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SYMMETRY IN A SPHERICAL-PARTICLE
LIGHT SCATTERING AND A PHASE SHIFT
INDUCED BY A PARTICLE TRANSLATIONUDC 535

Diffraction of a linearly polarized plane wave and two counterpropagating orthogonally polar-
ized plane waves by a spherical particle is considered. The influence of the particle translation
on the far-field complex amplitude of the scattered wave is discussed. The possibility is shown to
select symmetric directions of observation, in which the phase shift of a scattered wave depends
the only on particle coordinate. All conclusions are generic as based on a symmetry only. The
results can be useful for a new direct-measurement particle position detector engineering with
high sensitivity and speed of response.
K e yw o r d s: Mie theory, light scattering, symmetries, particle position detector.

1. Introduction
The concept of symmetry in physics is used extremely
widely for the explanation of different phenomena and
the understanding of the general principles of the Na-
ture. For instance, in spectroscopy, it is exploited for
the classification of optical spectra of atoms, ions,
molecules [1], and quantum dots [2]. Under some cir-
cumstances, the application of symmetry rules al-
lows one to achieve a proper solution without compli-
cated derivations. In the present work, we are going to
demonstrate the issue as applied to the problem of a
plane wave scattering by an isotropic sphere. Within
this approach, we will describe some general relation-
ships in the far field in the case of a translation of the
object on which the wave is scattered.

The problem of the scattering of a plane electro-
magnetic wave by a homogeneous isotropic sphere is
well known and finds the solution within the Lorentz–
Mie theory [3], which is based on expanding the in-
cident and scattered waves in infinite series of spher-
ical harmonics. Later, this theory was generalized to
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beams of arbitrary shape, and it is known as the gen-
eralized Lorentz-Mie theory (GLMT) [4, 5]. Despite
the pioneering works appeared more than one hun-
dred years ago, the real applications became possible
only with the advent of large digital computers. For
the historical review, algorithms, and approaches, see
[6]. Nowadays, GLMT is widely used owing to the ex-
ploitation of microbeads in various areas, for exam-
ple, an ultralow-threshold Raman laser can be based
on dielectric microbeads [5], photonic nanojets are
formed when a plane wave is diffracted by a dielec-
tric microbead [7–9], etc. Another reason is that the
spherical GLMT model can be the first-order approx-
imation for the theory of scattering by nonspherical
objects.

Experimental measurements corroborate the the-
ory. A number of experimental methods are avail-
able for the detection of the field intensity near a
sphere [10, 11], but much easier is the determination
of the far-field intensity distribution. In theoretical
studies, most approaches require the direct calcula-
tion of the electromagnetic field amplitude. The final
result depends on the ratio of the wavelength to the
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size of a microbead, its material, and the material of
an ambient medium. However, these factors do not
influence the symmetry. According to the Mie the-
ory, the scattered wave is invariant with respect to
the same elements of the group of distance-preser-
ving transformations 𝑂 (3) (with fixed point at the
origin), as an incident wave for any homogeneous
isotropic sphere and medium [3]. Exactly this fact is
used in our study, and the result has been proved to
be general. Some general statements for optical forces
[12] and the formation of nanojets [13, 14] were al-
ready proved, by using symmetry considerations. In
the present work, we consider some important rela-
tionships for the far-field scattering in specific direc-
tions related to the symmetry of the geometrical con-
figuration with account for the polarization (linear)
of an incident wave. The idea is to demonstrate that
the phase shift between the waves scattered in such
determined directions depends only on the particle
position in the case of Rayleigh scattering or arbitra-
ry-size spherical particle.

To the best of our knowledge, this approach was
not considered before. We believe that the results ob-
tained are of practical interest in a new-type particle-
position detector engineering.

2. Theoretical Considerations

The electric field ℰ (𝑟, 𝑡) component of a monochro-
matic electromagnetic wave can be expressed via the
complex amplitude as 𝐸 (𝑟)

ℰ (𝑟, 𝑡) =
1

2
[𝐸 (𝑟) exp (−i𝜔𝑡) +𝐸* (𝑟) exp (i𝜔𝑡)], (1)

where 𝜔 is the frequency of oscillations, 𝑡 is the
time, and 𝑟 is the coordinate vector. For convenience,
we use 𝐸(𝑟) as the representation of the wave it-
self ℰ(𝑟, 𝑡). In the case of linear isotropic medium,
the vector 𝐸(𝑟) satisfies the Helmholtz equation
[Δ + 𝑘2]𝐸(𝑟) = 0 with the additional condition
div𝐸(𝑟) = 0, which indicates the transverse nature
of the electromagnetic wave, 𝑘 is the wavenumber
𝑘 =

√
𝜀𝜇𝜔/𝑐, 𝜀 and 𝜇 are the dielectric permittivity

and magnetic permeability, and 𝑐 is the speed of light.
In the case of the monochromatic wave scattering

on a particle, the complex amplitude 𝐸 (𝑟) in the
region outside the particle can be expressed as a sum
of the incident 𝐸i (𝑟) and scattered 𝐸s (𝑟) waves [15].
The last one will be mainly discussed in the present
work. In the case of isotropic homogeneous medium,

the far-field complex amplitude of this constituent has
the form

𝐸s (𝑟) =
1

𝑟
exp (i𝑘𝑟)𝐹 (𝑛), (2)

where 𝑛 = 𝑟/𝑟 defines direction of observation, 𝑟 =
= |𝑟|, and 𝐹 (𝑛) describes the far-field complex am-
plitude distribution. Unlike 𝐸s (𝑟) , the far-field pat-
tern 𝐹 (𝑛) is a function only of the observation angles,
and it is independent of 𝑟. In general, it has no other
limitations except 𝐹 (𝑛) ⊥ 𝑛, which occurs due to
the transverse nature of electromagnetic waves.

In the case of particle illumination by an arbitrar-
ily shaped monochromatic wave (e.g., the Hermite–
Gauss mode [16]), it is necessary in most cases to
recalculate the far-field distribution for any new po-
sition of the particle. In general, there is no obvious
relationship between far-field complex amplitude dis-
tributions obtained during the scattering on a particle
placed at different positions. When the particle is il-
luminated by a plane wave, the particle translation
changes only the phase in the far field, while the am-
plitude and polarization remain the same. To prove
this statement, let us consider firstly the simultaneous
translation of the particle and the incident plane wave
by the same vector 𝑅 from the origin. According to
2, the phase shift in this case amounts to −𝑘𝑅𝑛. The
phase shift implemented to the incident wave,

𝐸𝑝𝑤 (𝑟) = 𝐸0 exp (i𝑘𝑛pw𝑟), (3)

is −𝑘𝑅𝑛pw, where 𝑛pw defines the plane wave prop-
agation direction. Therefore, the far-field phase shift
△𝜙 in the case of particle translation is

△𝜙 (𝑛,𝑅) = 𝑘 [𝑛pw − 𝑛]𝑅. (4)

Therefore,

𝐹 (𝑛,𝑅) = exp (i△ 𝜙 (𝑛,𝑅))𝐹0 (𝑛), (5)

where 𝐹0 (𝑛) defines the far-field amplitude, when the
scattering particle is at the origin. In this way, we
describe the far field of a scattered wave not only as
a function of the scattering direction 𝑛, but also as a
function of the particle position 𝑅.

2.1. Phase relations
in the far field in the case of plane wave
diffraction on a spherical particle

In this work, the main object of consideration is
the phase relationships between the vector function
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Fig. 1. Plane wave is scattered on the particle, 𝑛pw defines
the direction of plane wave propagation, 𝑛pw = 𝑒𝑧 , cos𝛼 =

= 𝑛𝑥
(︀
𝑛2
𝑥 + 𝑛2

𝑦

)︀− 1
2 , cos𝛽 = 𝑛𝑦

(︀
𝑛2
𝑥 + 𝑛2

𝑦

)︀− 1
2 ; 𝑛 is a unit vector

which defines the main direction of observation. Vectors 𝐶𝑥𝑛

and 𝐶𝑦𝑛 are the mirror reflections of 𝑛 from the 𝑦𝑧 and 𝑥𝑧

planes, respectively. 𝐶𝑥𝐶𝑦𝑛 and 𝑛 are symmetric to each other
relative to the 𝑧 axis. 𝑅 denotes a particle position with respect
to the origin

𝐹 (𝑛,𝑅) along two specific scattering directions in
the case of incident linearly polarized plane wave and
scattering particle with spherical symmetry. Without
loss of generality, we assume that the incident wave is
polarized along the 𝑥 axis, and the direction of prop-
agation is 𝑒𝑧 (𝑛pw = 𝑒𝑧) (see Fig. 1). The incident
wave complex amplitude can be expressed as

𝐸i (𝑟) = 𝐸0𝑒𝑥 exp (i𝑘𝑒𝑧𝑟). (6)

Such field has the symmetries

𝐶𝑥𝐸
i (𝐶𝑥𝑟) = −𝐸i (𝑟), (7)

𝐶𝑦𝐸
i (𝐶𝑦𝑟) = 𝐸i (𝑟), (8)

where 𝐶𝑥 and 𝐶𝑦 are orthogonal matrices, which de-
fine reflections with respect to the plane 𝑦𝑧 and 𝑥𝑧,
respectively. They have the form

𝐶𝑥 =

(︃
−1 0 0
0 1 0
0 0 1

)︃
, (9)

𝐶𝑦 =

(︃
1 0 0
0 −1 0
0 0 1

)︃
, (10)

𝐹0 (𝑛) has the same symmetries as an incident plane
wave with account for its polarization:

𝐶𝑥𝐹0 (𝐶𝑥𝑛) = −𝐹0 (𝑛), (11)

𝐶𝑦𝐹0 (𝐶𝑦𝑛) = 𝐹0 (𝑛). (12)

Statements (11) and (12) are the particular results
of the Mie theory. For example, they are shown in [3]
for a spherical particle, but they can be also easily ex-
tended for any particle with spherical symmetry. Such
symmetries occur only if the particle is located at the
origin, while particle translation destroys them.

Let us consider the relation between 𝐹 (𝑛,𝑅),
𝐹 (𝐶𝑥𝑛,𝑅), and 𝐹 (𝐶𝑦𝑛,𝑅), as shown in Fig. 1,
where 𝑛 can be an arbitrarily chosen direction of ob-
servation, and 𝐶𝑥𝑛 and 𝐶𝑦𝑛 are reflections of the
unit vector 𝑛 corresponding to the incident wave
symmetries.

In view of (4), (5), and (11), we have the expression

𝐹 (𝐶𝑥𝑛,𝑅) = − exp (2i𝑘𝑛𝑥𝑅𝑥)𝐶𝑥𝐹 (𝑛,𝑅). (13)

For 𝐶𝑦, we have

𝐹 (𝐶𝑦𝑛,𝑅) = exp (2i𝑘𝑛𝑦𝑅𝑦)𝐶𝑦𝐹 (𝑛,𝑅), (14)

and

𝐹 (𝐶𝑥𝐶𝑦𝑛,𝑅) =

= − exp (2i𝑘 [𝑛𝑥𝑅𝑥 + 𝑛𝑦𝑅𝑦])𝐶𝑥𝐶𝑦𝐹 (𝑛,𝑅), (15)

where the unit vectors 𝐶𝑥𝐶𝑦𝑛 and 𝑛 are symmetric
to each other relative to the 𝑧 axis.

Considering the far field in the scattering directions
𝑛, 𝐶𝑥𝑛, 𝐶𝑦𝑛, and 𝐶𝑥𝐶𝑦𝑛, we can see that their am-
plitudes are equal, and the polarizations are easily ex-
pressed through one another. Moreover, the far-field
components along 𝑒𝑥 are the same, and the compo-
nents along 𝑒𝑦 are the same or with opposite direc-
tions, as well as along 𝑒𝑧.

The most interesting are the phase relations. The
far-field phase difference occurring between the com-
plex far-field amplitudes in the directions 𝑛 and 𝐶𝑥𝑛
neither depends on the size of a particle and its ma-
terial nor on a displacement of the particle along the
𝑦 and 𝑧 axes (𝑅𝑦 and 𝑅𝑧). The actual phase shift de-
pends only on 𝑅𝑥 linearly and the projection of the
𝑛 onto the 𝑥 axis (𝑛𝑥). The same occurs for 𝑛 and
𝐶𝑦𝑛 directions, and the phase difference depends on
𝑅𝑦 and 𝑛𝑦 only, as it follows from (14). This phe-
nomenon can be used for the determination of the
particle position in the 𝑥 and 𝑦 directions.

However, because a phase is determined within
0÷2𝜋 range, the coordinates are indistinguishable
with projections 𝑅𝑥 and 𝑅𝑥 + 𝜋 (𝑘𝑛𝑥)

−1 on the 𝑥
axis in the case of a selected pair of observation di-
rections {𝑛, 𝐶𝑥𝑛}. It can be fixed, by using more
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measurement directions. For example, let us consider
two pairs of observation directions {𝑛1, 𝐶𝑥𝑛1} and
{𝑛2, 𝐶𝑥𝑛2}. Suppose that, for relatively prime inte-
gers 𝑀1 and 𝑀2, we have the equality

𝛿 =
|𝑛1𝑥|
𝑀1

=
|𝑛2𝑥|
𝑀2

, (16)

where 𝑛1𝑥 = 𝑛1𝑒𝑥 and 𝑛2𝑥 = 𝑛2𝑒𝑥. In this case,
the particle position along the 𝑥 axis is measurable
in the

[︁
−𝜋 (2𝑘𝛿)−1

, 𝜋 (2𝑘𝛿)
−1
)︁

interval, and it is im-
possible to recognize a difference between the particle
position projections onto the 𝑥 axis, which equal 𝑅𝑥

and 𝑅𝑥 + 𝜋 (𝑘𝛿)
−1. Relation (16) can be extended for

numerous pairs of observation directions

𝛿 =
|𝑛1𝑥|
𝑀1

=
|𝑛2𝑥|
𝑀2

= ... =
|𝑛𝑁𝑥|
𝑀𝑁

. (17)

In this case, 𝑀1,𝑀2, ...,𝑀𝑁 do not have a common
divisor. In theory, to be able to determine 𝑅𝑥 of a par-
ticle along the whole real axis, two pairs of measure-
ment directions {𝑛1, 𝐶𝑥𝑛1} and {𝑛2, 𝐶𝑥𝑛2} are suffi-
cient in the case where 𝑛𝑥1/𝑛𝑥2 is an irrational num-
ber. In practice, it is not so, because of the measure-
ment sensibility and the precision of measurement di-
rection selection. Anyway, the area of unambiguous
particle 𝑅𝑥 position detection can be expanded, by
increasing the number of pairs of measurement direc-
tions {𝑛𝑘, 𝐶𝑥𝑛𝑘}. Of course, the sensibility of a mea-
surement is increased as well. The same is true for the
measurement of the projection of a particle position
𝑅 onto the 𝑦 axis. This means that the transversal
coordinates of a particle 𝑅𝑥 and 𝑅𝑦 can be mea-
sured except the longitudinal displacement 𝑅𝑧. To
overcome this problem, the scattering of two counter-
propagating orthogonally polarized plane waves on a
particle can be used.

2.2. Phase relations in the far field
in the case of diffraction of two
counter-propagating orthogonally polarized
plane waves on a spherical particle

In the case of one plane wave illuminating a particle,
we can select the directions, the phase difference be-
tween which in the far field depends neither on 𝑅𝑧

nor the size and material of the scattering particle,
but only on the particle displacement along the 𝑥 or
𝑦 axis (𝑅𝑥 or 𝑅𝑦). Let us show that, in the case of
two counter-propagating orthogonally polarized plane

Fig. 2. Two counterpropagating plane waves are scattered
on the particle; 𝑛pw and 𝑛′

pw define the directions of their
propagation, 𝑛 and 𝑆𝜋

2
𝐶𝑧𝑛 are unit vectors, which define the

directions of observation, cos𝛼 = 𝑛𝑥

waves, it is possible to select the directions, the phase
difference between which depends on 𝑅𝑧 and doesn’t
depend on the properties of a particle.

Consider the scattering of the plane wave propagat-
ing in the direction opposite to the polarization along
the axis 𝑦. The scattered far field can be expressed as

𝐹 ′ (𝑛,𝑅) = 𝐶𝑧𝑆𝜋
2
𝐹
(︁
𝑆𝑇

𝜋
2
𝐶𝑧𝑛, 𝑆

𝑇
𝜋
2
𝐶𝑧𝑅

)︁
, (18)

where

𝐶𝑧 =

(︃
1 0 0
0 1 0
0 0 −1

)︃
, (19)

𝑆𝜋
2
=

(︃
0 −1 0
1 0 0
0 0 1

)︃
, (20)

𝑆𝜋
2

is a matrix which defines the rotation by the an-
gle 𝜋

2 around the 𝑧 axis, and 𝑆𝑇
𝜋
2

is its transposed
matrix. Using (5), we have

𝐹 ′ (𝑛,𝑅) = 𝐶𝑧𝑆𝜋
2
exp
(︁
i𝑘
[︁
𝑒𝑧 − 𝑆𝑇

𝜋
2
𝐶𝑧𝑛

]︁
×

×
[︁
𝑆𝑇

𝜋
2
𝐶𝑧𝑅−𝑅

]︁)︁
𝐹
(︁
𝑆𝑇

𝜋
2
𝐶𝑧𝑛,𝑅

)︁
. (21)

Let us consider the scattering of two plane waves that
are propagating in the opposite directions and have
orthogonal linear polarizations as shown in Fig. 2.

The total scattered far field

𝐹 𝜎 (𝑛,𝑅) = 𝐹 ′ (𝑛,𝑅) + 𝐹 (𝑛,𝑅) (22)

can be expressed through only the function 𝐹 (𝑛,𝑅) ,
by using (21).

Let us consider only the directions 𝑛 ⊥ 𝑒𝑥 or 𝑛 ⊥
𝑒𝑦. According to (11) and (12), we have

𝐹 𝜎 (𝑛,𝑅) 𝑒𝑥 = 𝐹 (𝑛,𝑅) 𝑒𝑥, (23)

𝐹 𝜎 (𝑛,𝑅) 𝑒𝑦 = 𝐹 ′ (𝑛,𝑅) 𝑒𝑦. (24)
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Using (21), we have finally:

𝐹 𝜎
(︀
𝑆𝜋

2
𝐶𝑧𝑛,𝑅

)︀
𝑒𝑦 = exp (i△𝜓 (𝑛,𝑅))𝐹 𝜎 (𝑛,𝑅) 𝑒𝑥.

(25)
The phase difference

△𝜓 (𝑛,𝑅) = 𝑘
[︀
(𝑛𝑥 + 𝑛𝑦)𝑅𝑥 +

+(𝑛𝑦 − 𝑛𝑥)𝑅𝑦 − 2 (1− 𝑛𝑧)𝑅𝑧

]︀
. (26)

As was written before, we consider only the direc-
tions with 𝑛𝑥 = 0 or 𝑛𝑦 = 0. So, expression (26)
can be simplified a bit, but it contains, in general, all
three coordinates of the scattering particle. Such ex-
pression can be used to determine 𝑅𝑧 of the particle,
for example, in the case where 𝑅𝑥 and 𝑅𝑦 are already
known.

3. Discussion and Conclusions

The consideration of the symmetry of the scattered
wave in the case of the linearly polarized (say, 𝑒𝑥)
plane wave scattering on a microbead or Rayleigh-
sized particle, which is placed at the origin leads to
the following results.

Regardless of the particle position, the proper se-
lection of a pair of directions, which are mutual reflec-
tions with respect to the 𝑥𝑧 (or 𝑦𝑧) plane results in
the relation for the far-field complex amplitudes along
these directions in the following way. Their electric
field vector directions are the same mirror-reflected
(with opposite sign in the case of 𝑦𝑧 plane reflection),
and the phase shift depends linearly on the particle
coordinate 𝑅 according to (13)–(15).

The fact of a linear dependence of the phase shift
on the particle coordinate can be used for the de-
velopment of a new-principle-based method of high-
sensitive particle detection. One such pair is enough
for the determination of the 𝑦- or 𝑥-position, respec-
tively. But the determination area is limited, because
the phase shift can be measured only in the [−𝜋, 𝜋) in-
terval. The first limitation can be overcome, by using
both types of direction pairs reflected to each other
relative to the both 𝑥𝑧 and 𝑦𝑧 planes. Another issue
can be overcome, by using more directions of obser-
vation or differing wavelengths of the incident wave.

According to the described principles, the detec-
tion of a particle position is possible by measuring the
phase difference between the far-field components in
selected directions. There are numerous ways for its

realization. For example, it can be based on the mea-
surement of Stokes parameters [17] or on phase shift
interferometry [18].

In any case, if only one plane wave is used for the
illumination it is possible to determine only the 𝑥 or
𝑦 position. Such problem can be resolved, by using
two plane waves propagating in the directions oppo-
site to the orthogonal polarization, as was considered
in subsection (2.2). To make the measured phase shift
independent of the particle parameters, the directions
should be chosen in a different way. First of all, one
observation direction should be orthogonal to the 𝑥 or
𝑦 axis. Another ones should be a reflection related to
the 𝑥𝑦 plane and a rotation around the 𝑧 axis of the
first one. Another difference is that the phase shift is
between the projections onto the 𝑥 and 𝑦 axis, but not
for the total field, as in the case of single wave diffrac-
tion. Such statements are described in (23)–(25). The
phase difference is described in (26), and it depends
linearly on the coordinate of a particle as well. But
the difference from the single wave scattering is that
the phase shift can depend on the 𝑧 coordinate.

All such relations can be applied to the scatter-
ing on Rayleigh-sized particles and any particle with
spherical symmetry, for example, on microbeads. All
results are general, because all of them were derived,
by using only symmetry rules.

For a wide range of applications, the sensitivity
and short response time are critical. Nowadays, there
are numerous light-based high-speed response sensi-
tive particle position detection methods (for review,
see [19]). However, all of them have some limita-
tions. One of the limitations is a nonlinearity of such
methods. Another one is that the behavior of a detec-
tor varies with a variation of the size or refractive in-
dex of a particle. So, the absolute axial position mea-
surement becomes a challenging issue. In the present
work, the relation between the phase shift and parti-
cle coordinates is linear. This means that the particle
position detection based on the principles described
in the present work can be not only one of the high-
speed sensitive methods, but the first one of this class
that measures the absolute axis position directly.

1. E.U. Condon, G.H. Shortley. The Theory of Atomic
Spectra (Cambridge Univ. Press, 1951) [ISBN-13: 978-
0521092098, ISBN-10: 0521092094].

2. P. Michler. Single Quantum Dots: Fundamentals, Appli-
cations, and New Concepts, Topics in Applied Physics
(Springer, 2003) [ISBN: 978-3-540-39180-7].

116 ISSN 0372-400X. Укр. фiз. журн. 2017. Т. 62, № 2



Symmetry in a Spherical-Particle Light Scattering and Phase Shift

3. C.F. Bohren, D.R. Huffman. Absorption and Scattering
of Light by Small Particles (Wiley-VCH, 1998) [ISBN-13:
978-0471293408, ISBN-10: 0471293407].
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СИМЕТРIЯ РОЗСIЯНОГО
НА СФЕРИЧНIЙ ЧАСТИНЦI СВIТЛА ТА ФАЗОВИЙ
ЗСУВ, IНДУКОВАНИЙ ЇЇ ТРАНСЛЯЦIЄЮ

Р е з ю м е

Розглядається дифракцiя плоскої хвилi, а також суперпо-
зицiя розсiяння вiд двух зустрiчних ортогонально поляри-
зованих плоских хвиль на сферичнiй частинцi. Обговорю-
ється вплив трансляцiї частинки на комплексну амплiтуду
поля в дальнiй зонi хвилi розсiяння. Показана можливiсть
вибору симетричних вiдносно один одного напрямiв спосте-
реження, для яких фазовий зсув розсiяної хвилi залежить
тiльки вiд координати частинки. Всi висновки носять за-
гальний характер, оскiльки заснованi лише на мiркуваннях
симетрiї. Результати можуть бути кориснi для розробки но-
вого методу детектування положення частинки з високою
чутливiстю та швидкодiєю.
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