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HYDRODYNAMIC, KINETIC MODES
OF PLASMA AND RELAXATION DAMPING
OF PLASMA OSCILLATIONS

The hydrodynamics of a completely tonized two-component electron-ion plasma is investigated
at the end of the component temperature and velocity relazation. The problem of accounting for
the peculiarities of the Coulomb interaction in the plasma kinetics is discussed. The investiga-
tion is based on the Landau kinetic equation and the Chapman—Enskog method generalized on
the basis of the Bogolyubov idea of the functional hypothesis. Nonlinear hydrodynamic equa-
tions are obtained. Linearized hydrodynamic equations are built, and the hydrodynamic and
kinetic modes of the Landau kinetic equation are investigated in the hydrodynamic approrima-
tion. The effect of the relazation processes on the evolution of the system is investigated. On
the basis of the Viasov-Landau equation, the plasma modes are investigated in the main hydro-
dynamic approximation. Some of them describe the relazation damping of plasma oscillations,
which s much more important than the Landau damping at small wave vectors k — 0.
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1. Introduction

In his known paper [1], L.D. Landau obtained a
kinetic equation for a completely ionized two-com-
ponent electron-ion plasma. This equation is widely
used in the investigation of the plasma kinetics (see,
e.g., [2-4]). Of course, it describes the situation in
plasma approximately. The Landau equation involves
only the short-range part of the Coulomb interacti-
on, because the Coulomb potential is artificially cut in
the collision integral at the Debye radius. This can be
done exactly by the Balescu—Lenard equation. In the
Landau collision integral, the Coulomb potential is
also cut-off at small distances, where this potential is
big, and the situation needs a special attention. This
was done in the exact consideration by A.A. Rukhad-
ze and V.P. Silin. A comparison of the mentioned
theories shows that the Landau kinetic equation de-
scribes effects of the short-range part of the Coulomb
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interaction in plasma with a logarithmic accuracy (see
the discussion of the mentioned results in [2]).

The present paper is devoted to the investigation of
hydrodynamic states of a two-component completely
ionized electron-ion plasma on the basis of the Lan-
dau kinetic equation and the consistent application of
the Chapman—Enskog method [5,6]. Special attention
is paid to accounting for relaxation processes in the
system. The term “relazation process” is understood
here in a narrow sense as a process that is possible in
spatially homogeneous states. The obtained equations
are applied to the investigation of the hydrodynamic
and kinetic modes of the Landau kinetic equation in
the hydrodynamic approximation. The corresponding
results cannot be found in the literature.

In this connection, we note that, in the hydrody-
namic approximation, the complex frequencies \;(k)
of modes are calculated only for small wave vectors
E (A\i(k = 0) = 0 for hydrodynamic modes, and
Ai(k = 0) # 0 for kinetic modes). The Landau kinetic
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equation has six hydrodynamic modes and an infinite
number of kinetic ones (see, e.g., [7]). The number of
hydrodynamic modes is equal to the number of param-
eters defining the equilibrium distribution functions
(DFs) (in our case, they are: the component particle
densities n. and n;, temperature T', and velocity v,,).

However, the Landau collision integral does not
involve the long-range part of the Coulomb interac-
tion. Therefore, these effects should be described by
some corrections to the Landau kinetic equation. An
important idea in this direction is connected with the
Vlasov term, which describes the one-particle effects
of a self-consistent field. However, the investigation
of the Vlasov-Landau kinetic equation on the ba-
sis of the Chapman-Enskog method meets difficul-
ties. Probably, one could overcome these difficulties,
by considering the intrinsic degrees of freedom of the
electromagnetic field in plasma. This idea is suggested
by the results of D. Bohm and D. Pines [8], which were
developed further in our paper [9]. It is better to in-
vestigate the interacting systems (in our case: an elec-
tromagnetic field and a system of charged particles
with an effective short-range interaction) in terms of
their modes to avoid the high dimensionality prob-
lem. In such a theory, one needs the modes of the
Landau kinetic equation. Therefore, the problem con-
sidered in the present paper is an important part of
this program, which will be elaborated elsewhere.

Hydrodynamic states of plasma are investigated in
the present paper with regard for the relaxation pro-
cesses. The pioneering investigation of the relaxation
of the component temperature T,(t) (a = e,i) for a
spatially uniform quasiequilibrium plasma was con-
ducted by L.D. Landau [1] on the basis of his ki-
netic equation and gave the corresponding relaxation
time 7p. According to his assumption, the plasma
components are described in this situation by the
Maxwell DF with time-dependent component tem-
peratures wqp (T, (1))

Tq _

wap(T) = W@ €ap/T (1)
(eap = P?/2m, is the energy of a particle, n, is the
component particle density). In this approach, the
component velocity v, (t) relaxation can be investi-
gated too, and the corresponding relaxation time 7,
can also be obtained [10], by using wq p— v, ) (T)
as the nonequilibrium DF.
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A hydrodynamic theory for a completely ionized
plasma on the basis of the Landau kinetic equation
was built by S.I. Braginsky [11, 12]. In his theory,
the plasma is completely described by the compo-
nent variables n,(z,t), T, (z,t), von(z,t). In [11, 12],
as usually in hydrodynamics, the gradients of these
reduced description parameters (RDPs) are assumed
to be small (let g be the corresponding small pa-
rameter). The difference of the component veloci-
ties en(w,t) — vin(x,t) was considered as a small
quantity of the same order g¢.From the begin-
ning, the Landau kinetic equation was simplified by
S.I. Braginsky, by using the smallness of the electron-
to-ion mass ratio m./m; = o2 with some discussion
of the significance of contributions to the nonequi-
librium DFs. However, this was done without a sys-
tematic perturbation theory in the small parame-
ter o and corresponding estimates of the calculation
accuracy.

Braginsky’s investigation of the plasma hydrody-
namics is based on a modification of the Chapman—
Enskog method. He assumed that the main contri-
butions to the nonequilibrium DFs of the plasma
components fég) (z,t) are given by the Maxwell dis-
tributions wl,(,t) = W p—mave(a,t) Tal@,t)) (this
statement can be called the Landau assumption or
the local equilibrium assumption). However, these
DFs are not an exact solution of the kinetic equa-
tion in the zero-order approximation in gradients
(even for a small difference vep(z,t) — vin(2,t)). So,
this is a deviation from the standard formulation
of the Chapman-Enskog method (see, e.g., [5, 6]),
and the DF wf (z,t) cannot describe the sys-
tem adequately. The Braginsky modification of the
Chapman-Enskog method can be formulated as fol-
lows: to find a solution of the Landau kinetic equa-
tion near the states described by the DF wk, (z,t). It
is also necessary to note that his investigation of the
transport phenomena omits a discussion of the diffu-

sion processes.
In the present paper, plasma hydrodynamics is in-

vestigated near the end of the component tempera-
ture and velocity relaxation processes. In this situa-
tion, the DFs of the plasma components fég) (z,t) can
be calculated in an additional perturbation theory in
small differences of the component temperatures and
velocities vep (z,t) — vin(2,t), Te(x,t) — T;(z,t) (the
exact definition of the corresponding small parameter
u is given below).
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The theory proposed in the present paper is a ge-
neralization of the Chapman-Enskog method based
on the Bogolyubov idea of the functional hypothesis
(see about this hypothesis in [6]). This idea is a basis
of the Bogolyubov formulation of the standard Chap-
man-Enskog method [5, 6]. However, it allows us to
use a new RDP in the theory and new small param-
eters for the construction of a perturbation theory.

The generalization is made to account for the tem-
perature and velocity relaxation processes in plasma
hydrodynamics consistently and to understand them
in terms of the kinetic modes of the system. In
the solution of the obtained general integral equa-
tions, we restrict ourselves to the study of relax-
ation processes in the one-polynomial approxima-
tion, which is equivalent to the linear formulation
of the Landau assumption. The two-polynomial ap-
proximation will be discussed in a subsequent pa-
per. Note that a general nonlinear theory which
describes relaxation processes in a vicinity of the
standard hydrodynamic states was discussed in our
paper [13].

Our previous results devoted to accounting for re-
laxation phenomena in plasma hydrodynamics were
published in [14-17]. The present paper gives a cor-
rected formulation of these results and proposes the
investigation of plasma modes in the hydrodynamic
approximation with regard for relaxation phenomena.
The method, by which modes are obtained in the hy-
drodynamic approximation, is rather known [7, 18],
but the investigation of plasma modes on the basis of
the Landau equation taking the relaxation phenom-
ena into account cannot be found in the literature. In
this paper, not only the eigenvalues A;(k) of the gen-
eralized hydrodynamic matrix (the complex frequen-
cies of the system) are investigated, but also the cor-
responding eigenfunctions are calculated in order to
show the coherent movement of the system related to
each mode.

As noted above, the investigation of the Vlasov—
Landau kinetic equation on the basis of the Chap-
man-Enskog method meets difficulties. However, in
the last section of this paper, it will be shown that
the Vlasov-Landau kinetic equation can be applied
to the analysis of plasma modes taking the DF of the
system in the approximation of zero order in gradients
(i-e., neglecting the hydrodynamic dissipative proces-
ses: heat conductivity, viscosity, and diffusion). The
necessary DF can be found from the Landau equa-
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tion, because a self-consistent field in uniform states
is absent.

The plan of this paper is as follows: in Section 2,
the basic equations and definitions of the theory are
given; in Section 3, the hydrodynamic equations for
the parameters that describe the system are obtained;
in Section 4, the plasma component DFs are derived;
in Section 5, a linearized theory is built, and the dis-
persion laws for the modes of the Landau equation
and the corresponding coherent movements are inves-
tigated; and, in Section 6, the modes of the Vlasov—
Landau kinetic equation are discussed, by neglecting
the hydrodynamic dissipative processes.

2. Basic Equations of the Theory

The Landau kinetic equation can be written in the
standard form

afap (mat) _ Dan a.fap ('rat)
T——m—aw“‘[ap(f(m:t))a (2)
where fqp(z,t) is the component DF (a, b, ¢, ... = e, ).

The Landau collision integral I,, is given by the for-
mulas [1]

Iy (f) = Z 277(€a€c)2LJac(p):
’ 0

Of cpr of
Jac = 35 d? ’{ai_ c’ﬂ}x
!
« D (2 - ), (3
mg Mg
Here, e, is the component charge (e, = —e, e; = ze;

e is the elementary electric charge, z is the ion charge
number), L is the Coulomb logarithm, and

Dyi(q) = (*0nt — anar) /- (4)

The component temperature Ty, velocity v,,, and
particle density n, are introduced by the standard
definition [3, 6] in terms of the DF

Ng = /dgpfap; Tan = MaNgUan = /d3pfappna

3 MeNgVUs?
_fatara :/dgpfapgap,

Ea = EnaTa + 5
where 74, and ¢, are the component momentum and
energy densities. The total particle and mass densi-
ties of the system are given by the formulas

n=>3 e, p= Mana. (6)
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From (2) and (5), the following equations can be
obtained:

Ona _ _L OTan O0Tan _ _atanl +R

ot Mq Oy ot oz an (7)
0o Oqan

E - 8xn + Qa:

which express the conservation laws. Here,

_ p _ p
qan:/dgp 5apm_T;fapa tain :/d3p plm_nafap (8)

are the energy and momentum component fluxes, and

Qa = /d3p 6apIap (f): R, = /d3p pnIap (f) (9)

are the energy and momentum component sources.
The total fluxes are given by the relations

tnr = Ztanla qn = Z Gan-
a a

It can be shown from the expression for the Landau
collision integral that the total sources are equal to
Zero:

Q=) Qu=0, Ry=) Ru=0.

(10)

(11)

The system is considered here at the end of the tem-
perature and velocity relazation. It is evident that, af-
ter the end of those processes, the temperature T and
the velocity v, of the system are given by the rela-
tions

3 1
Tpn = Zﬂ-an = PUp, € = Zsa = §TTL+ 5/)7}27 (12)
a a

where 7, and ¢ are the total momentum and energy
densities of the system. Therefore, in what follows,
we use the deviations of the electron temperature and
velocity from their standard hydrodynamic values,

T=T, =T, up=ven—vl, (13)
which are estimated by the expressions
Up ~ pN/T/me, 7T~pT; p<l. (14)

In the standard hydrodynamics of two-component
fluids [6], the component particle densities n,, tem-
perature 7', and velocity v,, are used as the RDPs,
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and it is assumed that the relaxation is finished. Note
that v” is expressed in terms of the diffusive flux,
which, in turn, is expressed in terms of ng,, T, v,. For
the hydrodynamic processes in the presence of relax-
ation, the component particle densities n,, tempera-
tures T,, and velocities v,, play the role of the RDPs
[11, 12]. Relations (5), (12), and (13) show that the
deviations of the ion temperature 7; and the velocity
vin from their standard hydrodynamic values are ex-
pressed in terms of the variables 7 and wu,,. Thus, the
RDPs of the theory with account for the relaxation
&a(z,t) can be chosen as

ne(z,t) = & (x,t), ni(x,t) = &(z,t),

On (2, 1) = Eapnl,t), T(x,1) = (a2, 1),
un(,1) = goin(w,t),  7(2,t) = Gio(, b).
The construction of a reduced description of the

plasma by the parameters (15) is based here on a
functional hypothesis [6] of the form

fap ("B7 t) —>fap (1’.7§(t)) )

t>10

(15)

(16)

where fop(z, &) is a functional of the variables &, (')
as functions of 2', and 7y is a time which is much
shorter than the subsystem velocity and temperature
relaxation times 7, 7. The dependence of the RDP
on the coordinates is supposed to be weak. Thus, be-
sides the small parameter of our theory u, the gradi-
ents of the RDPs are small as well:

(17)

The parameter ¢ is estimated as the ratio of the
mean free path to the characteristic length of inho-
mogeneities in the system.

All the results of the theory are calculated finally
in an additional perturbation theory in the small
electron-to-ion mass ratio

o = (me/m;)/> (18)

3. Hydrodynamic Equations

According to the functional hypothesis (16), the hy-
drodynamic equations have the structure

0a(z,t) _
— 5 = Lale, fED)). (19)
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Here, the functionals L, (z, f) can be calculated from
(5)—(11) and (15), which gives the relations

87’La o ]. 87Tan 8’Un o 1 87‘(1 6tn,
ot ma Oxp ’ W__{U”a_xl_a_;m}
or T 1 Omen 1 ,0m
B 0 2y Br 3 9en
2, 0tu 2 Ogm
3n " dx, 3ndz,’
% - melne Ven 667;7 + melne Fen (20)
1 Otens ngn
" men. 0z Ot
or T OTen 1 Omen o 2 6tenl

Ot n.m, Oz, 3n. Ox, 31, 3n. " B, x
2 aCIen 2 oT
- — VenRen) — Sr-
3n. Or, 3n. (Qc = Venien) ot

To obtain the hydrodynamic equations with regard
for relaxation processes, one has to calculate fluxes
(8) and sources (9) appearing in (20). These hydro-
dynamic equations are general and are nonlinear.

The necessary DFs fqp,(z,£) can be found from the
kinetic equation (2), which can be rewritten in view
of the functional hypothesis (16) and formulas (19) in
the form

0 fap (2,
Z/dg 6501 37

_ _p_nafap (maf) I,
mge O,

Mﬂfj@nz

p(f(2,)). (21)

This equation is solved in a double perturbation the-
ory in the above-introduced small parameters u and g

fap= Z Zf"”” +0 (1’9" 1?g", 1’g% ), (22)
m=0n=0
where féﬁ””) ~ u"g™. The contributions fé%’”) (m =

=0, 1) are necessary to obtain fluxes (20), and fé;,’m)
(m = 0, 1) are necessary to obtain both the fluxes and
the sources in (20), and fa;,’z)

only the sources.

is necessary to obtain

4. Component
Distribution Functions and Fluxes

The generalization of the Chapman—Enskog method
presented here is based on the functional hypothesis
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(16), the corresponding definition of the RDP, and a
special perturbation theory. In this section, the solu-
tion of the kinetic equation (21) with additional con-
ditions following from the definition of RDP is dis-
cussed.

In the leading approrimation, the nonequilibrium
DFs are obviously the Maxwellian ones (1)
(23)

= Wa,p—mgv; Wap = waP(T)'

f(?, 0) —
The DFs fé%l) describe the dissipative terms of
standard hydrodynamics and are found in the form

(3715 oT

fé?,l):wa{ 5,7142?5() oz, — AL (p+
b n

ov
+ oA, ,
o ,@Lﬂnw

which leads, according to Eq.(21) to the following
integral equations for the functions ANt (p), AT (p),
and Aanl( )

(24)

N 1 1
KA{I,\% (p) = DPn |:_ - 6ab:|;

P NaMg
N 3 nm,
KAfn(p) = pnﬁ |:§ + P - /Bsap:|) (25)

A% (p) =~ hot(p)

a

(B=T7", hu(p) = pupr—0mp®/3). Here, the integral
operator K is defined for an arbitrary function h,(p)
by the relations

(p) = Z/dSp'Kab(p,p')hb(p'),
b
wapKab(papl) =

6Iap (f)
6fbp’

—Wpp! ab(papl)a

Map(p,p') =

p—p+muv,p’'—p +mu, fe—rw.

(26)

Equations (25) show that the functions AZ (p),

AN (p), and AY,,(p) have the structure
Agn(p) = PaA7 (Beap),
Agt (p) = pn A" (Beap), (27)

ant(P) = hni(P) AL (Beap)-
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The definitions of v,, and T' (12) in terms of the DFs

(0 2 give the following additional conditions for the

solutlons of the integral equations (25):
Z(pZAf(Bgap»a =0, Z(pZAJaVb (Beap))a = 0. (28)

Here, for an arbitrary function h(p),

(p)>a E/d3pwaph(p)

The functions AT ANv_ and AY are sought in the

a
form of Sonine polynomlal series

AN (Beap) = ZngSW (Beap):
Al ( (Beap) = Zgans'r?)z /2 (Beap), (29)
o (Beap) = ZganSS/Z (B€ap)-

The Sonine polynomials are defined by the formula

[e% — 1 T, ., —Q dn —z,a+n
S (x) = i (e~"a®th), (30)
and they are orthogonal
r r 1
/ —z aSa ( ) o (1.) dr = %&m,_ (31)

0

With the help of (31), the additional conditions
(28) can be rewritten in terms of the coefficients g2,
and g2Vt as

T _ Ny _
E MaNafGao = 0, E MaNaGyy = 0.
a a

The integral equations (25) can be reduced to a lin-
ear set of equations for the coefficients g7, gV¢,
and g7, . It contains the infinite number of equations,
and the number of polynomials in the expansions
(29) should be artificially truncated in order to solve
them. The DFs fég’l) are necessary for obtaining the
fluxes of the order (u°g¢') in (20). According to (24)
and (31), the expressions for fluxes (8) in the accom-
panying reference frame in terms of the coefficients

(32)
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gl gNe and gY, are given by the formulas

871[; Ny 8T T
amngao + a 9ao |5

5
gt = 5naT? Z [g%b — s ”]— +

oT
al]Tn

Oun | Oui_20um s
ox; Oz, 30z, nt

0,1) _
7rfm’ ) = nem,T

s (33)
+ _naT2 [ggo

0,1
tz(ml)_"agsomaT2 {

As is seen, the fluxes are expressed in terms of only
two coefficients from AL and AN and only one coeffi-
cient from AY. That is why these functions are sought
in the two- and one-polynomial approximations, re-
spectively.

By multiplying two first equations in (25) by
wapanZ/2 (k = 0,1), summing over the subscript
n, and integrating over d°p, we obtain the following
linear set of equations for the coefficients ¢ and g7, :

Z Zgg;LGak,bn = —Yar,
n=0,1 b
3n;m; T
D D G Getpn = =0,
n=0,1 b P
3n;m;T
N, ilTg
Gikbn = Or0,
3nemeT
S 3 oG = 2L,
n=0,1 b p
3nemeT
S Y oG = - L,
n=0,1 b P
Here,
P — Me 15
Yoo = 3raneniu’ Yo = _?na (35)
p

(re = 1,7 = —1), and Gag pn are the integral brackets

Gk = {0152 (Beap) , 1S (Bewy) an, (36)

where
{9,h}as = / &Ppd’p'g (p) wapKap (p,P') R (p').  (37)

The coefficients g7} and g7, are calculated from (32)
and (34) in a o perturbation theory.
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By multiplying the third equation in (25) by
Wap hni(p), summing over the subscripts n, 1, and in-
tegrating over d*p, we obtain the following linear set
of equations for the coefficients g3:

> giHao,p0 = —10n,m,T, (38)
b

where

Hak,bn =

= {him (0)SY 2 (Beap), him (9) Sy (Bewp) Yab- (39)

The coefficients g3, are calculated from this set of
equations in a o perturbation theory with account for
(32). The expressions for g%, g7, and ¢'¢ (k= 0,1)
are rather lengthy. That is why they are not given
here and can be found in [16,17].

The DFs fap describe relazation processes in a
spatially homogeneous system and are sought in the
form

é;)’[)) = Wgqp {Aa (BEap) 7+ Ban (p)“”}p—w—mv’ (40)
where
B, (Bfap)-

The integral equations for the functions A, and
By, can be obtained from Eq. (21):

Ban(p) = DPn (41)

KAa(ﬂé'ap) = Ar4, (/Bsap)a

A (42)
K Ban(p) = AuBan(p),

where A\, and A7 are the relaxation rates for the vari-
ables u,, and 7, respectively (see Eqgs. (61)). Fquations
(42) are eigenvalue problems for the operator K of the
linearized collision integral and describe the kinetic
modes of the system. These equations follow from our
generalization of the Chapman—Enskog method.

The definitions of u, and 7 (13) in terms of the
DFs f,§,1;°) give the following additional conditions for
the solutions of the integral equations (42):

(Aa(Beap))a =0, (Aa(Beap)eap)a = §rane:
(Ba(Bap)eap)a = gsn (43)
(Se = 1,81' = —0'2)
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The functions A, and B, are sought in the form of
Sonine polynomial series:

Bgap Z gan ﬂEa )
(44)
o (Beap) = Z hanSy/* (Beap)-
By multiplying the first equation in (42) by 51/2 and

integrating over d®p, we obtain the followmg set of
equations for g,r and Ar:

Z Z gonVe ak,bn = )\Tgak (k + 3/2) (45)
n=0 b k'\/_

where

Vak,bn = {S;/Z (Bgap) 7571/2 (BEbp)}ab- (46)
By multiplying the second equation in (42) by anB/Z,

summing over the subscript n, and integrating over
d3p, we obtain the following set of equations for hqp,

and Ay:
4Tmana

o0
Z Z hbnGak,bn >\uhak 7y =
n=0 b \/7_T
with the coefficients Gy, ppn, defined in (36).

The additional conditions (43) lead to the following
expressions for the coefficients gq0, go1, and hgo:

Ne
heo = B: hio = __'602)
i (48)

L'(k+5/2) (47)

Jao = 0>

el :_Ba el :_EB'

n;
These coefficients define the DFs féll, ) in the one-
polynomial approximation, which coincide with the
DFs given by the above-mentioned Landau assump-
tion [1]. In this approximation, the relaxation rates
calculated from (45) and (47) are given by the ex-
pressions

7/2,1/2
Ar = 2T7r(nl +ne)Aa? + O(o?),
(49)
95/2,1/2
)\u = 73 TL,/)\ + O (02),
where
2 4
L
A= 2% (50)
(meT3)1/2
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These results coincide with those obtained in [1,

10, 11, 19]. It can be shown that the expressions for
the Landau distribution functions and for the relax-
ation rates (49) are the principal-order solutions of
(42) in a o perturbation theory (see [15]). That is
why we restrict ourselves to the DFs f(1 0) , and the
rates Ar, A\, are taken in the one-polynomial approxi-
mation. The two-polynomial approximation for these
quantities will be discussed elsewhere.

The DFs féll,’l) describe the relazation processes in
spatially non-uniform states and are sought in the
form:

6n

ulN| b

+ Z At (p) w5 } : (51)
nJp—p—mav

The integral equations for the functions A}, AY.,,

ATT ATN;, ATV AuT AUNb

an > an anl? anl’ anl ? and AZU ni are ob-
tained from the kinetic equation (21) with regard for
the results for the DFs f;, (1:0) and the relaxation rates
Au; AT

The integral equations for A7, and A% , have the

form
S NeS s
KAT =__°¢¢ - 2 GT
am (P) menanm ngmeT PrnGrnm +
NeTyq 3 Eqp
+ mananm (2 T) +
+ A (P) AT,

(52)

2(1—o¢?
1 -0 ne. <l_nera> N 2nera]+

3 (ne +ny)

2 3
+ Oty 2 T <——&i> nl

Ng 3n,T

_pnpl + Aan[ ( ) >\U7

Te
manaT
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where

G}rim = Z {561)’ Agnm}eb’
b
= Z {pn, A‘gm}eb'
b

Other integral equations of the order u'g' are not
given here because of their complexity. However, the

(53)

corresponding terms in the DF f(1 Y do not con-
tribute to the linearized theory, which is discussed
in the next section.

Equations (52) show that the functions AT and
A% . have the structure

Az, (p) = prAL (Beap),
Abn (p) = hou(p) AL (Beap)

(the contraction of the second equation in (52) with
respect to the subscripts n and [ vanishes in the terms
with known functions). The functions A7 and AY are
sought in the form of Sonine polynomial series

(54)

BEGP ZganSS 2 ﬂgap)
(55)
a (Beap) = Zg};ns,i/2 (Beap)-

The additional conditions for the solutions of
Egs. (52), which follow from definition (5) of the
RDPs u,, T, give the restriction only on A7:

(As(Beap)eap)a = 0. (56)

This condition in terms of the coefficients g7, takes
the form
9ao = 0. (57)
The contributions of two first terms from (51) to the

fluxes in the accompanying reference frame are given
by the formulas

z(zlnl) = ”amaTg;();—a;>
1) = ST [glp — g7a) 5 59
élnll) = manaT” gy g—lg + aaTui - %gz: nl
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(a tilde in these expressions indicates that they give
only the parts of the fluxes that contribute to the lin-
earized hydrodynamic theory). Condition (57) shows
that one can restrict oneself to the one-polynomial
approximation in the calculation of these fluxes.

By multiplying the first equation in (52) by
wappme 2, summing over the subscript m, and in-
tegrating over d°p, we obtain a linear set of equa-
tions for the coefficients ¢7,;. By multiplying the sec-
ond equation in (52) by wep hni(p), summing over the
subscripts n, [, and integrating over d3p, we obtain a
linear set of equations for the coefficients g%,. The co-
efficients from these sets of equations are calculated
in a o perturbation theory (see the results in [16]).

The DFs fé,l,’Z) describe the effect of the Burnett
terms on the relaxation processes and are necessary
only for the calculation of the sources in the hy-
drodynamic equations. The method of obtaining the

DF fé;,’z) is the same as for obtaining the DFs fég’l)

and fé};”, but the corresponding equations are very
lengthy, and that is why their derivation is omitted
here. We restrict ourselves in the calculations of the
DF féll,’Q) to the one-polynomial approximation.

5. Linearized Hydrodynamic
Equations and Modes of the System

The component DF and the fluxes are calculated
above in the general nonlinear case. In this section,
the linearized hydrodynamic equations are investi-
gated in order to obtain the dispersion laws for the
plasma modes (see an example of such investigation
in [7]).

In the linearized theory, the RDPs &, (z,t) are
taken in a vicinity of their equilibrium values

ne =ngd + ong (z,1),

T =T + 0T (x, 1),

Uy, = vy (1, 1),
Up = Oy (X, 1), (59)
T =07 (2,1),
and the deviations 0&,(z,t) from their equilibrium
values 59 are small (in the reference frame under con-
sideration, v&4 = 0). The equilibrium values of the
RDPs &89 are constants, and the condition of elec-
troneutrality

ned = znj? (60)

is satisfied.
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The linearized hydrodynamic equations must be ro-
tationally invariant and, therefore, have the structure

Or0ne = Yee AdNe + Yei AdN; + Ve divov + ver AT +
+ Yeudiviu + Yer AdT,

Oon; = Yie Adne + v Adn; + vipdivov + v, AT +
+ Yiudivéu + v AdT,

Opdu; = Pegrad,on. + pigrad;on; + n,Adv; +

+ fygrad;divév + pSrgrad, 0T + (61)
+ nuAduy + qugrad;divéu + S,grad,dr,

00T = e Adn, + a; Adn; + aypdiviv + ar AdT +

+ aydivéu + o, AdT,

Oduy = — Ay 0u; + xuAdu; + Xugrad;diviu +

+ xrgrad,or,

00T = —ApdT + 0, diviu + 0, AdT.

Four first equations here (three scalar ones and a vec-
tor one) describe the evolution of the standard hy-
drodynamic variables, and the last two equations de-
scribe the evolution of the relaxation RDPs u, and
7. The coeflicients appearing in (61) are constants
and should be calculated. Comparing (61) with (20),
using (60), and calculating the fluxes and the sources
in the linearized theory with the help of the obtained
DFs, we get these coefficients in a o perturbation
theory:

V24172
- A+0 (o),
T 1t )2+ 2) (@)
2 T
Qe = \/_+7Z _A+O(U))
201+ 2)(V2 + 2) n
__xr
" 3 25
T = A+0O )
Tt 2)AVR + 132) (@)
_ 2Tz 9 o 2.
Qy = 3012 +0(0%), a;=0(c);
T
ﬂizﬂezﬂa /8:_ - +O(02)7
niMe
1
Br = - 2 +0(0®);
me
Yie = 0(0?), 7i=0(0"), 7w = —ni,
Yiu = ni20°, v = 0(0?), vir =0,
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Yei = 0(02); Yev = —NGiZ, Yeu = —NiZ,
3 4v/2 4 132
er = 0, e =———F7=—A+0 ’
Y Y 16 22(\/5-{-2) (U)
_3 f 2+ 7z nl
e + O ;
:O( )a ﬁu=ﬂu/3,
v = —F=—No+0(c7), 7 ="n,/3;
=7 \[Z4 o +0(0%), 7o =1,/
25
= A + O (o ,
22(1+ 2) (4V2 + 132) (@)
2T 1
0, =———— 2
3 z+1 +0(%);
15
p= A g0l 1+0
X 4z (3\/§ + z) (@),
5
Cu= ——— A — 82T (°)+ =+ 0(0),
X 4z (3\/_ + z) (g B )A (@)
(\/_ +72) 1
, = — 4+ 0 (o), 62
42+ 132 me (@) (62)
where the notations
_ 5niz T (294, +921)
9B = +
4Gel,el — 30)\unizmeT z+1
3
+ 595,»\{8”% - g;‘OT} )
42g% n;zm?T? (63)
ga = ;
2G — 1155 ,n;zm313
G = {S (/Bsep)pnpmpla (ﬂsep)pnpmpl}ee;
5/2
Ao T
n;etL\/2mm,

are introduced. In (62) and in what follows, the su-
is omitted in 7% and ndY;

perscript “eq” °d; and gg))
and gg)) are the contributions of the order o° to ga
and gp. The explicit expressions for x, and X, as
functions of z are not given here, because they are
too lengthy. The second terms on the right-hand sides
of expressions (62) for them are given by the source
R (but Q1% = 0(0)).

Performing the Fourier transformation in Egs. (61),

5¢a (1) = / e—iknmn 5E (o, 1)l (64)
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and choosing the z-axis of the coordinates along the
wave vector k, we obtain the following linearized hy-
drodynamic equations:

O10ne = —k*(YeeONe + YeiOn;) + iYeukdvy —

— Vo1 k20T + iYeukdty — Yor k207,

0r0n; = —k>(YieOne + 7iioni) + iyinkdv, —
— k0T + ivyiukduy — vir k26T,
O0rdvg = ik(Bedne + Bidn;) —

+ikBroT —

(nv + ﬁv)kzévx +
(N + T ) k> Sy + ik B, 6T,

(65)
O0rdvy,» = —anU6Uy7Z - k2nu5uy7z,
00T = —k*(ae0ne + aidng) + i kdvg, — E2ardéT+
00T = —( A1 + 0.k*)61 + ikf,0u,,
+ikaydu, — k2o, o,
Ordty = —(Ay + E*Xu + k2 Xu)0u, + ikx, 0T,

Orduy » = —(Ay + Xuk2)(5uy7z.

Equations (65) can be written in the form
=2 Mo

that defines the generalized hydrodynamic matrix
Mo (k). In order to solve them, let us consider the
eigenvalues \;(k), left and right eigenvectors v;, (k)
and ;o (k) of the matrix My (k) given by the rela-
tions

Z Moo (k

0y6€a (K, 1) k)5€qr (K, t) (66)

)iar (k) = Ai(k)pia(k),

(67)
Z Via (k) Maar (k) = Xi (k)hiar (k)
(e
with the normalization condition
Z 1/’1(1 801 a = 0. (68)

Now, the solution of Eq. (66) is given by the formulas

alk,t) = Z ci(k, t)pia(k),
i (69)
ci(k,t) = ci(k,0)ei L,
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Eigenvalues \;(k) are complex frequencies for modes
of the system, 66;(k,t), that are given by the expres-
sion

00;(k,t) = thia (k)6a (k) = 66;(k,0)e M. (70)

The eigenvalues \;(k) of the matrix M,y (k) should
be calculated from the equation
det |M (k) = M| =0 (71)
in the k-perturbation theory, because the magnitude
of the wave vector according to (17) is small (I is
the identity matrix). Then the eigenfunctions ¢;, (k)
and ;4 (k) can be calculated from definitions (67)
and (68) in the same perturbation theory. Further,
the obtained results should be investigated in a o-
perturbation theory.

As aresult, we obtain the eigenvalues (complex fre-
quencies)

A2 = ikes — Dgk? + O(k?),

T 1) +0(c?),

€

5(292 + 4v/2)
252(z4+v2)(z + 1)
A3 = —D3k* + O(K?),

Cs =0

D, =

O(0);

. [a(z)+ a(2)? —b(z)] .
AT e v o)

A = —D4k)2 + O(kS),

. [a(z) — Va(2)? —b(z)] .
e 10(z + v2)(2 + 1) +0();

As.6 = —nuk® + O(k*),

oy Oux- 2 3
A7 = —Ar |:07—+7>\1L_>\T:|k' +O(k‘),

Oux-
)\u - AT

A9,10 = — Ay — Xuk? + O(k4),

>\8:_)\u+|: Xu_>2u:| k2+0(k3)7

where the functions a (z) and b(z) are

b(z) = %(\/5-%2)

2
=B, 0 (4B413e),

T

The corresponding modes are given in the zero or-
der in k by the relations

0612 ~ Be(0ne + 0n;) £ cs0v, + froT,
0634 ~ 6T + ag 4dne + b3 40m;,

005 ~ dvy, 08 ~ dv., 067 ~ I,
003 ~ duy, 00y ~ duy, 6019 ~ du.,

(73)

where a3, a4, b3, and by are some lengthy coefficients
not given here.

Here, 66, ...,005 are the hydrodynamic modes of
the system; 007, ...,d01¢ are the kinetic modes of the
system, which are related to the relaxation; 66 » are
the sound modes, 6634 are the heat and diffusion
modes; 605 ¢ are the velocity v shear modes. The
mode 67 describes the evolution of the component
temperature difference 7, and the modes 6y, ..., 619
describe the evolution of the component velocity dif-
ference u,,.

6. Relaxation
Damping of Plasma Oscillations

In Introduction, it was noted that the problem of in-
vestigation of the modes of the Landau equation can be
considered as an important part of the investigation of
plasma modes. In the mentioned approach suggested
by D.Bohm and D. Pines in [8], the long-range part of
the Coulomb interaction is described by the degrees
of freedom of the plasma electromagnetic field and
the short-range part is accounted for by the Landau
kinetic equation.

In another approach, the effects of the long-range
part of the Coulomb interaction can be investigated
by adding the Vlasov term to the Landau kinetic
equation, which gives the Vlasov-Landau kinetic
equation [6, 20]

afap Pn 6fap
ot mg Oy,

+ e Ern (f) aa.];ap =lap (f)-

(74)

Here, E,(f) is the self-consistent electric field that
satisfies the Poisson equation

OFE
81': =47 zﬂ: €alg-

(75)

Unfortunately, the generalized Chapman—Enskog
method developed in the present paper, which is
based on the RDPs &, (x,t) (15) and a perturbation
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theory in the parameters p and g (17), cannot be
rigorously applied to Eq. (74). We note that there are
no attempts of a similar investigation in the literature
(see, e.g., [6,20]).

However, we can propose to study the problem in
an approximation based on the DF taken in the zero
order in the gradients of the RDPs £, (z). The Vla-
sov-Landau equation (74) in the spatially homoge-
neous case does not contain the self-consistent field,
and, thus, the necessary component, DF is given by re-
lations (40)—(42). For simplicity, we restrict ourselves
here to the one-polynomial approximation for the so-
lution of Egs. (42). In this approximation, the DFs are
given by formulas (23) and (40), in which the func-
tions A, and B, have the form

A

3 Ne |3 )
_B |:§ - Bsep]; Az = Bn_l |:§ - Bgip:|a

B.=8, Bi=-po*=*
n;

(76)

(see (44), (48)). As was noted above, such DFs fé;,’o)
coincide with the DFs given by the Landau assump-
tion discussed in Introduction.

The time equations for parameters (15) with regard
for the self-consistent field are obtained from defini-
tions (5), (7), (12), and the kinetic equation (74).
They coincide with (20), except for the equations for
v, and u,, which take the form

Oup, 1 om Oty
Zn _ 2 AL L =)
8t P Un 81‘1 6x, + n za: Calta s
ou 1 67” 1
Yon oy’ R.n (77)
ot MeNe v 6$l * MeTe
e 1 Otes Oup
Mme " MeNe 81’[ ot

Substituting DFs (23) and (40) with (76) into the
fluxes and the sources in the time equations (20) and
(77) gives hydrodynamic equations in the nondissi-
pative approximation (they do not contain terms de-
scribing hydrodynamic dissipative processes: viscos-
ity, heat conductivity, and diffusion) with account for
the self-consistent field and relaxation.

Applying the method developed in Section 5 to the
obtained hydrodynamic equations and (75) gives the
modes of the Vlasov-Landau kinetic equation calcu-
lated in a k, o-perturbation theory. It is necessary to
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emphasize that this gives the complex frequencies of
modes (72) without hydrodynamic damping rates of
the form v, = D,k?, but with some modification re-
lated to the Vlasov self-consistent field.

As a result, we obtain the sound modes

A1 = icsk + O(ka?, k?) (78)

with ¢s from (72); the heat mode

A3 = O(K?); (79)

the plasma (Langmuir) modes

Mg = =20 i fur = 2L 00,2 12, (80)
2 L

the shear modes

Xs6 = O(k?); (81)

the mode related to

A7 = —Ar + O(k?); (82)

the transversal modes related to u,

Xo10 = —Au + O(K?). (83)

Formula (80) contains the electron plasma frequency
defined by w, = (4me*nz/m.)"/?.

The estimates O(k?) are written in (79) and (81),
because, as usual, the hydrodynamic dissipation pro-
cesses give such estimates. The estimates in the ex-
pressions for the complex frequencies (78), (80), (82),
and (83) are obtained directly from Eq. (71) taken in
the approximation considered in this section.

In the framework of the used accuracy, all obtained
frequencies except for modes 4 and 8 coincide with ex-
pressions (72). Neglecting the self-consistent field can
be performed formally by the transition w, — 0. Af-
ter that, the plasma frequencies (80) coincide with
the expressions for modes 4 and 8 from (72) obtained
on the basis of the Landau kinetic equation. In the
opposite case where the collision integral is omitted,
i.e. the Vlasov equation is investigated, the substitu-
tion Ay = A, = 0 into (80) give the known plasma
oscillations A = +iw,. Thus, the obtained results are
true in the borderline cases of the Landau and Vlasov
kinetic equations, which justifies results (78)—(83).
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The modes corresponding to frequencies (78), (80),
(82), and (83) are given in the zero order in k by the
relations

0612 ~ B(dne + dn;) £ csdvy + BT,
0848 ~ e(z0n; —dne), 07 ~ I,
(599 ~ (5’U,y, (5910 ~ 6uz.

(84)

The results for 665 ¢ and d63 can be obtained only
after obtaining the explicit expressions for A5 and
A3, so they cannot be found in the nondissipative hy-
drodynamic approximation. Expressions (84) except
for the expressions for the plasma modes coincide
with the analogous ones from (73). The expression for
the plasma modes 664, corresponds to their common
physical understanding as related to the deviation of
the charge density from zero.

The modes 6043 with the frequencies Ay s describe
the plasma oscillations with damping related to the
relative velocity relazation rate A,. The frequency of
these oscillations is shifted similarly to the influence
of the friction on oscillations

w=/wl—A2/4, (85)
and the damping rate
YR = Au/2 (86)

does not vanish at £ = 0. In a different approach,
which is based on the calculation of the dielectric
permittivity taking the collisions into account, the
damping rate of plasma oscillations was found, for ex-
ample, in [2]. The above result (86) coincides with the

Table 1. Density and temperature for some plasmas

Plasma Ne, cm ™3 T,K
Tokamak 1041015 108
Interplanetary plasma 10-2+10! 104
Solar corona 10%+108 106+108

Table 2. Damping coefficients for some plasmas

Plasma YR/wp 0
Tokamak (0.3+1.5) x 1078 | 0.146+0.152
Interplanetary plasma | (0.03+1.5) x 1072 | 0.133+0.144
Solar corona 3x 1071+ 5x1079 | 0.119+-0.148
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mentioned one if the relaxation rate )\, is taken from
(49). However, our theory of the collisional plasma
oscillation damping is more general than the theory
developed in [2]. We note that the theory developed
in [2] is devoted only to the “jelly” model, where the
ion subsystem is an equilibrium one.

As is known, not only the relaxation, but also the
Landau damping take place in plasma. If krp < 1,
the rate of the Landau damping is given by the for-
mula [2]

_\/E&ex L3
=N B ) P2k T 2)

where rp = (T/47nn.e*)'/? is the Debye length. As is
seen, 7y, vanishes if & = 0, that is why the obtained
relaxation damping is much more important than the
Landau damping, if k is small.

To illustrate this fact, let us give numerical data
for some completely ionized plasmas, considering the
case z = 1. As is known [10], the Coulomb logarithm
is estimated as L ~ 10+15. The approximate values
of the quantities n. and T for some plasmas are taken
from [10] and given in Table 1. The results which are
related to the relaxation damping and the Landau
damping coefficients are given in Table 2.

As is seen from the tables, for the widely known
cases of a completely ionized plasma, A\, < wy, and
the frequency shift of the plasma oscillation from
wp in (85) due to the relaxation damping is neg-
ligible. However, the relaxation damping rate g is
higher than the Landau damping rate 7y, if & — 0.
The range of the krp values, where the relaxation
damping is more important than the Landau one, is
given for the considered cases in Table 2 and rela-
tions (49), (86), and (87) (the quantity d is defined as
follows: if krp < 4, then 1, < vg).

(87)

7. Conclusion

The hydrodynamics of a completely ionized two-
component plasma is studied on the basis of the Lan-
dau kinetic equation. The Landau equation is solved
by a generalized Chapman—Enskog method, which in-
volves the component temperature and velocity re-
laxation at their end and is based on the Bogolyubov
idea of the functional hypothesis.

The obtained component fluxes of the particle num-
ber, energy, and momentum in the first order in gra-
dients (33) describe the heat conductivity, viscosity,
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and diffusion in the system. These fluxes can be writ-
ten in the form that introduces the kinetic coefficients
of the system. In the literature, there are several def-
initions of kinetic coefficients for many-component
systems, but in the absence of relaxation (see, for ex-
ample, [5,6,22]). It is planned to discuss the transport
phenomena in the system in detail in a subsequent pa-
per, considering the definitions of kinetic coefficients
and the results of their calculation.

The hydrodynamic and kinetic modes (72) of the
Landau kinetic equation are obtained in the hydrody-
namic approximation with additional account for the
small electron-to-ion mass ratio. It is shown that six
modes of the system are the standard hydrodynamic
modes of a two-component plasma. Four other modes
of the system are relaxation ones, and they are due
to the component temperature and the velocity re-
laxation. The calculation is restricted to the solution
of the integral equations that describe kinetic modes
in the one-polynomial approximation. The other in-
tegral equations of the theory are solved in the one-
or two-polynomial approximation.

Since the Landau kinetic equation describes only
the short-range part of the Coulomb interaction with
a logarithmic accuracy, we discuss two approaches
taking the long-range part of the Coulomb interac-
tion into account.

The first approach proposes a description of the
long-range effects by the intrinsic degrees of freedom
of the electromagnetic field in plasma following the
ideas of D. Bohm and D. Pines. To overcome the high
dimensionality of the system, it is proposed to de-
scribe the subsystems of the electromagnetic field and
the charged particles by their modes. In doing so, one
needs the modes of the Landau kinetic equation inves-
tigated in the present paper. An example of the use
of subsystem modes in an investigation of the modes
of a complex system is given in our paper [21].

The second approach describes the long-range ef-
fects by adding the Vlasov term to the Landau ki-
netic equation. This gives the Vlasov-Landau kinetic
equation. At the moment, we cannot construct a com-
plete theory of hydrodynamic states of this equation
based on the generalized Chapman—Enskog method.
Probably, a physically adequate consideration of the
problem should justify an understanding of plasma
quasineutrality, assuming that the charge density of
a nonequilibrium plasma is small. Here, we have in-
vestigated the modes of the Vlasov-Landau kinetic
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equation only in the nondissipative hydrodynamic ap-
prozimation (i.e., without consideration of dissipative
hydrodynamic processes: heat conductivity, viscosity,
and diffusion). The possibility to solve this problem
is related to the following statement: in spatially uni-
form states, a self-consistent field is absent, and one
can calculate the plasma distribution functions only
on the basis of the Landau kinetic equation. The dis-
tribution functions in the zero order in the gradients
of the hydrodynamic variables are calculated above
and the plasma modes in the nondissipative hydro-
dynamic approximation are investigated with regard
for the long-range properties of the Coulomb interac-
tion. In this process, the relaxation rate, related to
the component relative velocity, plays the role of a
friction constant, which leads to the relazation dump-
ing of plasma oscillations and a shift of the plasma
frequency. These phenomena are related to the short-
range part of the Coulomb interaction. The famous
Landau damping of plasma oscillations is related to
the long-range part of the Coulomb interaction. This
follows from the possibility to obtain the Landau
damping by considering the attenuation of long longi-
tudinal electromagnetic waves in plasma. Our inves-
tigation shows that, at small wave vectors, the atten-
wation of plasma oscillations is governed by the relaz-
ation damping, while the Landau damping is negligi-
bly small.

The authors are grateful to Dr. Anton Stupka for
a fruitful discussion of the problem.
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B.M. I'opes, O.H. Cokonoecorui

T'IAPOJMHAMIYHI, KIHETUYHI
MO/IN ILJTABMU I PEJIAKCAIIHE
3TACAHHS{ IIJTASMOBUX KOJINBAHDb

Peswowme

Tl'ingpoguaaMiKy MOBHICTIO i0HI30BaHOI JBOKOMIIOHEHTHOT eJIeKT-
POH-IOHHOT IJTA3MU JOCJIIKEHO y BUIIAIKY, KOJTH DeaKcarlis
TeMIePaTypX Ta MIBHAKOCTI KOMIOHEHT OJM3BKA 0 3aBepIie-
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HHA. OOroBopeHo mpobsieMy BpaxXxyBaHHS B KiHETHIN IJIa3MHU
ocobsnBoCcTel KynOHIBCHKOI B3aemozil. JlocimifkeHus rpyHTy-
€ThCd Ha KiHeTwyHOMY piBHsHHI Jlanmay Ta meroxi YemneHa—
Enckora, y3zarajgpaeHOMY Ha OCHOBI igel dyHKIiOHAIBHOI rimo-
re3u Borosobosa. Orpumano HeniHiMHI rigpomguHamivni piB-
HaHHA. [loOymoBaHO JiHEeapH30BaHI rigpoJUHAMIYHI DIBHSIHHS
i gocstipKkeHo rigpoguHaMidHi Ta KiHETHWYHI MOAM KiHETHYIHO-
ro piBHaHHga Jlapmay y rigpoguHaMiuHOoMy HabsmkeHHi. Bu-
BYEHO BILIMB PEJIAKCAI[ifHUX HPOIECIB HA €BOJIIOI[II0 CUCTEMHU.
Ha ocHoBi kineTuunoro piBHaHHa BracoBa—Jlanmay mocmimxe-
HO MOJM IJIA3MH B HEJWCHIIATHBHOMY TiZDOAUHAMIYHOMY Ha-
Omxenni. /leski 3 HEX OMHCYIOTH pesakcaljiiine 3racaHHs IIa-
3MOBHUX KOJIHBAHb, K€ IIPU MAJINX XBHJILOBHX BEKTOpax k — 0
e HabaraTo 6ispII BaroMme 3a 3racaHHs JlaHmay.

B.H. I'opes, A.U. Coxonosckuti

TMAPOINHAMUYECKAE,
KUHETUYECKUE MOJIBI TIJIA3MBI
1 PEJTAKCAIIMOHHOE 3ATYXAHUE
TIJTABMEHHBIX KOJIEBAHMIT

Pesmowme

l'uapoguHaMuKA MOTHOCTHIO HOHU3UPOBAHHON BYXKOMIIOHEH-
THOH 3JIeKTPOH-MOHHON MJIa3Mbl HCCJIELYyeTCd B CiIydae, KO-
I/ PeIAKCAIUs TEMIEePATYPbl U CKOPOCTH KOMIIOHEHT OJIu3-
Ka K 3asepmenuio. ObOcyxmaercs mpobiaemMa ydeTa B KHHETH-
Ke IJIa3MbI 0OCOOEHHOCTEH KYJIOHOBCKOrO B3amMmoseiicTBus. Vc-
crnemoBaHne 0a3Wpyercs HA KHHETHIECKOM ypaBHeHuWH JIaH-
may u Meroge YemneHa—DdHCKOra, OOODIIEHHOM HA OCHOBE
unen GYHKIMOHAJIBHON rumore3sl BorosroboBa. BriBogarcsa
HeJuHEHHbIe THApOJUHAMHUYECKHe ypaBHeHusi. CTPOSTCsa ju-
HEAPU30BAHHLIE THPOJUHAMUYECKHAE YPABHEHHS M HCCIIEIYIO-
TCA TUAPOIVUHAMUICCKNE U KUHETUICCKUE MOJbl KHHETUICCKO-
ro ypaBHenusi JIaHjay B rujpOJUHAMUYECKOM IMIPUOJIMKEHUH.
V3yuaercss BiMsIHHE DEJIAKCAIMOHHBIX IIPOIECCOB HA 3JBOJIO-
uuio cucrembl. Ha OCHOBE KMHETHYECKOro ypaBHeHus: BiiacoBa—
Jlanmay WCCIIeIyIOTCS MOABI MJIa3MbI B HEJIUCCUIATHBHOM TH-
APOoaumHaAMAIECKOM HpI/I6J'II/I)KeHI/II/I. HeKOTOpre M3 HUX OIIu-
CHIBAIOT PEJIAKCAIMOHHOE 3aTyXaHWe IIa3MEHHBIX KOJIeGaHmi,
KOTOpOE IIPY MAJIBIX BOJIHOBBIX BeKTOpax k — 0 ropas3no 6osee
BayKHOE, 4yeM 3aryxanue Jlanaay.
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