3ATATIbHI MNTAHHA TEOPETUYHOI ®I3NKW

E.A. PONEZHA

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrologichna Str., Kyiv 03680, Ukraine)

RELAXATION TIMES AND CORRELATION
FUNCTIONS UNDER THE INFLUENCE
OF CROSS-CORRELATED COLORED NOISES

UDC 519.814, 519.246

FOR THE MODEL OF RESONANT TUNNELING

The effects of cross-correlated noises on the process of relaxation of fluctuations in the model
of resonant tunneling, in which the noise sources due to incident flow intensity fluctuations
and frequency fluctuations are assumed to exist, are considered. To characterize the dynami-
cal behavior of the system, the normalized correlation functions and the associated relaxation
times are calculated with the help of a projection-operator technique with regard for memory
effects. The influence of noise intensities, their correlation times, and the strength of correla-
tion between the noises on these functions has been analyzed. It is found that the strength of a
cross-correlation between two noises can facilitate the intensity fluctuation decay. The behav-
ior of the relaxation time with respect to that of the strength of noises can be characterized as
a stochastic resonance phenomenon. It is shown that an enhancement of the self-correlation
time of the intensity fluctuations accelerates the transition from the unstable state, while the
growth of the self-correlation time of frequency fluctuations results in the retardation of the
transition, thereby stabilizing the system.

Keywords: resonant tunneling, intensity correlation function, associated relaxation time,

strength of cross-correlation, external colored noises.

1. Introduction
One of the fundamental problems in studies of the
dynamics of nonequilibrium systems is the investiga-
tion of their behavior under the influence of noises of
different nature. It is reasonable to suggest that there
can be more than one source of noise in physical sys-
tems, for instance, internal thermal fluctuations and
external random perturbations. The former are rep-
resented usually as an additive term in the Langevin
equation and the latter are related to fluctuations of
the external parameter as a multiplicative term. In
particular, such treatment was justified for laser mod-
els [1-4].

In Ref. [5], it was supposed that fluctuations of
some parameters can lead to noises of the addi-
tive, as well as multiplicative, character, which are
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not independent. They can have the common ori-
gin and, therefore, correlate with one another [5—
7). At the present time, the effects of correlation be-
tween noises of different nature are widely investi-
gated within different models [8-11]. In the study of
a behavior of unstable systems under the influence
of noises, a much attention is paid to the investiga-
tion of noises with finite correlation times (colored
noises), which allows one to construct, in some cases,
a more realistic model for describing the system [4,
10-13].

An important aspect of the dynamical behavior of
stochastic systems is the fluctuation decay depending
on the system parameters and noises. As the dynam-
ical characteristic of fluctuations in stochastic unsta-
ble systems, the correlation functions in a nonequilib-
rium steady state and the associated relaxation times
are often used [4, 8, 10, 12-15].
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In the present paper, we study the influence of col-
ored noises of different nature on the process of fluctu-
ation decay in a model system describing the resonant
tunneling of electrons in double-barrier nanostruc-
tures. It is known that such structures can strongly
enhance the transmission coefficient under the res-
onance condition, which gives opportunity to fabri-
cate resonant tunneling diodes on their base, which
have great prospects for their use in various elec-
tronic devices [16]. That is why studying the noise
effects in such structures in regions of instability is of
importance.

In our model of tunneling process [17], the insta-
bility takes place during the transition from the state
with low tunneling effectiveness to the state with high
one. In Refs. [18, 19, 21|, we have considered the in-
fluence of white noise on the dynamics of this sys-
tem. In Ref. [20], the influence of colored noise on a
mean first passage time close to an instability point
has been investigated. In Ref. [21], the problem of
mutual influence of the amplitude and phase noises in
the incident electron flow on the correlation function
of the outgoing flow intensity has been considered by
means of the linearization of the evolution equations.
In this work, we investigate how the considered tun-
neling system is affected by the noise caused by fluc-
tuations in the incident flow intensity and by the noise
originated from random violations of the resonant fre-
quency detuning. We assume that both noises have
finite correlation times and can correlate with each
other. The dynamical behavior of the system under
the influence of these noises will be described with
the help of the correlation function of the outgoing
flow intensity and the associated relaxation time.

In Sec. 2, the general expressions used in the calcu-
lation of the correlation functions and the associated
relaxation times are given. The stochastic model un-
der consideration is represented in Sec. 3. Sec. 4 con-
tains the calculations of the correlation functions and
the relaxation times. Conclusions are given in Sec. 5.

2. Correlation Function
and Associated Relaxation Time

The general Langevin equation with two noise sources
can be written as

&= f(z) + g1(z)p(t) + g2(2)q(t), (1)

where f(z) is the deterministic term of a nonlinear
process, and p(t) and ¢(t) are Gaussian colored noises
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with zero mean (p(t)) = {(q(t)) = 0, and the correla-
tion functions

PBp(t) = %exp(It—t'l/ﬁ%

(a0a(e)) = L explle — ¢1/m).
(p(t)a(t) = <Q(t)P(t/)>@ exp(|t —t'[/70).

Here, D and @ are noise intensities, g1(x) and ga(z)
are, in the general case, nonlinear functions of x, 7
and 7, are self-correlation times of two noises, respec-
tively, 7¢ is the time of their mutual cross-correlation,
and 0 < A < 1 defines the correlation strength be-
tween these noises.

The approximate Fokker—Planck equation corre-
sponding to Eq. (1) with the use of Novikov’s the-
orem [22] and Fox’s approximation [2] is given by the
expression |7, 11]

OP(z,t) 0 0?
CEn = L A@P(, 1) + s B@) P 1), (2)
where

A() = f(2) + G'(2)G(x) and B(x) = [G(a)]?,

G(x) with regard for the self-correlation times of noise
components and their cross-correlation time for small
correlation times can be written as [6, 10, 11, 23]

6(0) = | @ + 22 (o) +

[q2<x>12]1/2

+1+a7'2

with @ = —f’(x) (index ’ stands for the derivative
with respect to ). The stationary probability density
is given by

N T
P |/

Here, N is the normalization coefficient, N~! =
= [ Pst(x)dx. The stationary normalized correla-
tion function of the variable = is written as [12]

(0x(t + s)0z(t))st
(D )
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where dz(t) = z(t) — (z(t)), and C(s) is a measure
of the correlation between fluctuations at times ¢ and
t+ s.

Performing the Laplace transformation of the func-
tion C(s), we obtain

Clw) = / exp(—ws)C(s)ds. (5)
0

The associated relaxation time is generally defined by
the expression

Tow
o= | )2 ™ ©

0

The use of the projection-operation method leads to
a continued-fraction expansion for the quantity C (w)
[12]. In the zeroth approximation where the memory
effects are completely neglected, C(s) relaxes expo-

nentially, C(s) = exp(—~0s), with a relaxation time

((52)%)
(G(x))st
By the truncation of the continued-fraction expan-

sion in the first order, the following formula for T¢
was obtained [12]:

To=7'= (7)

To = {’Yo-f—%]. 8)
Here,
G(x)A'(x 9
_ (G@A @) %
e N1 {(67)2)st * m o,

where A’(z) is the derivative of A with respect to .
The first-order approximation for C'(w) is deter-
mined by the formula [12]

w+ 7

C= .
(w+7y0)(w+71) +m

9)

Performing the inverse Laplace transformation for
C(w), it was shown [12] that the correlation function
can be written as a sum of two exponentials
C(s) = (1 — A)exp(—T'1s) + Aexp(—Tas), (10)
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with

y1 — Iz
A =

Iy -1y’
and

1
o= 5[’70 +71 £V (71 —0)% —4n).

The parameter A defines the importance of the mem-
ory effects. If the value A is close to unity, then we
can use the zeroth order.

3. Stochastic Model
for Resonant Tunneling Process

We consider the model of the tunneling system at a
resonance described in Ref. [17]. The model considers
the open coherent double-barrier tunneling system,
where an electron flow described by a wave packet
is injected from the left and passes through the tun-
neling system only once. In Ref. [17], the following
differential equation for the complex amplitude D of
the wave packet outgoing of the tunneling system was
obtained:

D
— = (iz—1)D —i|D*D + Dy,

7 (11)

where Dy is the dimensionless amplitude of the wave
function in the incoming flow, 2 = L(k—k,.) is the pa-
rameter proportional to the detuning of the electron
wave vector k from the resonance value k,., L is the in-
verse half-width of the resonance level in the k-space,
which is connected with a half-width in the energy
space by the relation 0y /o = 2hv = hk,/(m*L), m*
is the effective electron mass, and t = vt’ is the di-
mensionless time.

Going to the intensities D3 = Iy, D? = I, we ob-
tain the following relation between the intensities of
the incident Iy and outgoing I electron flows in the
stationary case:
Ip=1I[1+(z—1)%. (12)
Assuming that the phase of the wave function is not
changed in the process of tunneling in a vicinity of
the stationary state, the following approximate dif-
ferential equation can be obtained [19]:

I Iy

F P e v sy 2 (13)
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Fig. 1. Relaxation time T¢ as a function of the mean value
of the incident flow intensity Iy for the various values of noise
strength D and the parameters A = 0.1, Q@ = 0.1, 11 = 72 =
=719 =0.1

Fig. 2. Dependence of the relaxation time T on the noise
strength D for the various values of incident flow intensity Ig
with the parameters A =0.8, Q@ =0.1, 71 = =719 =0.1

The system exhibits the bistability as a function of
the parameter I, if the parameter z satisfies the in-
equality z > /3 [17].

We will consider the intensity of the incident flow
Iy as a stochastic quantity, Iy = (lp) + p(t), where
(Ip) is the value of incident flow intensity in the ab-
sence of noise, and p(t) are fluctuations of the inten-
sity described by a Gaussian noise with zero mean and
the correlation function (p*(t)p(t)) = T% exp (—‘t;—fl ,
where D is the noise strength, and 7 is its self-
correlation time.
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We suppose that there are also fluctuations of the
detuning parameter z = (z) + ¢(t), where ¢(t) is a
noise term with zero mean and the correlation func-
tion (g*(t)q(t)) = T% exp (—‘t;—;‘), with @ being the

noise intensity, and 75 the time of its self-correlation.
Then we come to the Langevin equation

dIl Iy

— =Tt =73 Ip(t Iq(t) (14
&= T e + e (Da(t) (14)
with 91 = =gy, 92 = % obtained by ex-

panding the nonlinear terms to the first order in 1.

In order to consider the self-correlation times of
noises and their mutual cross-correlation time, we
have to go to the Fokker—Planck equation given by
expression (2). In the numerical calculations of the in-
tensity correlation functions C(s) and the associated
relaxation times T, we use expressions (10) and (8),
respectively.

4. Calculation of the Intensity
Correlation Functions and Relaxation Times

We now analyze the behavior of the relaxation time
Tc as a function of the parameters of the process
and noises. The relaxation time gives the information
about the time scale of the fluctuation evolution.

In Fig. 1, the dependence of the relaxation time
T on the mean value of the incoming intensity Iy for
various values of noise strength D is represented.

It can be seen that, for the small noise strength
(D = 0.1), the maximum of T¢ (that implies the
slowing down of the process) takes place close to the
point of the transition from the state with low tun-
neling effectiveness to the state with high effective-
ness (Ip = 5.2). As the noise strength D increases,
the maximum shifts to larger values of Iy, thereby
increasing the stability of the system.

In Fig. 2, the relaxation time T¢ as a function of
the noise strength D is plotted for various mean inten-
sities. We see that if the noise is absent (D = 0), T¢
has a maximum close to the deterministic transition
point (which occurs at Iy = 5.0 for this set of param-
eters). Increasing D results in a shift of the transi-
tion point to larger values of Iy similar to Fig. 1. In
this region, T¢ as a function of D grows with D,
passes through the maximum, and decreases for larger
D. Such a behavior is the evidence of a stochastic res-
onance phenomenon.

ISSN 0372-400X. Vkp. ¢is. orcypu. 2015. T. 60, N 7



Relazation Times and Correlation Functions

12 1

Fig. 3. Relaxation time T¢ as a function of the cross-
correlation strength A for the various values of mean inci-
dent flow intensity Io with the parameters D = 1, Q = 0.1,
T1 =72 =10 =0.1

The relaxation time T¢ as a function of the cor-
relation strength A between two noises is depicted in
Fig. 3 for various values of the mean incident flow
intensity Ip.

It can be seen that T monotonically decreases, as
A increases. For a fixed value of A, T¢ has the largest
value near the threshold (I = 6) and the smallest
values in the regions below (Ip = 5.2) and above the
threshold (Ip = 7).

Now, we analyze how the memory effects influence
the relaxation time. 7T¢ as a function of the self-
correlation time 7, of the intensity fluctuations p(t)
for various values of the mean incident flow intensity
Iy is shown in Fig. 4. For the parameters used, the
transition from the low to high state occurred near
the point Iy = 5.6.

It follows from Fig. 4 that the dependence of T on
71 has the most pronounced character with the max-
imum at the definite value of 7; only in a vicinity of
the transition point. As 7 increases, the maximum of
Tc can be observed at smaller values of the incident
intensity. Therefore, we can conclude that the transi-
tion is facilitated with the growth of the correlation
time of noise p(t).

In Fig. 5, we can see how this dependence for [y =
= 5.7 is changed with the cross-correlation strength .

It can be noted that the maximum of T shifts with
respect to the cross-correlation strength A in a differ-
ent way. For the moderate values of cross-correlation
intensities A (A = 0.5-0.7), the maximum takes place
at the larger values of 71 than for small ones (A = 0.3),
as well as for large (A = 0.8) ones.
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15+ 1,=5.6

Fig. 4. Dependence of T on the self-correlation time 7
of p(t) noise for the various values of mean incident flow in-
tensity Ip with the parameters A = 0.5, D = 0.5, Q = 0.1,
T2 =709 =0.1

15

2=0.3

Fig. 5. Dependence of T on the self-correlation time 7 of
p(t) noise close to the transition point (Ip=>5.7) for the various
cross-correlation strengths A and with the parameters D = 1,
Q=011 =m=71=01

Fig. 6. Relaxation time T as a function of the mean incident
intensity for the various correlation times of noises with the
parameters A = 0.5, D = 0.5, Q = 0.1
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Fig. 7. Correlation functions C(s) for the various mean values
of incident intensity Ip when parameters values were A = 0.1,
D=05 Q=01 m1n=7m=17=0.1
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Fig. 8. Correlation function C(s) in the vicinity of the
transition point (Ig = 5.8) for the various values of cross-

correlation strength A with the parameters D = 0.5, Q = 0.1,
T1=T2 =79 =0.1
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Fig. 9. Correlation function C(s) in a vicinity of the transition

point (Ip = 5.8 ) for the various noises strengths @ of the noise
q(t) with the parameters D = 0.5, A =0.5, 1 =172 =719 =0.1
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Fig. 10. Correlation functions for the various values of noise
p(t) correlations times 71 for the process being before the
threshold) with the parameters D = 0.5, @ = 0.1, A = 0.5,
70 =19 = 0.01
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Fig. 11. Correlation functions for the various values of

noise p(t) correlations times 71 for the process being after the
threshold with the parameters D = 0.5, Q@ = 0.1, A = 0.5,
70 =19 = 0.01

In Fig. 6, we plot the function T vs Iy for the
various values of self-correlation times 71 and 7 of
noises p(t) and ¢(t), respectively, and of their cross-
correlation time 7g. It can be observed that an in-
crease in the correlation times of noises leads to a shift
of the maximum of the relaxation time T¢. When
the correlation times of noises have minimum values
(11 = 72 = 79 = 0.01), the maximum of T¢ is situated
at Iy = 5.8 (see the solid curve). The growth of the
correlation time 7y of fluctuations of the intensity to
the value 71 = 0.5 results in the shift of the maximum
to the left to the value of Iy = 5.6. The increase of
To (self-correlation time of frequency fluctuations) to
0.5 causes the shift of the maximum to the right to
the value of Iy = 6.1. On the other hand, the growth

ISSN 0372-400X. Vkp. ¢is. orcypu. 2015. T. 60, N 7
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of the mutual correlation time 79 to the value of 0.5
does not result in a shift of the curve.

The behavior of the normalized intensity correla-
tion function C(s) for the various parameters of the
process and noises is represented in Figs. 7-12. In
Fig. 7, the correlation functions of the process are
plotted in the cases where the value of mean incident
intensity for the given parameters was below the tran-
sition point (Ip = 5) in its vicinity (Ip = 5.5) and
above it (Ip = 5.8,6.0).

It can be seen in Fig. 7 that C(s) decays most
rapidly above the transition (Ip = 6) and below it
(Io = 5). But, close to the transition (Ip = 5+5.8),
its decay slows. Such a behavior indicates that the
fluctuations increase as the process approaches the
instability point resulting in an increase of the area
under the C(s) curve, which defines the relaxation
time.

In Fig. 8, the dependence of C(s) on the degree
of the correlation between the noises A is shown. We
found that the C(s) decay is slowing, as \ increases
from the value 0.2 to 0.4 (the area under the curve
increases), and then accelerates for larger values of A
(the area under the curve contracts). Thus, the cor-
relation strength A\ between two noises can accelerate
the fluctuation decay.

Let us see how the intensity ) of the frequency
noise ¢(t) affects the behavior of the intensity corre-
lation function C(s). This is demonstrated in Fig. 9,
where it can be observed that the smallest decay of
the correlation function (an increase of fluctuations is
a characteristic of the transition) takes place at the
definite value of the noise intensity ). This means
the existence of a stochastic resonance phenomena
for this noise similar to the p(t) noise.

The influence of the self-correlation times of noises
and their mutual cross-correlation time on the be-
havior of the intensity correlation function depends
strongly on the acting point of the process with re-
spect to the point of transition. It is illustrated in
Figs. 10-11, where the correlation functions for the
various values of p(t) noise correlation times 7 are
depicted for the process being below the threshold
(Fig. 10) and above it (Fig. 11).

Below the threshold, we can see that the rate of cor-
relation function decay becomes slower, as the noise
correlation time 7y increases. On the contrary, above
the threshold (Fig. 11), the correlation function de-
cay increases with 7. Therefore, in the pre-threshold
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region, the growth of the noise correlation time in-
creases fluctuations; while, in the after-threshold re-
gion, it results in their decrease.

We have found that the dependences of the corre-
lation function on the self-correlation time 75 of the
frequency noise and the cross-correlation time 7y have
a similar character.

5. Conclusion

By means of numerical calculations, we have analyzed
the influence of colored cross-correlated noises on the
outgoing flow intensity correlation function C(s) and
the associated relaxation time T within a model of
resonant tunneling. It has been found that the sta-
bility of the system increases with the strength D
of noise that models fluctuations of the incident flow
intensity Iy. There exists the dependence of the relax-
ation time on the intensity of the noises that is typi-
cal of the stochastic resonance phenomenon. We have
shown that T monotonically decreases, as the corre-
lation strength A\ between two noises increases. It has
been shown also that the cross-correlation strength
A can facilitate the fluctuation decay. We have ob-
tained that the growth of the self-correlation time 7;
of the intensity fluctuation noise 7, results in a shift
of the threshold of the transition to the high state to
lower values of the incident intensity Iy with respect
to the deterministic case, while the increase of the
correlation time 75 of frequency fluctuations shifts the
threshold to the larger values of Iy. Thus, the time 7,
growth accelerates the transition; on the other hand,
the stability of the system increases, when 75 grows.
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0. 0. IToneotca

YACU PEJIAKCAIIIT TA KOPEJIAIIMHI
®YHKIIII IT1J] BIJIMBOM KPOC-KOPEJIBOBAHUX
IIYMIB Y MOJEJII PEBOHAHCHOI'O TYHEJIFOBAHHS

Pezwowme

PosrisiHyTo BIUIMB KPOC-KOPEJIbOBaHUX IIyMiB Ha IIPOIEC pPe-
stakcaril pIyKTyanin y Mojiesii pe30HAHCHOIO TYHEJIIOBAHHS, B
SKi#l nepenbadasiach HASIBHICTD JI2KEpeJI IIyMiB, HOB’sI3aHUX 3
duryKTyalissiMi iHTEHCUBHOCTI Ta 9aCTOTU B I13JIaI0YOMY IIOTO-
mi. JIy1s1 XxapaKTepUCTUKY JUHAMITHOL IOBEAIHKH CHCTEMHU PO3-
paxoByBaJIuCsi HOpMOBaHi OYHKIIT KopeJi«il i acoriioBani ya-
CH pejlakcaliil 3a JOIIOMOTI'OI0 METO/Y IIPOEKI[IHOrO oIepaTopa
3 ypaxyBaHHsM edekTiB mam’sti. [IpoanasnizoBano BILIUB Ha I1i
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GyHKIIT IHTEHCUBHOCTEH IIIyMiB, TX YaciB KOPEJIIlil, a TaKOoXK
CHJIM B3a€MHOI KopeJistiil i gacy Kpoc-KopeJisiiii. Bysio 3naiiie-
HO, II[0 CUJIAa KOPEJISIil MiK JIBOMAa IIIyMaMU MOKe IPUCKOPUTH
posmaz dirykTyariit inTeHcHBHOCTI. 3aIeKHICTD Tacy pesrakca-
uil Bif iIHTEHCUBHOCTI IIyMiB MOXKe OyTH OXapaKTEPU30BaHa K
CTOXaCTUYHUI pe30HaHC. Byso mokasaHo, 110 30i/IbIIeHHS Ya-
cy KopeJssmil GIyKTyarniil iIHTeHCHBHOCTI IPUCKOPIOE Iepexin 3
HecTabilJIbHOTO CTaHy, y TOI 4Yac AK pIiCT 4Yacy KopeJsiil iry-
KTyamiil YacTOTH 3aTPUMYy€E IEPeXil, TUM caMuM 301/IbIIyroun
cTabiIbHICTD CHCTEMH.

E.A. I[loweoica

BPEMEHA PEJTAKCAILINU

N KOPPEJIAIIMOHHBIE @YHKINU I10/1 BJINSAHNUEM
KPOCC-KOPPEJIMPOBAHHBIX IIIYMOB B MOJIEJIN
PESOHAHCHOI'O TYHHEJ/IMPOBAHI A

Peszmowme

PaccMoTpeno BimsiHME KPOCC-KOPPEJIMPOBAHHBIX IIIYMOB Ha
mmporecc pesakcaruu (QIIYKTyanuii B MOZEJU PE30HAHCHOIO
TYHHEJIUPOBaHUsI, B KOTOPOIi IpeJIoJarajoch HaJudIue HCTO-
YHHUKOB IIyMOB, CBA3aHHBIX C (DIIYKTYAIUAIMU UHTEHCUBHOCTH
M YaCTOTHI B IAJAlOMEeM IOTOKe. [l XapaKTepHCTHKH Iu-
HAMHUYECKOI'O TIOBEJIEHUSI CUCTEMBI PACCYUTHIBAINCH HOPMHUPO-
BaHHBbIE (DYHKIUU KOPPEJSIIAA U acCOIMHUPOBAHHBIE BPEMEHA
pejlakcally ¢ IOMOIIbIO METO/a IIPOEKIIMOHHOI'O OIlepaTopa C
ydeTroM 3ddekToB mnmamMaATu. [IpoaHaJM3UPOBAHO BJIUSIHUE HA
3TU (PYHKIMU MHTEHCUBHOCTEN IIIyMOB, UX BPEMEH KOPPEJIsi-
I, & TaKKe CHJIbl B3aUMHOIl KOPPEJIAIUN U BPEMEHH KPOCC-
Koppesauu. Bputo HaiifieHO, YTO CHjIa KOPPEJISIIUU MEXKIY
JBYMsI IIIyMaMH MOXKET YCKOPUTb paciiaf] pJIyKTyaluii NHTEeH-
CHBHOCTH. 3aBHCHMOCTb BPEMEHH PEJIAKCAIIMH OT WHTEHCHB-
HOCTH IIYMOB MOKET OBITH OXapaKTEPHU30BaHA KaK CTOXACTH-
YeCKMiI pe30HaHC. DhIJIO ITOKa3aHO, YTO yBeJMYeHHEe BPEMEHU
Koppesaruu (QIyKTyaruil HHTEHCHBHOCTH YCKODPSIET I[IE€PEXOL
U3 HECTAOUJIBHOTO COCTOSIHHSI, B TO BPeMsI KaK POCT BPEMEHH
KOppesanuu GIIyKTyannii 9acTOTEl 33ePKUBAET IIEPEXO, TEM
CaMBIM yBEJINYNBAasi CTAOMIBHOCTH CHCTEMBI.
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