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THE EXPANDING UNIVERSE: CHANGE OF REGIMEUDC 531.51

The aim of the paper is to explain, on the basis of the strict equations of quantum geometro-
dynamics for a cosmological model with the Robertson–Walker metric, the possible change of
a regime of the expansion of the universe, from acceleration to deceleration or vice versa. We
show that the change of the rate of expansion can point to the existence of a particular type
of forces acting in the universe. It is indicated that these forces have the quantum nature. The
cause of the expansion and a change of its regimes is a special form of the effective potential
well, in which the universe is moving as a whole.
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1. Introduction

According to the standard cosmological model, the
very early universe went through a period of acceler-
ated exponential expansion, which followed by a pe-
riod of deceleration. The expansion of the present-
day universe is accelerating again [1, 2]. It is as-
sumed that the overwhelming majority of matter in
the universe (∼95%) is in the form of substances of
the unknown origin called the dark energy and the
dark matter. Concerning the physical properties of
these substances, it is known that the dark matter
is gravitating, while the dark energy is antigravi-
tating. The competition between these two compo-
nents of the dark sector of matter-energy in the uni-
verse determines the dynamics of the expansion which
can change in the course of time from deceleration,
when the dark matter dominates, to acceleration,
when the repulsive action of the dark energy is pre-
dominant.

Since the physical nature of the dark matter and
the dark energy remains unknown till now, numerous
different models were proposed (see, e.g., Refs. [3–
5]). These models are intended to reconcile the clas-
sical theory of gravity, based on general relativity,
with current astrophysical data.
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It is conceivable that the transition from the decel-
erating expansion to the accelerating expansion oc-
curred at a redshift of ≈ 0.6, as well as the transi-
tion from the inflation to the radiation-domination,
could be a reflection of the internal property of the
universe. This demonstrates that the universe is a
more complicated system than it is supposed in gen-
eral relativity. For example, the universe could be a
quantum object.

The aim of the present paper is to explain, on the
basis of the strict equations of quantum geometro-
dynamics within a specific, rather simple, exactly
solvable cosmological model, the possible change of
a regime of the expansion of the universe. We show
that the change of the rate of expansion can point to
the existence of a particular type of forces acting in
the universe. It is indicated that these forces have the
quantum nature.

In Sect. 2, we shortly review the Hamiltonian for-
malism for the minisuperspace model based on the Di-
rac–Arnowitt–Deser–Misner approach to general rel-
ativity [6, 7], expounded in Refs. [8, 9]. The canoni-
cal quantization of matter and gravitational fields is
given here. We demonstrate that, finally, the problem
of the dynamics of the universe can be reduced to the
problem of one-dimensional motion of an analog par-
ticle with arbitrary mass and zero total energy in the
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force field of the potential formed by the curvature
of space, matter, and quantum additions to the en-
ergy density and the pressure of matter, which are
calculated precisely. In Sect. 3, the specific quantum
model of the universe with matter in the form of a
dust is studied. The results obtained in the paper are
summarized in Sect. 4.

Throughout the paper, the Planck system of units
is used. As a result, all quantities in the equations be-
come dimensionless. The length lP =

√
2G�/(3πc3)

is taken as a unit of length, and the ρP = 3c4/(8πGl2P)
is used as a unit of energy density and pressure. The
proper time τ is measured in units of length. An arc
time (conformal time) T is expressed in radians. The
scalar field is taken in φP =

√
3c4/(8πG), and so on.

Here, G is Newton’s gravitational constant.

2. Theory

2.1. Hamiltonian Formalism

In the present paper, we confine ourselves to a study
of the isotropic cosmological model. The space-time
is described by the Robertson–Walker metric

ds2 = a2[dT 2 − dΩ2
3], (1)

where a is the cosmic scale factor, which is a function
of time, T is the time variable connected with the
proper time τ by the differential equation dτ = adT ,
T is the “arc-parameter measure of time”: during
the interval dτ , a photon moving on a hypersphere
of radius a(τ) covers an arc dT measured in radi-
ans [10]. The quantity dΩ2

3 is a line element on a unit
three-sphere. Following the ADM formalism [6,7], one
can extract the so-called lapse function N , which
specifies the time reference scale, from the total dif-
ferential dT : dT = Ndη, where η is the “arc time” co-
inciding with T for N = 1 (cf. Refs. [10, 11]). In the
general case, the function N plays the role of a La-
grange multiplier in the Hamiltonian formalism, and
it should be taken into account in an appropriate way.

To be specific, we consider the cosmological system
(universe) described by the Hamiltonian [8, 9]

H =
N

2

{− π2
a − a2 + a4[ρφ + ργ ]

}
+

+λ1

{
πΘ − 1

2
a3ρ0s

}
+ λ2

{
πλ̃ +

1

2
a3ρ0

}
, (2)

where πa, πΘ, πλ̃ are the momenta canonically conju-
gate with the variables a, Θ, and λ̃, ρφ is the energy

density of matter (the field φ), ργ is the energy den-
sity of a perfect fluid, which defines a material refer-
ence frame [8, 12], and it is a function of the density
of the rest mass ρ0 and the specific entropy s [13],
Θ is the thermasy, λ̃ is the potential for the specific
free energy taken with an inverse sign (for details, see
Ref. [8]), and N , λ1, and λ2 are the Lagrange multi-
pliers.

Hamiltonian (2) is a linear combination of con-
straints and thus weakly vanishes, H ≈ 0. The varia-
tions of the Hamiltonian with respect to N , λ1, and
λ2 give three constraint equations,

− π2
a − a2 + a4[ρφ + ργ ] ≈ 0,

πΘ − 1

2
a3ρ0s ≈ 0, πλ̃ +

1

2
a3ρ0 ≈ 0.

(3)

From the conservation of these constraints in time, it
follows that the number of particles of a perfect fluid
in the proper volume 1 1

2a
3 and the specific entropy

conserve: E0 ≡ 1
2a

3ρ0 = const, s = const. With re-
gard for these conservation laws and the vanishing of
the momenta conjugate with the variables ρ0 and s,
one can discard the degrees of freedom corresponding
to these variables and convert the second-class con-
straints into first-class constraints in accordance with
Dirac’s proposal [8, 14].

It is convenient to choose the perfect fluid with
the density ργ in the form of relativistic matter (ra-
diation). Then one can put a4ργ ≡ E = const in
Eq. (3). The matter field with the energy density ρφ
and the pressure pφ can be taken for definiteness in
the form of a uniform scalar field φ,

ρφ =
2

a6
π2
φ + V (φ), pφ =

2

a6
π2
φ − V (φ), (4)

where V (φ) is the potential of this field, and πφ is
the momentum conjugate with φ. After the averag-
ing with respect to appropriate quantum states, the
scalar field turns into the effective matter fluid (see
Ref. [9], and below).

The equation of motion for the classical dynamical
variable O = O(a, φ, πa, πφ, ...) has the form

dO
dT

≈ {O, 1
N
H}, (5)

where H is Hamiltonian (2), {., .} are the Poisson
brackets.

1 This volume is equal to 2π2a3, where a is taken in units of
length.
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2.2. Quantization

In quantum theory, the first-class constraint equa-
tions (3) become constraints on the state vector
Ψ [14] and, in this way, define the space of phys-
ical states, which can be turned into a Hilbert
space (cf. Ref. [15]). Passing from classical variables
in Eqs. (2)–(4) to the corresponding operators, us-
ing the conservation laws, and introducing the non-
coordinate co-frame

hdτ = sdΘ− dλ̃, hdy = sdΘ+ dλ̃, (6)

where h =
ργ+pγ

ρ0
is the specific enthalpy, pγ is the

pressure of radiation, and y is a supplementary vari-
able, we obtain [8, 9](
−∂2a + a2 − 2aĤφ − E

)
|Ψ〉 = 0, ∂y|Ψ〉 = 0,(

−i∂T − 2

3
E

)
|Ψ〉 = 0,

(7)

where

Ĥφ =
1

2
a3ρ̂φ (8)

is the Hamiltonian operator of the scalar field φ, the
operator ρ̂φ is described by Eq. (4) with πφ = −i∂φ.
From Eq. (7), it follows that the evolution of the state
vector Ψ in time is described by the exponential mul-
tiplier as follows:

Ψ(T ) = e i 23 E(T−T0)Ψ(T0), (9)

so that the arc-parameter T appears to be the
most natural time variable in quantum theory as
well. Here, T0 is an arbitrary constant taken as a time
reference point. The vector Ψ(T0) ≡ |ψ〉 is defined
in the space of two variables a and φ. According to
Eqs. (7), it is annihilated by the constraint equation(
−∂2a + a2 − 2aĤφ − E

)
|ψ〉 = 0. (10)

By substituting the Poisson brackets with the com-
mutators of operators Ô = {a,−i∂a} and 1

N Ĥ , we ob-
tain the quantum analog of Eq. (5) for the operator
of momentum πa = −i∂a and its time derivative

〈ψ| − i∂a|ψ〉 = 〈ψ| − da

dT
|ψ〉, (11)

〈ψ| − i
d

dT
∂a|ψ〉 = 〈ψ|a− Ĥφ + 3L̂φ|ψ〉, (12)

where

L̂φ =
1

2
a3p̂φ (13)

is the Lagrangian operator of the scalar field, and p̂φ
is given by Eq. (4) with πφ = −i∂φ.

The operator on the left-hand side of Eq. (10) is not
the Hamiltonian of the system (it has the dimensions
of [energy]× [length] in physical units). Whether this
operator is self-adjoint depends on the behavior of
the vector |ψ〉 and its first derivatives with respect
to the scale factor and field variables on the bound-
aries of the ranges of their values. In this connection,
we consider the Hamiltonian Ĥφ, which can be diag-
onalized by means of some state vectors 〈x|uk〉 of a
quantum scalar field in the representation of the gen-
eralized variable x = x(12a

3, φ). The explicit form of x
is determined by the form of the potential V (φ) taken
as a real function [9]. Assuming that the vectors |uk〉
satisfy the completeness condition,

∑
k |uk〉〈uk| = 1,

and that they are orthonormalized, 〈uk|uk′〉 = δkk′ ,
we guarantee the self-adjointness of the operator Ĥφ

and the reality of the function Mk(a) in the equation

〈uk|Ĥφ|uk′〉 =Mk(a)δkk′ , (14)

where the index of the state k can take both dis-
crete and continuous values (in the latter case, the
condition of orthogonality of the state vectors |uk〉 is
written by means of the Dirac delta function), and
Mk(a) =

1
2a

3ρm is the proper energy of matter in the
volume 1

2a
3. The energy density and the pressure of

matter 2,

ρm = 〈uk|ρ̂φ|uk〉, pm = 〈uk|p̂φ|uk〉 (15)

have the form

ρm =
2Mk(a)

a3
, pm = wmρm, (16)

where

wm = −1

3

d lnMk(a)

d ln a
(17)

is the equation of state parameter. In the model
V (φ) = λαφ

α, where λα is the coupling constant and
α ≥ 0, matter reduces to a barotropic fluid with the
parameter wm = α−2

α+2 . For α = 0, the barotropic fluid

2 The index k is omitted.
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takes the form of the vacuum of the scalar field in
the k-th state. The value α = 1 corresponds to the
strings. Matter in the form of a dust is reproduced
by α = 2, whereas α = 4 leads to the relativistic
matter and so on. The so-called stiff Zel’dovich mat-
ter is obtained in the limiting case α = ∞.

In the general case, the proper energy Mk(a) de-
pends on a. It describes a classical source (as a mass-
energy) of the gravitational field in k-th state. In prin-
ciple, it may contain the contribution from both lu-
minous and dark matters.

Using Eq. (14), one can integrate Eqs. (10)–(12)
with respect to the matter field variable. Let us ex-
press the vector |ψ〉 in the form of the expansion in
the complete set of states |uk〉,

|ψ〉 =
∑
k

|uk〉〈uk|ψ〉. (18)

Then Eq. (10) yields the equation for the function
〈a|fk〉 ≡ 〈uk|ψ〉,(−∂2a + a2 − 2aMk(a)

) |fk〉 = E|fk〉. (19)

This equation can be considered as an eigenvalue
equation. Its solution |fk〉 is an eigenfunction corre-
sponding to the eigenvalue E. The function |fk〉 de-
scribes the geometrical properties of the quantum
universe filled with matter, whose mass-energy is
Mk(a).

In order to turn to the classical observables (such
as the Hubble expansion rate and the deceleration
parameter), we extract the amplitude and the phase
Sk(a) in the function |fk〉,

〈a|fk〉 = Ck√
∂aSk(a)

eiSk(a), (20)

where Ck is the constant determined by the boundary
condition on the function 〈a|fk〉, e.g., on the asymp-
totics a → ∞. If the function |fk〉 is real, then it is
expressed through the Euclidean phase SE = −iSk. If
the phase Sk is a real function, then Eq. (20) will de-
scribe the outgoing or incoming wave propagating in
the space of the scale factor a. In this case, the gen-
eral solution of Eq. (19) will be a superposition of |fk〉-
and 〈fk|-states separately describing the expanding or
contracting quantum universe (cf. Ref. [16]).

Substituting expression (20) into Eq. (19) and tak-
ing into account that 〈a|fk〉 is nontrivial, we obtain

the non-linear equation for the phase Sk(a)

(∂aSk)
2 + a2 − 2aMk(a)− E =

=
3

4

(
∂2aSk

∂aSk

)2
− 1

2

∂3aSk

∂aSk
. (21)

Using expansion (18) and representation (20),
Eq. (11) can be rewritten in the form

〈Ψ(T0)|
(
∂aSk +

i

2

∂2aSk

∂aSk
+
da

dT

)
|Ψ(T0)〉 = 0. (22)

Since the instant of time T0 is arbitrary, one gets the
relation between the classical momentum πa = − da

dT
and the phase Sk(a)

∂aSk +
i

2

∂2aSk

∂aSk
= − da

dT
, (23)

where the second term on the left-hand side follows
from the amplitude of function (20) and has the
quantum nature (it is proportional to l2P in ordinary
units). In the classical limit, the right-hand side of
Eq. (21) vanishes and this equation turns into the
Hamilton–Jacobi equation for the action Sk(a).

Using Eq. (23), one can reduce Eq. (21) to the form

1

2

(
da

dT

)2
+ U(a) = 0, (24)

where

U(a) =
1

2

[
a2 − 2aMk(a)−Qk(a)− E

]
. (25)

The function

Qk(a) = i∂2aSk +
1

2

[(
∂2aSk

∂aSk

)2
− ∂3aSk

∂aSk

]
(26)

determines the quantum correction ρQ to the energy
density of matter in the form

ρQ =
Qk(a)

a4
≡ 2MQ(a)

a3
, (27)

where MQ(a) = 1
2a

3ρQ is the proper energy of the
quantum source of the gravitational field. The pres-
sure produced by the quantum source is

PQ = wQρQ, (28)
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where

wQ =
1

3

(
1− d lnQk(a)

d ln a

)
(29)

is the equation of state parameter, in which the first
term is a correction for relativity, while the second
term comes from the quantum dynamics of the sys-
tem.

According to Eqs. (25)–(29), all quantum correc-
tions to the energy density and the pressure of ordi-
nary matter in the universe are collected in the grav-
itational quantum source function Qk(a).

Passing to dimensional physical units, we find [9]
that the first term in Qk is proportional to l2P, while
the term with higher derivatives of the phase Sk

in the square brackets of Eq. (26) is proportional to
l4P. Therefore, one can conclude that the quantum
corrections make contributions ∼� and ∼�

2 to the
dynamics of the expanding universe.

From Eq. (24) after the differentiation with respect
to T , we obtain

d2a

dT 2
= −dU(a)

da
. (30)

The formulae (24) and (30) allow us to draw an
analogy with the equations of classical mechanics de-
scribing the conservation of energy of a particle mov-
ing in the potential well (25). These relations may be
interpreted as the equations that describe the motion
of a particle, an analog of the universe, with an arbi-
trary mass and the zero total energy under the action
of the force

F (a) = −dU(a)

da
= −a+Mk(a)+

+ a
dMk(a)

da
+

1

2

dQk(a)

da
. (31)

In addition to the space curvature effect and the mass
term, this force involves the gradients (pressures) of
classical and quantum gravitational sources.

It should be pointed out that relations (24) and
(30) only formally coincide with the equations of clas-
sical mechanics. They describe the universe, in which,
in addition to the classical source of a gravitational
field in the form of matter with the massMk(a), there
is a relativistic quantum source with the massMQ(a),
which can have, under specific conditions, a serious
influence on the dynamics of the universe. These con-
ditions depend on the relation between the masses

Mk(a) and MQ(a). The mass Mk(a) is given by the
Hamiltonian Ĥφ (8), i.e., in the end, by the poten-
tial V (φ) chosen from model arguments. The mass
MQ(a) is defined by the quantum source function
Qk(a), whose form (26) is totally determined by the
solution of the quantum problem (21).

Passing to the proper time τ , one reduces Eqs. (24)
and (30) to

(
ȧ

a

)2
= ρtot − 1

a2
,

ä

a
= −1

2
(ρtot + 3ptot), (32)

where the dots denote the derivatives with respect to
τ , and

ρtot = ρm + ργ + ρQ, ptot = pm + pγ + PQ. (33)

The deceleration parameter q = −aä
ȧ2 in the model

under consideration is reduced to the expression

q = 1− a

2U

dU

da
. (34)

In the approximation Qk = 0, relations (32) and
(33) reduce to the ordinary Einstein–Friedmann equa-
tions, which describe the closed universe filled with
matter with the density ρm and radiation with the
density ργ . The quantum correction to the pressure of
matter is stipulated by the fact that the state vector
|ψ〉 (18) is a superposition of all possible states of the
classical source of the gravitational field Mk(a) [9].

Equations (24) and (30) are exact. From these
equations, it follows that, in general case, the force
(31) can perform both the positive work on the uni-
verse, which is similar to the work of the repulsive
forces of the dark energy, and the negative work anal-
ogous to the work of the attractive forces of the dark
matter. The kind of work, which is performed on the
universe, depends on the sign and behavior of the po-
tential well U(a) in Eq. (24).

The influence of a gravitational quantum source on
the dynamics of the expanding universe depends on
the value and the sign of the energy density ρQ (27)
and the pressure PQ (28).

If there exists the domain, where the function
Qk(a) > 0, and lnQk(a) depends on ln a, so that
wQ can be parametrized in the form wQ = − 1

3δ,
where δ is an arbitrary positive or negative constant,
then the quantum corrections can imitate, for ex-
ample, the contribution from the de Sitter vacuum
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(δ = 3), domain walls (δ = 2), strings (δ = 1),
dust (δ = 0), radiation (δ = −1), or perfect gas
(δ = −2). In such a model, the quantum source is
Qk(a) ∼ aδ+1. Identifying the energy density ρQ > 0
with the energy density of the dark energy, one finds
that the case δ = 3 reproduces the cosmological con-
stant [3], the values 1 < δ < 3 correspond to the
quintessence [17], whereas the phantom field [18] is
described by the values δ > 3.

However, it is possible that the quantum effects will
generate the quantum corrections, for which the func-
tion Qk(a) < 0, and the corresponding energy density
is negative. This case is not extraordinary. According
to quantum field theory, for instance, the vacuum
fluctuations make a negative contribution to the field
energy per unit area (the Casimir effect). As was
shown in Ref. [19], the quantum correction ρQ takes
a negative value near the initial cosmological singu-
larity.

In order to find out the impact of the mass Mk(a)
and the quantum source function Qk(a) on the evo-
lution of the universe, we consider a specific exactly
solvable quantum problem.

3. An Exactly Solvable Model

Let matter be represented by a dust (pm = 0). Such a
type of matter is reproduced by the scalar field model
with the potential V (φ) = λφ2, where the field φ
oscillates near the point of its true vacuum, and λ is
the coupling constant [9].

Really, if one introduces the variable x =
(
λa6

2

)1/4
φ,

then the Hamiltonian Ĥφ (8) takes the form

Ĥφ =

(
λ

2

)1/2(−∂2x + x2
)
. (35)

We introduce the state vectors 〈x|uk〉, which satisfy
the equation(−∂2x + x2 − εk

) |uk〉 = 0, (36)

where εk is an eigenvalue. This equation describes the
quantum oscillator with εk = 2k + 1, k = 0, 1, 2, ... .
From Eqs. (14), (35), and (36), it follows that

Mk(a) =
√
2λ

(
k +

1

2

)
≡M. (37)

Here, M is the total mass of k non-interacting iden-
tical particles with the masses

√
2λ.

It is convenient to introduce a new variable z =
a−M, which describes a deviation of a from its “equi-
librium” value at the point, where 3 a = M . Then
Eqs. (19) and (21) take the form (the index k is
omitted)[−∂2z + z2 − (2n+ 1)

] |f〉 = 0, (38)

(∂zS)
2 + z2 − (2n+ 1) =

3

4

(
∂2zS

∂zS

)2
− 1

2

∂3zS

∂zS
, (39)

where n = 0, 1, 2, ... is the quantum number, which
numerates the discrete states of the universe, E +
M2 = 2n+ 1, in the potential well z2.

The potential well (25) in Eq. (24) reduces to

U =
1

2

[
z2 − (2n+ 1)−Q(z)

]
. (40)

The quantities |f〉, S, and U are the functions of z. In
addition, they depend on the free indices k and n,
which are omitted here and below, when these indices
are inessential.

Both Eqs. (38) and (39) have two solutions

〈z|f〉1 = Hn(z)e
−z2/2,

〈iz|f〉2 = H−n−1(iz)e
z2/2,

(41)

and

∂zS1(z) = i
ez

2

H−2
n (z)

2
∫ z

0
dx ex2H−2

n (x)
, (42)

∂zS2(iz) = − e−z2

H−2
−n−1(iz)

2
∫ iz

0
dx ex2H−2

−n−1(x)
, (43)

respectively, where Hν(y) is the Hermitian polyno-
mial. According to (20) and (41), the function |f〉1
is real and expressed through the Euclidean phase
SE = −i S1. The second solution |f〉2 of Eq. (38) is
complex. The corresponding phase S2 appears to be
complex. Usually, the solution |f〉2 is discarded as un-
physical. However, in quantum cosmology, both solu-
tions should be considered. Indeed, only in such an
approach, one can obtain nontrivial results about the
topological properties of the universe as an essentially
quantum system and can clarify the nature of the
dark matter and the dark energy.

3 In dimensional units, we have a = 2
3π

G
c2

M (cf. Refs. [10,
11]).
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Let us consider the quantum universe described by
the wavefunction |f〉2. The solution |f〉2 from (41) as
a function of z = a −M , where a is a real variable,
is shown in Fig. 1 for n = 10 and n = 3 (in the in-
set). The quantum n-th state |f〉2 is determined by
the mass M of the universe in accordance with the
condition of quantization: 2n + 1 = M2 + E. For
example, the observed part of our universe is char-
acterized by the parameters M ∼ 1061 (∼1080 GeV)
and E ∼ 10118 (ργ ≈ 10−10 GeV/cm3) [10, 20]. From
the viewpoint of the model under consideration, it is
in the state with n ∼ 10122 (up to ∼10−4). This es-
timate practically coincides with the estimate given
by Hartle and Hawking [16]. Considering n = 10 as
a number large enough to put E = 0, we obtain
M = 4.58. For the case n = 3, we use the approx-
imation E =M2, so that M = 1.87.

The real Re |f〉2 and imaginary Im |f〉2 parts oscil-
late in the interval |z| < M and are shifted in the
phase with respect to each other by π

2 . For n = 10,
the function Re |f〉2 decreases exponentially outside
this interval, while Im |f〉2 diverges exponentially as
|z| → +∞. For n = 3, we have the inverse pic-
ture. In any case, in the interval bounded by the
values |z| ≤ M , the function |f〉2 can be normal-
ized. The normalization constant will depend on the
quantum number n.

Using Eq. (43), we obtain the expression for Q (26)
as a function of iz,

Q(iz) = −(2n+ 1)+

+2(n+ 1)
H−n−2(iz)H−n(iz)

H2−n−1(iz)
. (44)

The potential well (25) takes the form

U(z) =
1

2
z2 − (n+ 1)

H−n−2(iz)H−n(iz)

H2
−n−1(iz)

. (45)

It is a complex function of the form

U(z) = UR(z) + iUI(z), (46)

where UR(z) and UI(z) are real functions.
The evolution of the universe with the complex po-

tential well (46) can be described in terms of the for-
malism with complex scale factor

a = aR + i aI , (47)

�4 �2 2 4
z

�0.1

0.1
0.2
0.3

n = 10

n = 3

�6 �4 �2 2 4 6
z

�0.00003

�0.00002

�0.00001

0.00001

0.00002

0.00003
�f �2

Fig. 1. Real (boldface curve) and imaginary (thin curve) parts
of the function |f〉2 from (41) versus the deviation z for n = 10

and n = 3 (in the inset)

where aR and aI are real functions of time T . The
possibility of the introduction of a complex metric
tensor and its relation to the real physical gravita-
tional field was studied, e.g., in Refs. [21,22] (see also
references therein). Taking the common point of view,
we assume that the physical gravitational field is de-
scribed by the real part of metric (1) (the real line
element). In our model, the necessity to pass to the
complex variable a is related to the complexity of the
wavefunction |f〉2. Since the real and imaginary parts
of this function vanish at different points (see Fig. 1),
the real physical quantities, such as the kinetic energy,
potential well, and deceleration parameter appear to
be free of discontinuities, which are typical of the real
function |f〉1 in the region −M < z < M [23].

The energy conservation law (24) can be rewritten
in the form of two conditions

1

2

[(
daR
dT

)2
−
(
daI
dT

)2]
+ UR = 0,

daR
dT

daI
dT

+ UI = 0.

(48)

Hence, it follows that there are two solutions for the
parts of the kinetic energy related to a change of aR
and aI with time T ,
(
daR
dT

)2
±
= −UR ±

√
U2
R + U2

I ,

(
daI
dT

)2
±
= UR ±

√
U2
R + U2

I .

(49)
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Fig. 2. Real (boldface curve) and imaginary (thin curve) parts
of the potential well U(z) (45) versus the deviation z = aR−M

for n = 10 and n = 3

n = 10
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Fig. 3. Real K+
R (boldface curve) and imaginary K+

I (thin
curve) parts of the kinetic energy (49) versus the deviation
z = aR −M for n = 10 and n = 3
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Fig. 4. Real qR (boldface curve) and imaginary qI (thin curve)
parts of the deceleration parameter (34) versus the deviation
z = aR − M for the potential energy (45) with n = 10 and
n = 3

The potential well (46) depends only on the real
part of the scale factor. Therefore instead of z = a−
−M, one must take z = aR −M in Eq. (45). From
Eqs. (48) and (49), it follows that the imaginary part
aI must be expressed in terms of the real part aR,

aI =

aR∫
0

dx
UI(x)

UR(x)∓
√
U2
R(x) + U2

I (x)
, (50)

with the boundary condition aI(aR = 0) = 0. Thus,
in such a model, all elements of the complex spaceti-
me are expressed via one real parameter aR = aR(T ).

The complexity of the spacetime metric leads to the

interference of the kinetic energies K±
R,I ≡ 1

2

(
daR,I

dT

)2
±

described by Eqs. (49). This interference smoothes
out behavior of these energies near the points |z| = z0,
where UR = 0. In this case, the motion is always re-
alized in the real time T , since the domain with the
Euclidean signature is found to be inaccessible.

The real and imaginary parts of the energy (45) as
functions of z are plotted in Fig. 2 for the quantum
numbers n = 10 and n = 3. The general behavior
of UR and UI with respect to z is not changed for
arbitrary values of the quantum number n, from n ∼
∼ 1 up to n
 1. The same is true for other physical
parameters (see Figs. 3 and 4).

The points, where UR and UI have extrema or van-
ish, are determined by n and M . So, we can conclude
that, in the interval |z| < M , the energy UR(z) is well
approximated by the expression: UR = 1

2z
2−(

n+ 1
2

)
.

It vanishes at the points z0 ≈ ±√
2(n+ 1). The imag-

inary part UI has extrema at these points. It vanishes
at the points z = 0 and |z| = +∞. The real part of
the potential energy is negative, UR < 0, in the re-
gion |z| < z0 and positive, UR > 0, for |z| > z0. We
have UR → +∞ as |z| → +∞. The imaginary part
of the potential energy is positive, UI > 0, at z < 0
and negative, UI < 0, on the semiaxis z > 0. The
inequality |UR| 
 |UI | holds in the whole range of z,
except the points near |z| = z0.

In Fig. 3, the real K+
R and imaginary K+

I parts
of the kinetic energy (49) of type (+) for n = 10
and n = 3 are shown. In the whole range of the de-
viation z = aR − M , both these energies are posi-
tive and describe the motion in the real time. At the
points |z| = z0, they equal each other in accordance
with Eqs. (48). At the point z = 0, the energy K+

R

has a maximum equal to
(
n+ 1

2

)
, while the energy
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K+
I vanishes. In the interval |z| < z0, the condition

K+
R 
 K+

I is satisfied. In the domain |z| > z0, where
UR > 0, the energy K+

R → 0 as |z| → +∞, while the
energy K+

I → UR.
The kinetic energy K+

R increases in the interval
−∞ < z < 0. This means that the internal forces
perform the positive work on the universe accelerat-
ing the expansion. This work is analogous to the work
of the forces of the dark energy. On the contrary, the
kinetic energy K+

I decreases in this interval, the neg-
ative work is done on the universe. As a result, the
expansion decelerates. This is equivalent to the work
of the attractive forces of the dark matter.

The energy K+
R decreases in the interval 0 < z <

< +∞, demonstrating that the work performed on
the universe is negative. In this way, the presence
of an additional source of gravitational attraction is
imitated. Inversely, the energy K+

I increases in this
interval, the performed work is positive, as under the
action of the forces of the dark energy.

So, the kinetic energies K+
R and K+

I show the work
the universe should do in order to overcome the ac-
tion of the internal forces of repulsion and attrac-
tion, which exist simultaneously and compete with
each other at all stages of the evolution of the uni-
verse. Whether the expansion of the universe is ac-
celerating or decelerating depends on the relation be-
tween the forces performing the work, causing the
acceleration or the deceleration.

The plots of the real K−
R and imaginary K−

I parts
of the kinetic energy (49) of type (−) would be the
mirror images of the plots in Fig. 3 with regard to the
substitutions K+

R → −K−
I and K+

I → −K−
R . Both

energies are negative in the whole range of the devia-
tion z and the motion can be described in the imag-
inary time ξ = −iT . The analysis of the solution of
type (+) given above remains valid for the solution
of type (−) after the formal substitution T → ξ. This
means that the gravitational and antigravitational
forces, which perform work on the universe analo-
gous to the dark matter and the dark energy, can
exist in the spacetime with the Euclidean-signature
metric as well.

Thus, the presence of the imaginary part UI in the
potential well (46) and in Eqs. (48) indicates that
the processes of absorption and release of the energy
pumping over between the states with an effective at-
traction and repulsion of matter are running in the
system.

In Fig. 4, the real qR and imaginary qI parts of the
deceleration parameter (34) are shown as functions of
the deviation z for the potential well (45) with n = 10
and n = 3. In the region |z| ≤ M , where |qR| 
 |qI |
(i.e. |qI/qR|z=0 ≈ 0.02), the contribution from qI can
be neglected. In this stage, the universe expands with
deceleration, since the antigravitational action of the
forces performing the positive work is not enough
to overcome the attraction of the ordinary and dark
matters. The value qR(z = 0) = 1 reproduces the re-
sults of general relativity [24]. At the point z = 0,
we have aR = M . In the region aR ≈ 2M , the re-
distribution of the energy takes place in the universe,
as demonstrated by the peaks on the curves qR and
qI in Fig. 4. The forces of attraction and repulsion
compete with each other at aR < 2M , where qR > 0
and qI < 0. At reaching the region z > M , where
aR > 2M , both parts of the deceleration parameter
become negative, by demonstrating that the expan-
sion of the universe is accelerating. Starting from the
point z � 1.5M (z = 6 for n = 10), the parameter qI
vanishes and the rate of expansion is described only
by the real part qR < 0. In the limit z → +∞, the
forces of attraction and repulsion will exactly com-
pensate each other.

Again, as in the case of the complex metric ten-
sor, one can accept that only the real part of the
deceleration parameter qR is a physically measurable
quantity. The imaginary part qI plays a role of a reg-
ularizing factor, which allows one to exclude the dis-
continuities caused by the vanishing of the real part
of the function |f〉2 at isolated points.

Let us compare the predictions of the quantum
model under consideration with the observations in
our universe. In the modern era, the scale factor (ra-
dius of the universe) aR ∼ 1028 cm and the mass
M ∼ 1080 GeV of matter in the observed part of
our universe are estimated up to a coefficient less
than O(10). Such a radius aR roughly coincides with
the Hubble radius, while the mass M is estimated
by the quantity of matter with the critical density
ρc ≈ 10−5 GeV/cm3 contained in the Hubble volume
≈2π2a3R. In dimensionless units, which are used in
this paper, these parameters prove to be of the same
order of magnitude, aR ∼ 1061 and M ∼ 1061. Accor-
ding to observations and theoretical estimations, the
transition from the matter-dominated phase to the
dark-energy-dominated universe takes place at a red-
shift of ≈0.6. This does not contradict the obtained
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condition 2 < aR/M < 10 (see Fig. 4), which deter-
mines the stage of transition to the phase of acceler-
ating expansion of the universe.

4. Conclusion

In this paper, the evolution of the universe is stud-
ied in the exactly solvable dynamical quantum model
with the Robertson–Walker metric. It is shown that
the equation of motion, which describes the expansion
or contraction of the universe, can be represented in
the form of the zero total energy conservation law (24)
for a particle being an analog of the universe. The
analog particle has an arbitrary mass and moves in
the potential well (25) under the action of the inter-
nal force (31), which involves the curvature of space,
mass term, and gradients (pressures) of classical and
quantum gravitational sources. The quantum source
(26) emerges as a result of the evolution of the phase
Sk(a) of the state vector (20), which describes the
geometrical properties of the quantum universe, in
the space of the scale factor. Equation (21) for the
phase Sk(a) is non-linear, and contains the informa-
tion about the curvature of space and quantum states
of matter in the universe.

In a particular case of matter in the form of dust,
this non-linear equation has the analytical solutions
of two types: (i) real solution for the Euclidean phase
SE = −iS1 (42) which corresponds to the real state
vector |f〉1 from (41); (ii) complex solution S2 (43)
for the state vector |f〉2 from (41) in the space of
complex scale factor.

The motion of the analogue particle as a mathe-
matical equivalent of the evolving universe, described
by the state vector |f〉2, is characterized by two types
of possible solutions for the real and imaginary parts
of the kinetic energy (49) of types (+) and (−). The
solution of type (+) describes the motion of the ana-
logue particle in real time T , while the solution of type
(−) corresponds to imaginary time ξ = −i T . The
changes of the real and imaginary parts of the kinetic
energy of one type during the evolution of the uni-
verse demonstrate that the internal forces simultane-
ously perform both the positive work on the universe
(e.g., the energy K+

R increases as in Fig. 3), which is
analogous to the work of the forces of dark energy, and
the negative work (the energyK+

I decreases), which is
similar to the work of the attractive forces of the dark
matter. The general character of the expansion of the

universe at a definite instant of time (parametrized
by the deviation z = aR −M in Fig. 4) depends on
which of the works dominates. The expansion of the
universe becomes accelerating after reaching the re-
gion aR > 2M . This result does not contradict the
data on the expansion of our universe in the mod-
ern era and predicts that the forces of attraction and
repulsion will exactly compensate each other in the
infinite future (a → +∞).

In the approach under consideration, the change of
the regimes of the expansion of the universe reflects
a quantum nature of the universe. The equations of
quantum theory (24) and (30) are transformed into
the Einstein–Friedmann equations of general relativ-
ity (32) without dark energy in the limit Qk(a) → 0.

Thus, it appears that the quantum universe is such
that, during its expansion, it decelerates, then accel-
erates, or vice versa, spontaneously. The cause of the
expansion and the change of its regimes is a special
form of the potential well (25), in which the universe
is moving as a whole.

From Fig. 4, it follows that the main properties of
the behavior of the deceleration parameter are invari-
able with the change of the quantum number n. This
demonstrates that the model under consideration can
explain the accelerating expansion (inflation) in the
early universe (the domain of comparatively small
values of quantum numbers) and the later transition
from the decelerating expansion to the accelerating
expansion of the universe (the domain of the very
large values of quantum numbers) within a single ap-
proach. In both cases, a period of decelerating ex-
pansion is succeeded by a period of accelerating ex-
pansion. This change of the regime is caused by the
behavior of the quantum correction PQ to the total
pressure (33) in the universe. The change of the pres-
sure PQ gives rise to additional fluctuations of the
energy density ρtot, which influence the formation of
the large-scale structure in the universe.
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В.Є.Кузьмичов, В.В.Кузьмичов

ВСЕСВIТ, ЩО РОЗШИРЮЄТЬСЯ:
ЗМIНА РЕЖИМУ

Р е з ю м е

Метою роботи є пояснення, на основi точних рiвнянь кван-
тової геометродинамiки для космологiчної моделi з метри-
кою Робертсона–Вокера, можливої змiни режиму розшире-
ння всесвiту, з прискореного на уповiльнений та навпаки.
Показано, що змiна темпу розширення всесвiту може свiд-
чити про наявнiсть сил певного виду, що дiють у всесвiтi.
Звертається увага на те, що природа цих сил є квантовою.
Причиною розширення всесвiту та змiни його режиму слу-
гує особлива форма ефективної потенцiальної ями, в якiй
всесвiт рухається як цiле.

В.Е.Кузьмичев, В.В.Кузьмичев

РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ:
СМЕНА РЕЖИМА

Р е з ю м е

Цель работы состоит в объяснении возможной смены ре-
жима расширения вселенной с ускоряющегося на замедля-
ющийся и наоборот на основе точных уравнений кванто-
вой геометродинамики для космологической модели с ме-
трикой Робертсона–Уокера. Показано, что смена темпа ра-
сширения вселенной может свидетельствовать о наличии
сил определенного вида, которые действуют во вселенной.
Обращается внимание на квантовую природу этих сил.
Причиной расширения вселенной и изменения его режима
является особый вид эффективной потенциальной ямы, в
которой вселенная движется как целое.
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