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We calculate the momentum distributions of neutrons and protons in 3He in the framework
of a model which includes 3N interactions together with 2N interactions. It is shown that the
contribution of 3N interactions becomes essential in comparison with that coming from 2N
interactions for the internal momentum in 3𝐻𝑒 𝑘 > 250 MeV/𝑐. We also compare the calcu-
lated momentum distribution of protons with the so-called empirical momentum distribution
of protons extracted from the 𝐴(3𝐻𝑒, 𝑝) breakup cross-sections measured for protons emitted
at zero degree. It is concluded that 3N interactions cannot completely explain the disagreement
between the available data on the empirical momentum distribution of protons in 3𝐻𝑒 and
calculations based on 2N interactions, which is observed at the high momentum region of the
momentum distribution, 𝑘 > 250 MeV/𝑐.

K e yw o r d s: nucleon momentum distributions, empirical momentum distribution, three-body
interactions.

1. Introduction

Momentum distributions of nucleons in nuclei are di-
rectly connected with the spatial structure of the cor-
responding nuclear systems. In particular, these dis-
tributions at Fermi momenta above 200–300 MeV/𝑐
(this region is usually referred to as “a region of high
relative nucleon momenta”) give important informa-
tion about such interesting questions as a role of non-
nucleon degrees of freedom in the nuclear structure,
relativistic effects, and so on.

Starting from three-nucleon systems, 3He and 3H,
the momentum distributions should also give in-
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formation about the role of effective three-nucleon
(3N) interactions in nuclear structure. For example, a
prominent role of 3N interactions was demonstrated
in a systematic study of the elastic scattering of polar-
ized protons from deuterons at energies from 100 to
200 MeV [1]. Besides that, the relativistic effects are
also important in 3N systems, see, e.g., the results of
recent relativistic calculations of the triton binding
energy [2] with the so-called Kharkov potential, one-
boson-exchange NN potential constructed with the
use of an unitary clothing transformation [3].

The goals of this paper are:
1. to find signals of manifestation of 3N interac-

tions in the momentum distributions of neutrons and
protons in 3He,
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2. to compare theoretical results, coming for known
models for 2N+3N interactions, with existing exper-
imental data,

3. to indicate which region of relative nuclear mo-
menta should be looked for manifestations of non-
nucleonic degrees of freedom in the nuclear structure.

The paper is organized in the following way. We
start, in Section 2, with a short overview of the op-
erator form of a three-nucleon bound state, which is
a basic point for further calculations. In Section 3,
the momentum distribution of neutrons in 3He is cal-
culated within a model, which takes into account
3N interactions together with the standard 2N in-
teractions.

In Section 4, the momentum distribution of pro-
tons in 3He is calculated in the framework of a sim-
ilar model. The calculated proton momentum distri-
bution is compared with existing experimental data
in Section 5, namely: in Subsection 5.1, we discuss
the definition and a procedure of extraction of the so-
called “empirical momentum distribution” of protons
in 3He from the A(3He, 𝑝) breakup cross-sections [4],
when the proton-spectator was emitted at 0∘; in Sub-
section 5.2, the empirical momentum distribution is
compared with the results of our calculations, as well
as with calculations without explicit inclusion of 3N
interactions. Conclusions are given in Section 6.

2. Operator Form
of Three-Nucleon Bound State

There are few known approaches to describe a three-
nucleon (3N) wave function: a partial wave decom-
position (see, e.g., Ref. [5]), tensor representations
[6–8], and an operator form [9]. In this paper, we use
the last one.

In 1942, E. Gerjuoy and J. Schwinger introduced an
operator form for three- and four-nucleon states [9],
which was a generalization of an operator form of the
deuteron state elaborated earlier by W. Rarita and
J. Schwinger [10]. In the case of a 3N nucleon state,
this approach expresses the general spin structure of
a 3N system in terms of nine operator forms acting
on the special spin state, where nucleons 1 and 2 have
the total spin 𝑠 = 0 and nucleon 3 carries out the spin
of the 3N system:

|𝜈⟩ = 1√
2
(|+− sign 𝜈⟩ − |−+ sign 𝜈⟩). (1)

In Eq. (1), 𝜈 is the magnetic quantum number of
the 3N system and

|sign𝑚1 sign𝑚2 sign𝑚3⟩

is a spin wave function of three nucleons with mag-
netic quantum numbers 𝑚1, 𝑚2, and 𝑚3.

The operator form does not employ the isospin for-
malism, and the nucleons are labelled as follows:

𝑁1 = 𝑁2 = 𝑝 and 𝑁3 = 𝑛− for 3He,

𝑁1 = 𝑁2 = 𝑛 and 𝑁3 = 𝑝− for 3H.

The relations between approaches, which employ
(or do not employ) the isospin formalism, as well
as advantages of the latter ones, were discussed in
Refs. [11, 12].

It was mentioned in Ref. [13], that the ninth spin
structure of the operator form of a 3N system is re-
dundant, and we, following to Ref. [13], omit this
component.

Finally, the 3N bound state wave function is given
by

Ψ𝜈(p,q) =

8∑︁

𝑖=1

𝜑𝑖(𝑝, 𝑞, 𝑥) |𝑖, 𝜈⟩, (2)

where |𝑖, 𝜈⟩ are the spin wave functions defined below
[see Eqs. (4)], p and q are the Jacobi momenta

p1 =
1

3
P− 1

2
q+ p, p2 =

1

3
P− 1

2
q− p,

p3 =
1

3
P+ q.

(3)

Here, p1, p2, and p3 are the momenta of the nucle-
ons, and P is the momentum of the nucleus; 𝑥 = cos𝜅
(𝜅 is the angle between the vectors p and q), and
𝜑𝑖(𝑝, 𝑞, 𝑥) are scalar functions. The scalar functions
𝜑𝑖(𝑝, 𝑞, 𝑥) have been calculated in Ref. [13] for two
modern potentials: the 2N potential AV18 [14] with
the 3N potential Urbana-IX [15] (AV18 +U9) and
the 2N potential CD-Bonn [16] with the 3N po-
tential Tucson–Melbourne [17] (CDBN+ TM). The
functions 𝜑𝑖(𝑝, 𝑞, 𝑥) are tabulated on a 3-dimensional
grid (𝑥, 𝑞, 𝑝) and can be downloaded from site [18].

The spin structures are given as follows:

|1𝜈⟩ = |𝜈⟩, |2𝜈⟩ =
√︂

1

3
𝜎(12)𝜎(3) |𝜈⟩,

|3𝜈⟩ = −𝑖

√︂
3

2
𝜎(3) (̂︀p× ̂︀q) |𝜈⟩,
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|4𝜈⟩ =
√︂

1

2
[𝑖𝜎(12) + 𝜎(12)× 𝜎(3)] (̂︀p× ̂︀q) |𝜈⟩,

|5𝜈⟩ =
[︂
−𝑖𝜎(12) +

1

2
𝜎(12)× 𝜎(3)

]︂
(̂︀p× ̂︀q) |𝜈⟩,

|6𝜈⟩ =
√︂

3

2

[︂
𝜎(12) · ̂︀p𝜎(3)̂︀p− 1

3
𝜎(12)𝜎(3)

]︂
|𝜈⟩,

|7𝜈⟩ =
√︂

3

2

[︂
𝜎(12)̂︀q𝜎(3)̂︀q− 1

3
𝜎(12)𝜎(3)

]︂
|𝜈⟩,

|8𝜈⟩ = 3

2
√
5

[︂
𝜎(12)̂︀q𝜎(3)̂︀p+

+𝜎(12)̂︀p𝜎(3)̂︀q− 2

3
̂︀p̂︀q𝜎(12)𝜎(3)

]︂
|𝜈⟩, (4)

where

̂︀q = q/|q|, ̂︀p = p/|p|,

and

𝜎(12) =
1

2
[𝜎(1)− 𝜎(2)]; (5)

𝜎(𝑖) are Pauli matrices of the 𝑖-th nucleon.
The normalization of the wave function is given by

∫︁
𝑑3𝑞𝑑3𝑝 |Ψ𝜈(p,q)|2 = 8𝜋2

1∫︁

−1

𝑑𝑥

∞∫︁

0

𝑑𝑞𝑞2
∞∫︁

0

𝑑𝑝𝑝2×

×
[︃

8∑︁

𝑖=1

⟨𝑖𝜈 |𝑖𝜈⟩𝜑2
𝑖 (𝑝, 𝑞, 𝑥)+

+2
∑︁

𝑖 ̸=𝑗

⟨𝑖𝜈 |𝑗𝜈⟩𝜑𝑖(𝑝, 𝑞, 𝑥)𝜑𝑗(𝑝, 𝑞, 𝑥)

]︃
= 1. (6)

Overlaps of the spin structures are given in Table.
Note that the contributions of 𝜑3(𝑝, 𝑞, 𝑥),

𝜑4(𝑝, 𝑞, 𝑥), and 𝜑5(𝑝, 𝑞, 𝑥) to the normalization
relation (6) are of order of ∼0.05%, and we ignore
these components of the trinucleon wave function in
Table, as well as in the subsequent calculations.

We have found that the results of numerical calcu-
lations published in Refs. [13, 18] are represented on
the 3-dimensional grid (𝑝, 𝑞, 𝑥), which is not “dense”
enough for needs of our calculations.

Therefore, we expanded the scalar functions
𝜑𝑖(𝑝, 𝑞, 𝑥) at fixed 𝑝 and 𝑞 in series in terms of the

Legendre polynomials 𝑃ℓ(𝑥):

𝜑1(𝑝, 𝑞, 𝑥) = 𝐶10(𝑝, 𝑞) + 𝐶12(𝑝, 𝑞)𝑃2(𝑥),

𝜑2(𝑝, 𝑞, 𝑥) = 𝐶21(𝑝, 𝑞)𝑃1(𝑥) + 𝐶23(𝑝, 𝑞)𝑃3(𝑥),

𝜑3(𝑝, 𝑞, 𝑥) = 𝐶31(𝑝, 𝑞)𝑃1(𝑥),

𝜑4(𝑝, 𝑞, 𝑥) = 𝐶40(𝑝, 𝑞) + 𝐶42(𝑝, 𝑞)𝑃2(𝑥),

𝜑5(𝑝, 𝑞, 𝑥) = 𝐶50(𝑝, 𝑞) + 𝐶52(𝑝, 𝑞)𝑃2(𝑥),

𝜑6(𝑝, 𝑞, 𝑥) = 𝐶61(𝑝, 𝑞)𝑃1(𝑥),

𝜑7(𝑝, 𝑞, 𝑥) = 𝐶71(𝑝, 𝑞)𝑃1(𝑥),

𝜑8(𝑝, 𝑞, 𝑥) = 𝐶80(𝑝, 𝑞) + 𝐶82(𝑝, 𝑞)𝑃2(𝑥).

(7)

Terms with the Legendre polynomials of higher or-
ders in ℓ were found to be negligibly small and will be
omitted in the present numerical calculations. For ex-
ample, in case of functions 𝜑3, 𝜑6, and 𝜑7, the numer-
ical coefficients for the next term, containing 𝑃3(𝑥),
were found approximately by 10−5–10−6 times less
than 𝐶31(𝑝, 𝑞), 𝐶61(𝑝, 𝑞), and 𝐶71(𝑝, 𝑞), respectively.

The coefficients 𝐶𝑖,ℓ(𝑝, 𝑞) of the series form 13 func-
tions given on a 2-dimensional grid (𝑝, 𝑞).

3. Momentum Distribution
of Neutrons in 3He

The momentum distribution of a neutron in 3He is
defined as follows (see [13]):

𝑛(𝐾) =
1

2

∑︁

𝜈

∫︁
𝑑3𝑝𝑑3𝑞𝛿(q−K) |Ψ𝜈(p,q)|2 =

=

∫︁
𝑑3𝑝

⃒⃒
⃒Ψ 1

2
(p,K)

⃒⃒
⃒
2

,

K is the neutron momentum inside 3He. The factor 1
2

comes from the averaging over the nucleus magnetic
quantum numbers. Using the spin structures ⟨𝑖𝜈|𝑗𝜈⟩
from Table, we get

𝑛(𝐾) = 2𝜋

∞∫︁

0

𝑝2𝑑𝑝

1∫︁

−1

𝑑𝑥 𝜌𝑛(𝑝,𝐾, 𝑥), (8)

Overlaps of the spin structures ⟨𝑖𝜈|𝑗𝜈⟩.
Only nonvanishing overlaps are presented

𝑖 𝑗 ⟨𝑖𝜈|𝑗𝜈⟩ 𝑖 𝑗 ⟨𝑖𝜈|𝑗𝜈⟩

1 1 1 6 8
√︁

6
5
𝑥

2 2 1 7 7 1
6 6 1 7 8

√︁
6
5
𝑥

6 7 1
2
(3𝑥2 − 1) 8 8 9

10
(1 + 1

3
𝑥2)
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Fig. 1. Momentum distribution of neutrons in 3He calcu-
lated with 2N+3N interactions, AV18+U9 (thin solid line)
and CDBN+ TM (thick solid line). The results obtained with
2N interactions only (dashed and dot-dashed lines, for the
Paris [21] and CD-Bonn [16] potentials, respectively) are taken
from Ref. [19]. The squares and crosses represent the results
of variational calculations [20] obtained with the Urbana+U9
and Argonne+U9 interactions, respectively

where

𝜌𝑛(𝑝,𝐾, 𝑥) = 𝜑2
1(𝑝,𝐾, 𝑥) + 𝜑2

2(𝑝,𝐾, 𝑥)+

+𝜑2
6(𝑝,𝐾, 𝑥) + 𝜑2

7(𝑝,𝐾, 𝑥)+

+
9

10

(︂
1 +

1

3
𝑥2

)︂
𝜑2
8(𝑝,𝐾, 𝑥)+

+
(︀
−1 + 3𝑥2

)︀
𝜑6(𝑝,𝐾, 𝑥)𝜑7(𝑝,𝐾, 𝑥)+

+

√︂
24

5
𝑥 [𝜑6(𝑝,𝐾, 𝑥) + 𝜑7(𝑝,𝐾, 𝑥)]𝜑8(𝑝,𝐾, 𝑥). (9)

The resulting neutron momentum distribution, 𝑛(𝐾),
for AV18 +U9 and CDBN +TM together with the
results of variational calculations from Ref. [20], are
shown in Fig. 1. We compare this result with cal-
culations from Ref. [19] obtained without 3N inter-
actions. Good agreement between the results, ob-
tained with and without 3N interactions, is ob-
vious for 𝐾 . 250 MeV/𝑐 and demonstrates that
the 3N interactions do not manifest themselves
in this region. At higher 𝐾, the contribution of
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Fig. 2. Contributions of the main spin structures to the neu-
tron momentum distribution in 3He. Dashed line: (𝜑1)

2; dot-
dashed line: sum of contributions coming from (𝜑2,6,7,8)

2 and
interference terms 𝜑6𝜑7, 𝜑6𝜑8, 𝜑7𝜑8; solid line: the result with
all the terms taken into account

the 3N interactions becomes significant and domi-
nates from 𝐾 ∼ 400 MeV/𝑐 over the one from 2N
interactions.

The contribution of the most important term,
(𝜑1)

2, and the sum of other terms in Eq. (9) to
the total momentum distribution are displayed in
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Fig. 2. It is worthwhile to note that the contribution
of the (𝜑1)

2 term has a dip in the same region (near
𝐾 ∼ 450 MeV/𝑐), where the similar dip appears in
calculations without 3N interactions.

4. Momentum Distribution
of Protons in 3He

The momentum distribution of protons in 3He is
given by

𝑛𝑝(𝐾) =
1

2

∑︁

𝜈

∫︁
𝑑3𝑝𝑑3𝑞 [𝛿(p1 −K) + 𝛿(p2 −K)]×

× |Ψ𝜈(p,q)|2, (10)

where K is the proton momentum in 3He and the
factor 1

2 comes from the averaging over the nucleus
magnetic quantum numbers. Due to the identity of
the protons, this expression is reduced to

𝑛𝑝(𝐾) =
∑︁

𝜈

∫︁
𝑑3𝑝𝑑3𝑞𝛿(p1 −K) |Ψ𝜈(p,q)|2 ≡

≡
∑︁

𝜈

∫︁
𝑑3𝑝𝑑3𝑞𝛿

(︂
p− 1

2
q−K

)︂
|Ψ𝜈(p,q)|2 =

= 2

∫︁
𝑑3𝑝𝑑3𝑞𝛿

(︂
p− 1

2
q−K

)︂
𝜌𝑝(𝑝, 𝑞, 𝑥) =

= 32𝜋

∞∫︁

0

𝑑𝑝𝑝2
1∫︁

−1

𝑑 cos 𝜃𝑝𝜌𝑝(𝑝, 𝑞, 𝑥), (11)

where 𝜃𝑝 is the angle between p and K, and

𝜌𝑝(𝑝, 𝑞, 𝑥) = [𝐶10(𝑝, 𝑞) + 𝑃2(𝑥)𝐶12(𝑝, 𝑞)]
2
+

+ [𝑃1(𝑥)𝐶21(𝑝, 𝑞) + 𝑃3(𝑥)𝐶23(𝑝, 𝑞)]
2
+

+𝑃 2
1 (𝑥)

[︀
𝐶2

61(𝑝, 𝑞) + 𝐶2
71(𝑝, 𝑞)

]︀
+

+
9

10

(︂
1 +

1

3
𝑥2

)︂
[𝐶80(𝑝, 𝑞) + 𝑃2(𝑥)𝐶82(𝑝, 𝑞)]

2
+

+
(︀
−1 + 3𝑥2

)︀
𝑃 2
1 (𝑥)𝐶61(𝑝, 𝑞)𝐶71(𝑝, 𝑞)+

+

√︂
24

5
𝑥𝑃1(𝑥) [𝐶61(𝑝, 𝑞) + 𝐶71(𝑝, 𝑞)]×

× [𝐶80(𝑝, 𝑞) + 𝑃2(𝑥)𝐶82(𝑝, 𝑞)]. (12)

In the final line of Eq. (11), 𝑞 and 𝑥 are considered as
functions of 𝐾, 𝑝, and 𝜃𝑝.

Using K = p− 1
2q, we get

𝑞 = 2
√︁
𝐾2 + 𝑝2 − 2𝐾𝑝 cos 𝜃𝑝,

𝑥 =
𝑝−𝐾 cos 𝜃𝑝√︀

𝐾2 + 𝑝2 − 2𝐾𝑝 cos 𝜃𝑝
. (13)

On the 2-dimensional grid, the integral over 𝑑𝑝 can be
reduced to the sum

∑︀𝑛𝑝

𝑖=1 𝑤𝑖, where 𝑤𝑖 is an element
on the grid (𝑝, 𝑞, 𝑥). In turn, the integral over 𝑑 cos 𝜃𝑝
becomes

1∫︁

−1

𝑑 cos 𝜃𝑝𝑃ℓ′(𝑥)𝑃ℓ(𝑥)𝐶𝑚′ℓ′(𝑞, 𝑝𝑖)𝐶𝑚ℓ(𝑞, 𝑝𝑖). (14)

The variables 𝑥 and 𝑞 are defined by Eqs. (13), there-
fore 𝑞 cannot be on the grid (𝑝, 𝑞, 𝑥). Nevertheless, the
functions 𝐶𝑚ℓ1(𝑞, 𝑝𝑖) and 𝐶𝑚′ℓ′(𝑞, 𝑝𝑖) at fixed 𝑝𝑖, 𝐾,
and cos 𝜃𝑝 can be obtained by a linear interpolation
from their values given on the grid (𝑞, 𝑝).

The contribution of spin structure 1 and the sum
of contributions coming from spin structures 2, 6, 7,
and 8 to the momentum distribution of protons in
3He are displayed in Fig. 3.

5. Empirical Momentum Distribution

Here, we compare the calculated proton momen-
tum distributions with experimental results extracted
from the 12C(3He, 𝑝) breakup cross-section measured
at 𝑝3He = 10.8 GeV/𝑐 with the emission of proton-
fragments at 0∘ [4].

5.1. Empirical momentum distribution

To compare the calculated momentum distribution
with experiment, it is necessary to establish a con-
nection between the momentum K (which is a the-
oretical quantity) and the measured proton momen-
tum. In the non-relativistic case, it is of a common use
to postulate that K = k*, where k* is the proton mo-
mentum in the 3He rest frame. But in the relativistic
case, as that of the experiment [4], it is incorrect.

The more adequate description has been suggested
long time ago within the so-called “minimal relativiza-
tion scheme”. This approach was discussed in Ref. [19]
in detail. Therefore, we recall only the main points
here.

In the framework of this scheme, the momentum
K is to be identified with the “relativistic internal
momentum” k = (k⊥, 𝑘‖), which appears in the dy-
namics on the light front (LFD), instead of the non-
relativistic k*. The LFD is often called as the “dy-
namics in the infinite momentum frame” (IMF). (The
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Fig. 3. Contributions of the main spin structures to the proton
momentum distribution in 3He. The notations are the same as
those in Fig. 2

IMF is defined as a limiting reference frame, which
is moving, with respect to the laboratory frame, in
the negative 𝑧-direction with a velocity close to the
speed of light.) In other words, it is the k variable
corresponding to the variable K used in the previous
sections. The important question is: “In which way
the light-front variable k is related to the measured
momentum of a 3He fragment?”

In the IMF dynamics, the wave function of a bound
state is described in terms of two variables, 𝛼 and
k⊥. Let us consider 3He as a (proton + 2N) system
with masses 𝑚 and ℳ2𝑁 , respectively; then 𝛼 and
k⊥ are defined by

𝛼 =
𝐸lab

𝑝 + 𝑘lab‖
𝐸lab

3He + 𝑃 lab
‖

, k⊥ = 𝑘lab⊥ , (15)

where 𝑝 = (𝐸lab
𝑝 ,klab

⊥ , 𝑘lab‖ ) and 𝑃 = (𝐸lab
3He,0⊥, 𝑃 lab)

are the proton and 3He 4-momenta in the labora-
tory frame. In terms of 𝛼 and k⊥, the effective mass
squared of the (𝑝+ 2N) system becomes

ℳ2
𝑝+2N =

𝛼𝑚2 + (1− 𝛼)ℳ2
2N + k2

⊥
𝛼(1− 𝛼)

, (16)

and the longitudinal component of the k momentum
is given by

𝑘‖ = ±
√︃

𝜆(ℳ2
𝑝+2N,ℳ2

2N,𝑚
2)

4ℳ2
𝑝+2N

− k2
⊥, (17)

where 𝜆(𝑎, 𝑏, 𝑐) = 𝑎2 + 𝑏2 + 𝑐2 − 2𝑎𝑏 − 2𝑎𝑐 − 2𝑏𝑐. In
Ref. [19], it was argued that, because the mean mo-
mentum square in the pair ⟨𝑞2⟩ ≪ 𝑚2, one can take
ℳ2N ≈ 2𝑚.

From the kinematical conditions of experiment [4],
it follows that q⊥ = 0 and k⊥ = 0. In this case, the
signs “−” and “+” are chosen for 𝛼 < 1

3 and 𝛼 > 1
3 ,

respectively; the IMF momentum k is reduced to the
momentum k* for 𝛼 ≈ 1

3 .
The integral

∫︁
𝑑3𝑘𝑛𝑝(𝑘) =

=

1∫︁

0

𝑑𝛼

∫︁
𝑑2𝑘⊥

𝜀𝑝(𝑘)𝜀2𝑁 (𝑘)

𝛼(1− 𝛼)ℳ2
𝑝+2N

𝑛𝑝(𝑘) = 2, (18)

𝜀𝑝(𝑘) =
√︀
𝑚2 + 𝑘2, 𝜀2𝑁 (𝑘) =

√︁
ℳ2

2N + 𝑘2

gives the number of protons in 3He, and the follow-
ing expression can be considered as the relativized
momentum distribution of protons in 3He:

𝑛rel
𝑝 (𝛼,k⊥) =

𝜀𝑝(𝑘)𝜀2𝑁 (𝑘)

𝛼(1− 𝛼)ℳ2
𝑝+2N

𝑛𝑝(𝑘). (19)
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After that, in the framework of the IMF dynamics,
the invariant differential cross-section of the 𝐴(3He, 𝑝)
breakup is given by

𝐸𝑝
𝑑3𝜎

𝑑p𝑝
= 𝑓

(𝑝)
kin𝜎𝑑(1− 𝛼)𝑛rel

𝑝 (𝛼,k⊥),

𝑓
(𝑝)
kin =

𝜆
1
2 (𝑊, )ℳ2

2𝑁 ,𝑀2
𝐴)

2𝛼𝑀𝐴𝑃
,

(20)

where 𝑊 and 𝑀𝐴 are the missing mass squared and
the mass of the target nucleus, respectively; the 𝜎𝑑

factor plays the role of a normalization factor.
Equation (20) can be used to extract the proton

momentum distribution in 3He.
It is clear that this equation was derived in the

framework of the impulse approximation. Neverthe-
less, one may expect that the momentum distri-
bution extracted from experimental data effectively
includes effects beyond the impulse approximation,
in particular, coming from the quark structure of
3He. Therefore, it was called in Ref. [19] as “empiri-
cal momentum distributions” (EMD) of the protons
in 3He.

5.2. Comparison with experiment

In Fig. 4, we compare results of our calculations for
EMD extracted from data [4], as well as with the
calculations of Ref. [19], based on 2N interactions
only.

There is rather good agreement between calcula-
tions and EMD data at 𝑘 . 250 MeV/𝑐. At very
small 𝑘 (. 50 MeV/𝑐), an enhancement of EMD
data over theoretical curves is obvious as for the 3He
case, as well as for the deuteron case. This effect may
be naturally explained as a result of the contribu-
tions of the Coulomb interaction to the breakup with
the registration of a charged fragment at zero emis-
sion angle. Note that a similar enhancement takes
place also in EMD of protons in a deuteron, ex-
tracted from data on the 12C(𝑑, 𝑝) breakup [22]. The
results of calculations published in Ref. [23] and based
on the Glauber–Sitenko model support the interpre-
tation of this enhancement in the momentum dis-
tribution in a deuteron as a manifestation of the
Coulomb interaction. Of course, the final state in-
teraction also might be significant in the region of
small 𝑘. In case of the deuteron breakup, this ef-
fect was (in part, at least) taken into account in
Ref. [23].
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Fig. 4. Momentum distribution of protons in 3He calculated
with 2N+3N interactions. The notations of the curves are
the same as those in Fig. 1. Circles represent the empirical
momentum distribution extracted from the experimental data
[4]. Here, 𝑘 is the LFD variable, as defined in Section 5

From the comparison of our results with EMD data
under discussion, as well as with results published in
Ref. [19] at 𝑘 > 250 MeV/𝑐, the following conclusions
can be drawn:

∙ There is a rather visible qualitative disagreement
between the calculations and EMD of protons in 3He.

∙ Contribution of 3N interactions becomes signifi-
cant in the 𝑘 > 250 MeV/𝑐 region, but cannot ex-
plain completely the disagreement between the data
on EMD of protons and calculations based on 2N in-
teractions only.

∙ Version of the 3He wave function based on
the CDBN + TM potential looks more preferable
than the version based on the AV18 + U9 poten-
tial, because the latter strongly overestimates the
existing EMD data at very high momenta (above
600 MeV/𝑐).

6. Conclusions

The momentum distributions of neutrons and pro-
tons in 3He have been calculated, by using the so-
called “operator” form for the description of the
3N system. We used results of Ref. [13], where the
calculations of the necessary scalar functions (ap-
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pearing in the operator form representation of the
bound 3N system) were performed with two poten-
tials, which involve the effective 3N interactions, 2N
interaction AV18 [14] with the interaction Urbana-IX
[15] (AV18 + U9), and 2N interaction CD-Bonn [16]
with insertion of the 3N Tucson–Melbourne interac-
tion [17] (CDBN+ TM).

We compare our results with calculations of
Ref. [19], which do not take the 3N interactions into
account, and conclude that the 3N interactions be-
come essential at the large internal momentum 𝐾 >
> 250 MeV/𝑐 of a nucleon in the bound 3N system.

We also compare the calculated momentum distri-
bution of protons with the so-called empirical momen-
tum distribution in 3He, extracted from the (3He, 𝑝)
breakup cross-section [22], and conclude that the 3N
interactions reduce the disagreement between theory
and experiment at 𝑘 > 250 MeV/𝑐. Nevertheless, this
disagreement does not completely disappear even in
the case where the 3N interactions are taken into
account.

This means that the non-nucleonic degrees of free-
dom in 3He, as well as the mechanisms beyond the so-
called “impulse approximation” become important in
the 3He breakup at 𝑘 > 250 MeV/𝑐 and all other pro-
cesses, where the nucleon-constituents of this nucleus
(as well as other nuclei) are very close (at distances
<0.8 fm) to one another.
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С.В.Бех, О.П.Кобушкiн, Е.А.Строковський

IМПУЛЬСНИЙ РОЗПОДIЛ НУКЛОНIВ
В 3He ТА ТРИНУКЛОННI ВЗАЄМОДIЇ

Р е з ю м е

У рамках моделi, яка, разом з 2N взаємодiями, включає
3N взаємодiї, розраховано iмпульснi розподiли нейтронiв
та протонiв в 3He. Показано, що 3N взаємодiї, у порiвнян-
нi з 2N взаємодiями, дають суттєвий внесок в цi розподi-
ли в областi внутрiшнього iмпульсу в 3He 𝑘 > 250 МеВ/𝑐.
Розрахований iмпульсний розподiл протонiв порiвнюється з
так званим “емпiричним iмпульсним розподiлом” протонiв
в 3He, який одержано з експериментально вимiряних ди-
ференцiйних перетинiв реакцiї розвалу A(3He, 𝑝) з реєстра-
цiєю протонiв пiд нульовим кутом. Зазначається, що вне-
сок 3N взаємодiй в iмпульсний розподiл протонiв в 3He не
може повнiстю пояснити розходження, яке спостерiгається
в жорсткiй областi iмпульсного розподiлу, 𝑘 > 250 MeВ/𝑐,
мiж емпiричним iмпульсним розподiлом протонiв та резуль-
татами теоретичних розрахункiв, проведених лише на осно-
вi 2N взаємодiй.

ISSN 0372-400X. Укр. фiз. журн. 2017. Т. 62, № 11 929


