЕВК, які могли б належати переходам з енергіями 203 та 396 кеВ. Були отримані лише граничні значення інтенсивностей ліній К203 та L₁396 кеВ:

 $I(K203)/I(K343) \le 4, 6 \cdot 10^{-5};$ $I(L_11396)/I(K343) \le 3, 7 \cdot 10^{-6}.$

Інтенсивності гілок електронного захвату 175 Hf (I_c^k) були знайдені як розв'язок системи рівнянь,

Puc. 3. Спектр ЕВК в області можливого знаходження лінії К203 кеВ. Приведено число відліків за 3200 с вимірів у кожній точці. Суцільною лінією показано фон для цієї ділянки спектра

ходів для певного k-го збудженого стану ¹⁷⁵Lu:

$$I_{\varepsilon}^{k} + \sum_{i} I_{\gamma}^{i}(1+\alpha_{i}) = \sum_{j} I_{\gamma}^{j}(1+\alpha_{j}), \qquad (1)$$

де I_{γ}^{i} і α_{i} – інтенсивності та повні коефіцієнти конверсії γ -переходів, які заселяють даний рівень; I_{γ}^{j} і α_{j} – те саме для γ -переходів, які розряджають даний рівень.

Висновки щодо мультипольного складу переходів були зроблені після детального аналізу експериментальних даних з внутрішньої конверсії [8, 9, 11–15] та кутових кореляцій [16]. Після цього коефіцієнти конверсії були розраховані за допомогою програми BrIcc [17, 18].

1009

	E_{ε} , кеВ	, кеВ E (рівня), кеВ I_{ε} , %		Log ft Тип бета-переходу		Додаткова класифікація			
140,2 546,6		$\leq 0,014$	$\geq 8,6$	Заборонений 1-го порядку унікальний	Непригнічений				
	172,2	$514,\! 6$	$0,076 \pm 0,024$	$9,24 \pm 0,14$	Дозволений	Пригнічений			
	254,0	432,8	$20,1\pm0,8$	$7,27 \pm 0,02$	Заборонений 1-го порядку	Непригнічений			
	290,5	396,3	$\leq 0,010$	$\geq 10,7$	Заборонений 2-го порядку	22			
	333,5	353,3	$0,155 \pm 0,028$	$9,66 \pm 0,09$	Дозволений	Пригнічений			
	$_{343,4}$	343,4	$79,6\pm1,2$	$6,99 \pm 0,02$	Заборонений 1-го порядку	Непригнічений			
	573,0	113,8	$\leq 0,017$	$\geq 11,2$	Заборонений 1-го порядку унікальний	22			
	686, 8	0,0	$\leq 7^*$	$\geq 8,7^{*}$	Заборонений 1-го порядку	22			
				1	1	1			

Таблиця 2. Інтенсивності гілок та $\log ft \beta$ -переходів ¹⁷⁵Нf

* Дані роботи [1].

Рис. 4. Розподіл експериментальних значень $\log ft$ дозволених β -переходів

Отримані значення інтенсивностей гілок електронного захвату ¹⁷⁵Нf наведені в табл. 2. Вони були використані для розрахунків $\log ft \beta$ -переходів. Для цього ми скористалися програмою LOGFT [19]. Пораховані дані також наведені в таблиці. Слід зауважити, що обмеження на $\log ft \beta$ -переходів на рівні $9/2^+$ 113,8 кеB, $9/2^-$ 396,3 кеB та $9/2^+$ 546,6 кеB ¹⁷⁵Lu отримані вперше.

В останньому стовпчику табл. 2 приведена класифікація β -переходів не лише за правилами добору по спіну та парності [20], а й за правилами добору по асимптотичних квантових числах [21]. Розпади, для яких виконуються ці правила добору, називаються непригніченими (unhindered), а для яких не виконуються – пригніченими (hindered).

Рис. 5. Розподіл експериментальних значень $\log ft$ заборонених 1-го порядку β -переходів

Вважається, що невиконання правил добору за асимптотичними квантовими числами при розпаді деформованих ядер призводить до зменшення ймовірності β -переходів на 1–3 порядки. Так це чи ні спробуємо встановити, порівнюючи наші результати з величинам log ft β -переходів подібного типу для цієї області ядер.

З багатьох робіт по систематиці ймовірностей β переходів в залежності від їх типу можна виділити роботи Л.М. Зирянової [22], К.Я. Громова [23] та Б. Сінгха зі співавторами [24]. В монографії [22] приведені відомі на той час експериментальні значення log ft унікальних β -переходів. Проте цих даних виявилося замало для класифікації ще й за правилами добору по асимптотичних квантових числах. Такий аналіз для дозволених β -переходів

ISSN 0372-400Х. Укр. фіз. журн. 2015. Т. 60, № 10

1010

було зроблено, зокрема, в роботі [23]. Встановлено, що всі відомі на той час експериментальні значення log *ft* таких переходів (всього 28 значень) знаходяться в таких межах:

• дозволені непригнічені переходи 4,6 < $\log ft < < 4,8;$

 \bullet дозволені пригнічені переход
и $5,5 < \log ft < < 8,0.$

Для класифікації переходів інших типів експериментальних даних виявилося замало.

В компіляції [24] приведено близько 3900 експериментальних значень $\log ft \beta$ -переходів, згрупованих в залежності від їх типів та величини $\log ft$, розраховані параметри таких розподілів. Але класифікації за правилами добору по асимптотичних квантових числах не було зроблено. Ми проаналізували всі доступні на сьогоднішній день дані [25] по дозволених, заборонених 1-го порядку та заборонених 1-го порядку унікальних β -переходах в непарних деформованих ядрах рідкоземельної групи (151 < A < 193) з [24] і поставили, де це було можливо, їм у відповідність значення квантових чисел $K^{\pi}[Nn_{Z}\Lambda]$. Загалом вдалося ідентифікувати 287 переходів. На рис. 4-6 наведені розподіли експериментальних значень $\log ft$ переходів різних типів, окремо для непригнічених (верхня гістограма) та пригнічених (нижня гістограма) β -розпадів.

Експериментальні значення $\log ft \beta$ -переходів знаходяться в таких межах:

• дозволені непригнічені переходи $4,5 \le \log ft \le \le 7,7$; середнє значення 5,3;

• дозволені пригнічені переходи 5,2
 $\leq \log ft \leq \leq 9,1;$ середнє значення 6,9;

• заборонені 1-го порядку непригнічені переходи $5,6 \le \log ft \le 8,5$; середнє значення 7,1;

• заборонені 1-го порядку пригнічені переходи $5, 9 \le \log ft \le 9,5$; середнє значення 7,7;

• заборонені 1-го порядку унікальні непригнічені переходи $8.5 \leq \log ft \leq 10.3$; середнє значення 9.1;

• заборонені 1-го порядку унікальні пригнічені переходи 8,7 $\leq \log ft \leq 11,3$; середнє значення 9,5.

З проведеного дослідження випливає, що різниця в ймовірностях непригнічених та пригнічених β -розпадів більш суттєва для дозволених переходів. Наскільки нам відомо, такий аналіз для заборонених 1-го порядку та заборонених 1-го порядку унікальних β -переходів виконано вперше.

ISSN 0372-400Х. Укр. фіз. журн. 2015. Т. 60, № 10

Рис. 6. Розподіл експериментальних значень $\log ft$ заборонених 1-го порядку унікальних β -переходів

Експериментальні значення $\log ft$ заборонених 1го порядку непригнічені β -переходів з табл. 2 дуже добре узгоджуються з нашою систематикою. Log ftдозволених пригнічених β -переходів знаходяться на верхній межі значень для розпадів такого типу. Це пояснюється тим, що вони відбуваються із зміною квантового числа K на дві одиниці – тобто такі переходи є K-забороненими.

Для заборонених 1-го порядку унікальних непригнічених переходів на рівні $9/2^+$ 113,8 кеВ та $9/2^+$ 546,6 кеВ ¹⁷⁵Lu отримані лише граничні значення log *ft*. За умови підвищення точності експерименту на порядок можна сподіватися на їх надійне спостереження. Оцінене граничне значення log *ft* подвійно забороненого β -переходу на рівень $9/2^-$ 396,3 кеВ ¹⁷⁵Lu не протирічить експериментальним даним для цієї області ядер (див., наприклад, [26]).

4. Висновки

Завдяки застосуванню комплексного підходу до вимірювань, обробки та аналізу даних, а також використанню різних типів напівпровідникових детекторів вдалося покращити точність визначення відносних інтенсивностей γ -променів із розпаду ¹⁷⁵ Нf. Із вимірів спектрів електронів внутрішньої конверсії вперше отримані граничні значення інтенсивностей переходів з енергіями 203 та 396 кеВ. Розраховані інтенсивності та $\log ft$ для семи гілок електронного захвату ¹⁷⁵Нf. Вперше отримані обмеження на $\log ft$ β -переходів на рівні $9/2^+$ 113,8 кeB, $9/2^-$ 396,3 кeB та $9/2^+$ 546,6 кeB ¹⁷⁵Lu.

Систематизовані експериментальні значення log ft по дозволених, заборонених 1-го порядку та заборонених 1-го порядку унікальних β -переходах в непарних деформованих ядрах рідкоземельної групи (151 < A < 193) за правилами добору по асимптотичних квантових числах. Побудовані статистичні розподіли та розраховані середні значення $\log ft$ для переходів різних типів. Встановлено, що різниця в ймовірностях непригнічених та пригнічених β -переходів спостерігається для всіх типів переходів. Найбільш суттєва вона для дозволених розпадів (в 40 разів) і дещо менша для заборонених 1-го порядку (в 4 рази) та заборонених 1-го порядку унікальних (в 2,5 раза) β-переходів. Такий аналіз для заборонених 1-го порядку та заборонених 1-го порядку унікальних β -переходів виконано вперше. Систематика буде корисною як при аналізі щойно отриманих значень $\log ft$, так і при оцінці ймовірностей ще незареєстрованих гілок розпаду в деформованих ядрах.

Всі отримані нами значення $\log ft \beta$ -переходів із розпаду ¹⁷⁵Нf узгоджуються з приведеною систематикою і не протирічать іншим експериментальним даним для цієї області ядер. Це дозволяє зробити висновок, що ідентифікація рівнів ¹⁷⁵Lu і поставлені їм у відповідність значення асимптотичних квантових чисел відповідають дійсності.

- M. Shamsuzzoha Basunia, Nucl. Data Sheets 102, 719 (2004).
- L.A. McNelles and J.L. Campbell, Nucl. Instrum. Methods 109, 241 (1973).
- В.В. Булгаков, В.И. Гаврилюк, А.П. Лашко и др., Препр. КИЯИ-86-33 (Киев, 1986).
- В.П. Хоменков, Автореф. дис. на здобуття наук. ступеня канд. фіз.-мат. наук (Ін-т ядерних досліджень, Київ, 2003).
- А.П. Лашко, Т.М. Лашко, Ядерна фізика та енергетика 13, № 1, 7 (2012).
- K. Singh, T.S. Gill, and K. Singh, J. Phys. Soc. Jpn. 57, 3762 (1988).
- 7. W.W. Pratt, Phys. Rev. C 13, 2591 (1976).
- K.H. Johansen, B. Bengtson, P.G. Hansen, and P. Hornshoj, Nucl. Phys. A 133, 213 (1969).
- 9. A. Jasinski and C.J. Herrlander, Ark. Fys. 37, 585 (1968).
- L. Funke, H. Graber, K.H. Kaun *et al.*, Nucl. Phys. **70**, 347 (1965).
- E.N. Hatch, F. Boehm, P. Marmier, and J.W.M. DuMond, Phys. Rev. **104**, 745 (1956).

- E. Bashandy, M.S. El-Neser, and T. Sundström, Ark. Fys. 21, 49 (1962).
- B. Harmatzn and T.H. Handley, Nucl. Phys. 81, 481 (1966).
- А.Г. Троицкая, В.М. Карташов, Г.А. Шевелев, Изв. Ан КазССР. Сер. физ.-мат. 4, 8 (1977).
- В.В. Булгаков, В.И. Кирищук, А.П. Лашко и др., Изв. АН СССР. Сер. физ. 53, 855 (1989).
- K.S. Krane, Atomic Data and Nuclear Data Tables 18, 137 (1976).
- 17. BrIcc v.2.3S Conversion Coefficient Calculator [http://www.bricc.anu.edu.au].
- T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya *et al.*, Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008).
- ENSDF analysis programs LOGFT [http:// www.nndc.bnl.gov].
- Е. Конопинский, М. Роуз, в Альфа-, бета- и гаммаспектроскопия, под ред. К. Зигбана (Атомиздат, Москва, 1969), с. 18.
- 21. G. Alaga, Nucl. Phys. 4, 625 (1957).
- 22. Л.Н. Зырянова, Уникальные бета-переходы (АН СССР, Ленинград, 1960).
- 23. К.Я. Громов, в *Структура сложных ядер*, под ред. Н.Н. Боголюбова (Атомиздат, Москва, 1966), с. 299.
- B. Singh, J.L. Rodriguez, S.S.M. Wong, and J.K. Tuli, Nucl. Data Sheets 84, 487 (1998).
 Evaluated Nuclear Structure Data File (National
- Evaluated Nuclear Structure Data File (National Nuclear Data Center, Brookhaven Nat. Lab.) [http:// www.nndc.bnl.gov].
- 26. А.П. Лашко, Т.М. Лашко, УФЖ **52**, 826 (2007).

Одержано 15.05.14

А.П. Лашко, Т.Н. Лашко, В.А. Мартинишин ИССЛЕДОВАНИЕ РАСПАДА ¹⁷⁵Hf

Резюме

Интенсивности линий электронов внутренней конверсии и γ -лучей из распада 175 Hf ($T_{1/2} = 70$ суток) измерены при помощи магнитного β -спектрометра типа $\pi\sqrt{2}$ и двух коаксиальных HPGe-детекторов. На основании этих данных рассчитаны интенсивности ветвей электронного захвата и log ft β -переходов. Впервые получены ограничения для log ft β -переходов на уровни $9/2^+$ 113,8 кэВ, $9/2^-$ 396,3 кэВ и $9/2^+$ 546,6 кэВ 175 Lu.

A.P. Lashko, T.N. Lashko, V.A. Martinishin

THE STUDY OF $^{175}\mathrm{Hf}$ DECAY

S~u~m~a~r~y

The intensities of lines of the internal conversion electron and γ -rays emitted at the decay of 175 Hf nucleus ($T_{1/2} = 70$ days) have been measured with the help of a $\pi\sqrt{2}$ magnetic β -spectrometer and two coaxial HPGe-detectors. On the basis of those data, the β -ray branching ratios and the log ft values for β -transitions are calculated. The limits on the log ft values for β -transitions to 175 Lu levels $9/2^+$ at 113.8 keV, $9/2^-$ at 396.3 keV, and $9/2^+$ at 546.6 keV have been found for the first time.

ISSN 0372-400Х. Укр. фіз. журн. 2015. Т. 60, № 10

1012