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EQUATION OF STATE OF QUANTUM GASES
BEYOND THE VAN DER WAALS APPROXIMATIONUDC 539.12

A recently suggested equation of state with the induced surface tension is generalized to the
case of quantum gases with mean-field interaction. The self-consistency conditions of such a
model and the conditions necessary for the Third Law of thermodynamics to be satisfied are
found. The quantum virial expansion of the van der Waals models of such a type is analyzed,
and its virial coefficients are given. In contrast to traditional beliefs, it is shown that an in-
clusion of the third and higher virial coefficients of a gas of hard spheres into the interaction
pressure of the van der Waals models either breaks down the Third Law of thermodynamics or
does not allow one to go beyond the van der Waals approximation at low temperatures. It is
demonstrated that the generalized equation of state with the induced surface tension allows one
to avoid such problems and to safely go beyond the van der Waals approximation. In addition,
the effective virial expansion for the quantum version of the induced surface tension equation
of state is established, and all corresponding virial coefficients are found exactly. The explicit
expressions for the true quantum virial coefficients of an arbitrary order of this equation of
state are given in the low-density approximation. A few basic constraints on such models which
are necessary to describe the nuclear and hadronic matter properties are discussed.
K e yw o r d s: nuclear matter, hadron resonance gas, induced surface tension, quantum gases,
virial coefficients.

1. Introduction

Investigation of the equation of state (EoS) of
strongly interacting particles at low temperatures is
important for studies of the nuclear liquid-gas phase
transition and for properties of neutron stars [1–
3]. To have a realistic EoS, one has to simultane-
ously account for a short-range repulsive interac-
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tion, a medium-range attraction, and the quantum
properties of particles. Unfortunately, it is not much
known about the in-medium quantum distribution
functions of particles which experience a strong in-
teraction. Therefore, a working compromise to ac-
count for all these features is to introduce the quasi-
particles with quantum properties which interact via
the mean field. One of the first successful models of
such a type was a Walecka model [4]. However, the
strong demands to consider a more realistic interac-
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tion which is not restricted by some kind of effec-
tive Lagrangian led to formulating a few phenomeno-
logical generalizations of the relativistic mean-field
model [5–7]. Although a true breakthrough among
them was made in work [7] in which the hard-core re-
pulsion was suggested for fermions, the introduction
of a phenomenological attraction in the spirit of the
Skyrme–Hartree–Fock approach [8, 9] which depends
not on the scalar field, but on the baryonic charge
density, was also important, since such a dependence
of the attractive mean-field is typical of the EoS of
real gases [10].

However, in addition to the usual defect of the rel-
ativistic mean-field models breaking down the first
and second Van Hove axioms of statistical mechanics
[11, 12], the usage of a non-native variable, namely a
particle number density, in the grand canonical en-
semble led to the formulation of self-consistency con-
ditions [5, 6]. In contrast to the Walecka model [4]
and its followers for which the structure of a La-
grangian and the extremum condition of the sys-
tem pressure with respect to each mean-field au-
tomatically provide the fulfillment of the thermo-
dynamic identities, the phenomenological mean-field
EoS of hadronic matter had to be supplemented by
the self-consistency conditions [5,6,13]. The latter al-
lows one to, formally, recover the first axiom of sta-
tistical mechanics [11, 12] (for the more recent dis-
cussion of the self-consistency conditions, see [14–
16]). An exception is given by the van der Waals
(VdW) hard-core repulsion [7], since such an in-
teraction in the grand canonical ensemble depends
on the system pressure which is the native variable
for it.

Due to its simplicity, the VdW repulsion is very
popular in various branches of modern physics. But
even in case of Boltzmann statistics, it is valid only
at low particle densities for which an inclusion of the
second virial coefficient is sufficient. For the classical
gases, the realistic EoSs which are able to account
for several virial coefficients are well-known [10, 17],
while a complete quantum mechanical treatment of
the third and higher virial coefficients is rather hard
[18]. Hence, the quantum EoSs with realistic inter-
action allowing one to go beyond the second virial
coefficient are of great interest not only for the dense
hadronic and nuclear/neutron systems, but also for
quantum and classical liquids. It is widely believed
that one possible way to go beyond the VdW approx-

imation, i.e. beyond the second virial coefficient, is to
include a sophisticated interaction known from the
classical models [10, 17] into the relativistic mean-
field models with the quantum distribution functions
for quasiparticles [14, 15].

On the other hand, a great success in getting a high
quality description of experimental hadronic multip-
licities measured in the central nuclear collisions from
AGS (BNL) to LHC (CERN) energies is achieved re-
cently with the hadron resonance gas model which
employs both the traditional VdW repulsion [19–24]
and the induced surface tension (IST) concept for
the hard-core repulsion [25–27] motivates us to for-
mulate and to throughly inspect the quantum ver-
sion of this novel class of the IST EoSs in order
to apply it in the future to the description of the
properties of dense hadronic, nuclear, neutron mat-
ter and dense quantum liquids on the same foot-
ing. This is a natural choice, since the Boltzmann
version of the IST EoS [25, 26] for a single sort
of particles simultaneously accounts for the second,
third, and fourth virial coefficients of the classical
gas of hard spheres and, thus, allows one to go be-
yond the VdW approximation. The multicomponent
formulation of such an EoS applied to a mixture
of nuclear fragments with all possible sizes [28] not
only allows one to introduce the compressibility of
atomic nuclei into an exactly solvable version [29]
of the statistical nuclear multifragmentation model
[30], but also it sheds light on the reason of why this
model employing the proper volume approximation
for the hard-core repulsion is able to correctly repro-
duce the low-density virial expansion for all atomic
nuclei.

Therefore, the present work has two aims. First,
we would like to analyze the popular quantum VdW
models [14–16] at high and low temperatures in or-
der to verify whether a tuning of the interaction al-
lows one to go beyond the VdW treatment. In addi-
tion, we calculate all virial coefficients for the pres-
sure of point-like particles of the quantum VdW
EoS. Second, we generalize the recently suggested
IST EoS [25,26] to the quantum case, obtain its effec-
tive virial expansion, and calculate all quantum virial
coefficients, including the true virial coefficients for
the low-density limit. Using these results, we discuss
a few basic constraints on the quantum EoS which are
necessary to model the properties of nuclear/neutron
and hadronic matter.
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The work is organized as follows. In Sect. 2 we an-
alyze, the quantum VdW EoS and its virial expan-
sion and discuss the pitfalls of this EoS. The quan-
tum version of the IST EoS is suggested and ana-
lyzed in Sect. 3. In Sect. 4, we obtain several virial
expansions of this model and discuss the Third Law
of thermodynamics for the IST EoS. Some simplest
applications to nuclear and hadronic matter EoS are
discussed in Sect. 5, while our conclusions are formu-
lated in Sect. 6.

2. Quantum Virial
Expansion for the VdW Quasiparticles

Similarly to the ordinary gases, the source of hard-
core repulsion in the hadronic or nuclear systems is
related to the Pauli blocking effect between the in-
teracting fermionic constituents existing inside of the
composite particles (see, e.g., [2]). This effect appears
due to the requirement of antisymmetrization of the
wave function of all fermionic constituents existing
in the system. At very high densities, it may lead to
the Mott effect, i.e., to the dissociation of composite
particles or even the clusters of particles into their
constituents [2]. Therefore, it is evident that, at suffi-
ciently high densities, one cannot ignore the hard-
core repulsion or the finite (effective) size of com-
posite particles. The success of traditional EoSs used
in the theory of real gases [10] based on the hard-
core repulsion approach tells us that this is a fruitful
framework also for quantum systems. Hence, we start
from the simplest case, i.e., the quantum VdW EoS
[15, 16]. The typical form of EoS for quantum quasi-
particles of mass 𝑚𝑝 and degeneracy factor 𝑑𝑝 is as
follows:

𝑝(𝑇, 𝜇, 𝑛𝑖𝑑) = 𝑝𝑖𝑑(𝑇, 𝜈(𝜇, 𝑛𝑖𝑑))− 𝑃int(𝑇, 𝑛𝑖𝑑), (1)

𝑝𝑖𝑑(𝑇, 𝜈) = 𝑑𝑝

∫︁
𝑑k

(2𝜋3)

𝑘2

3𝐸(𝑘)

1

𝑒(
𝐸(𝑘)−𝜈

𝑇 ) + 𝜁
, (2)

𝜈(𝜇, 𝑛𝑖𝑑) = 𝜇− 𝑏 𝑝+ 𝑈(𝑇, 𝑛𝑖𝑑), (3)

where the constant 𝑏 ≡ 4𝑉0 = 16𝜋
3 𝑅3

𝑝 is the ex-
cluded volume of particles with the hard-core radius
𝑅𝑝 (here, 𝑉0 is their proper volume), the relativis-
tic energy of particle with momentum k is 𝐸(𝑘) ≡
≡
√︁
k2 +m2

𝑝, and the density of point-like particles

is defined as 𝑛𝑖𝑑(𝑇, 𝜈) ≡ 𝜕𝑝𝑖𝑑(𝑇,𝜈)
𝜕 𝜈 . The parameter 𝜁

switches between the Fermi (𝜁 = 1), Bose (𝜁 = −1),

and Boltzmann (𝜁 = 0) statistics. The interaction
part of the pressure 𝑃int(𝑇, 𝑛𝑖𝑑) and the mean-field
potential 𝑈(𝑇, 𝑛𝑖𝑑) will be specified later.

Note that, similarly to the Skyrme-like EoS and the
EoS of real gases, it is assumed that the interaction
between quasiparticles described by system (1)–(3) is
completely accounted by the excluded volume (hard-
core repulsion), by the mean-field potential 𝑈(𝑇, 𝑛𝑖𝑑),
and by the pressure 𝑃int(𝑇, 𝑛𝑖𝑑). This is in contrast
to the relativistic mean-field models of the Walecka
type in which the mass shift of quasiparticles is taken
into account. Since such an effect may be important
for the modeling of the chiral symmetry restoration
in hadronic matter (the strongest arguments of its
existence are recently given in [27]), we leave it for a
future exploration and concentrate here on a simpler
EoS defined by Eqs. (1)–(3).

The functions 𝑈(𝑇, 𝑛𝑖𝑑) and 𝑃int(𝑇, 𝑛𝑖𝑑) are not
independent, due to the thermodynamic identity
𝑛(𝑇, 𝜈(𝜇, 𝑛𝑖𝑑)) ≡ 𝜕𝑝(𝑇,𝜈(𝜇,𝑛𝑖𝑑))

𝜕𝜇 . Therefore, the mean-
field terms 𝑈 and 𝑃int should obey the self-
consistency condition

𝑛𝑖𝑑
𝜕𝑈(𝑇, 𝑛𝑖𝑑)

𝜕𝑛𝑖𝑑
=

𝜕𝑃int(𝑇, 𝑛𝑖𝑑)

𝜕𝑛𝑖𝑑
⇒ (4)

⇒ 𝑃int(𝑇, 𝑛𝑖𝑑) = 𝑛𝑖𝑑 𝑈(𝑇, 𝑛𝑖𝑑)−
𝑛𝑖𝑑∫︁
0

𝑑𝑛𝑈(𝑇, 𝑛). (5)

After integrating by parts Eq. (4), we used the obvi-
ous condition 𝑈(𝑇, 0) < ∞ in (5). If condition (5) is
obeyed, then the direct calculation of the 𝜇-derivative
of the pressure (1) gives the usual expression for the
particle number density in terms of the density of
point-like particles

𝑛 =
𝑛𝑖𝑑

1 + 𝑏 𝑛𝑖𝑑
, (6)

𝑛𝑖𝑑(𝑇, 𝜈) = 𝑑𝑝

∫︁
𝑑k

(2𝜋3)

1

𝑒(
𝐸(𝑘)−𝜈

𝑇 ) + 𝜁
. (7)

From these equations, one finds that 𝑛 → 𝑏−1 for
𝑛𝑖𝑑 → ∞. The limit 𝑛𝑖𝑑 → ∞ is provided by the
condition 𝜈 → ∞ or 𝑇 → ∞ for 𝜁 = {0; 1}, while, for
𝜁 = −1, it is provided by the condition 𝜈 → 𝑚𝑝 − 0
or 𝑇 → ∞.

Note that, in contrast to other works discussing
Eqs. (4) and (5), we will use the density of point-
like particles 𝑛𝑖𝑑 through this paper as an argument
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of the functions 𝑈(𝑇, 𝑛𝑖𝑑) and 𝑃int(𝑇, 𝑛𝑖𝑑) instead of
the physical density of particles 𝑛, because, for more
sophisticated EoSs, their relation will be more com-
plicated than (6). In addition, such a representation
is convenient for a subsequent analysis, because the
virial expansion of 𝑝𝑖𝑑(𝑇, 𝜈) in terms of 𝑛𝑖𝑑(𝑇, 𝜈) looks
extremely simple [18]:

𝑝𝑖𝑑(𝑇, 𝜈) = 𝑇

∞∑︁
𝑙=1

𝑎
(0)
𝑙 [𝑛𝑖𝑑(𝑇, 𝜈)]

𝑙
, (8)

where

𝑎
(0)
1 = 1, (9)

𝑎
(0)
2 = −𝑏

(0)
2 , (10)

𝑎
(0)
3 = 4

[︁
𝑏
(0)
2

]︁2
− 2 𝑏

(0)
3 , (11)

𝑎
(0)
4 = −20

[︁
𝑏
(0)
2

]︁3
+ 18 𝑏

(0)
2 𝑏

(0)
3 − 3 𝑏

(0)
4 , (12)

.................. (13)

Here, the first several virial coefficients 𝑎
(0)
𝑙 of an

ideal quantum gas are expressed in terms of the corre-
sponding cluster integrals 𝑏(0)𝑙>1 which depend only on
the temperature. The latter can be expressed via the
thermal density of the auxiliary Boltzmann system
𝑛
(0)
𝑖𝑑 (𝑇, 𝜈) ≡ 𝑛𝑖𝑑(𝑇, 𝜈)|𝜁=0 of Eq. (7) [18, 31]

𝑏
(0)
𝑙 =

(∓1)𝑙+1

𝑙
𝑛
(0)
𝑖𝑑 (𝑇/𝑙, 𝜈)

[︁
𝑛
(0)
𝑖𝑑 (𝑇, 𝜈)

]︁−𝑙

, (14)

where the upper (lower) sign corresponds to Fermi
(Bose) statistics. For the non-relativistic case, expres-
sion (14) can be further simplified [18]. For an arbi-
trary degeneracy factor 𝑑𝑝, it acquires the form [31]

𝑏
(0)
𝑙

⃒⃒⃒⃒
nonrel

≃ (∓1)𝑙+1

𝑙
5
2

(︃
1

𝑑𝑝

[︂
2𝜋

𝑇 𝑚𝑝

]︂ 3
2

)︃𝑙−1

. (15)

For high temperatures, one can write an ultra-rela-
tivistic analog of Eq. (15) for a few values of 𝑙 =
= 2, 3, ... ≪ 𝑇/𝑚𝑝

𝑏
(0)
𝑙

⃒⃒⃒⃒
urel

≃ (∓1)𝑙+1

𝑙4

[︂
𝜋2

𝑑𝑝 𝑇 3

]︂𝑙−1

. (16)

Suppose that the coefficients 𝑎
(0)
𝑙 from Eq. (8) are

known and that the virial expansion is convergent

for the considered 𝑇 . Then, using Eq. (6), we find
𝑛𝑖𝑑 = 𝑛/(1− 𝑏 𝑛). Hence, we can rewrite Eq. (8) as

𝑝𝑖𝑑(𝑇, 𝜈)

𝑇 𝑛
=

1

1− 𝑏 𝑛
+

∞∑︁
𝑙=2

𝑎
(0)
𝑙

[𝑛]
𝑙−1

[1− 𝑏 𝑛]
𝑙
. (17)

Note that the expansions of such a type for a system
pressure which use the variable 𝑛/(1 − 𝑏 𝑛) instead
of 𝑛 are well-known for the EoSs of hard discs [32]
and hard spheres [33], since they provide a very fast
convergence of the series due to a very fast decrease
of their coefficients.

As one can see from Eqs. (15) and (16), at high
temperatures, all cluster integrals and virial coeffi-
cients of the ideal quantum gas strongly decrease with
the temperature 𝑇 and, hence, at high temperatures,
the virial expansion of 𝑝𝑖𝑑(𝑇, 𝜈) is defined by the first
(classical) term on the right-hand side of (17). In this
case, one gets

𝑝𝑖𝑑(𝑇, 𝜈)

𝑇 𝑛
≃ 1+4𝑉0 𝑛+(4𝑉0 𝑛)

2+(4𝑉0 𝑛)
3+ ... . (18)

Here, after expanding the first term on the right-
hand side of (17), we used the relation between 𝑏
and 𝑉0. From this equation, one sees that only the
second virial coefficient, 4𝑉0, coincides with the one
for the gas of hard spheres, while the third, 16𝑉 2

0 ,
and the fourth, 64𝑉 3

0 virial coefficients are essen-
tially larger than their counterparts 𝐵3 = 10𝑉 2

0 and
𝐵4 = 18.36𝑉 3

0 of the gas of hard spheres. In addi-
tion, Eq. (17) can naturally explain why the authors
of work [14] insisted on the interaction pressure 𝑃int

to be a linear function of 𝑇 (see a statement after
Eq. (62) in [14]): if one chooses the interaction pres-
sure in the form

𝑃int(𝑇, 𝑛(𝑛𝑖𝑑)) = 𝑇𝐹 (𝑛(𝑛𝑖𝑑)) = 𝑇𝑛×
×
[︀
(𝑏2−𝐵3)𝑛

2+ (𝑏3−𝐵4)𝑛
3+ (𝑏4−𝐵5)𝑛

4+ ...
]︀
, (19)

then, at high temperatures, the quantum correc-
tions are negligible. Hence, for such a choice of
𝑃int(𝑇, 𝑛(𝑛𝑖𝑑)) with the corresponding value for the
mean-field potential 𝑈(𝑇, 𝑛(𝑛𝑖𝑑)) obeying the self-
consistency condition (4), one can improve the total
pressure of the mean-field model by matching its re-
pulsive part to the pressure of hard spheres.

The problem, however, arises at low temperatures,
while calculating the entropy density for the model
with 𝑃int(𝑇, 𝑛(𝑛𝑖𝑑)) (19). Indeed, for any choice of
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the mean-field potential of the form 𝑈(𝑇, 𝑛(𝑛𝑖𝑑)) =
𝑔(𝑇 )𝑓(𝑛(𝑛𝑖𝑑)) (note that Eq. (19) has such a form)
from the thermodynamic identities 𝑠 = 𝜕𝑝(𝑇,𝜇)

𝜕𝑇 and
𝑠𝑖𝑑 = 𝜕𝑝𝑖𝑑(𝑇,𝜈)

𝜕𝑇 , one finds [14]

𝑠(𝑇, 𝜇) =

[︂
𝑠𝑖𝑑 +

[︂
𝑛𝑖𝑑

𝜕𝑈

𝜕𝑇
− 𝜕𝑃int

𝜕𝑇

]︂]︂
[1 + 𝑏 𝑛𝑖𝑑]

−1
=

(20)

=

[︂
𝑠𝑖𝑑 +

𝑑𝑔(𝑇 )

𝑑 𝑇

𝑛𝑖𝑑∫︁
0

𝑑𝑛̃ 𝑓(𝑛(𝑛̃))

]︂
[1 + 𝑏 𝑛𝑖𝑑]

−1
, (21)

where, in deriving Eq. (21) from Eq. (20), we used
Eq. (5) to express the interaction pressure 𝑃int in
terms of the potential 𝑈(𝑇, 𝑛(𝑛𝑖𝑑)) = 𝑔(𝑇 )𝑓(𝑛(𝑛𝑖𝑑)).
Using such an expression, one finds the following
derivative:

𝜕𝑃int

𝜕𝑇
= 𝑛𝑖𝑑𝑓(𝑛(𝑛𝑖𝑑))

𝑑𝑔(𝑇 )

𝑑 𝑇
− 𝑑𝑔(𝑇 )

𝑑𝑇

𝑛𝑖𝑑∫︁
0

𝑑𝑛̃𝑓(𝑛(𝑛̃)).

(22)

Substituting this expression into (20), one gets
Eq. (21).

As one can see now from Eq. (21), the mean-field
model with the linear 𝑇 dependence of 𝑈 or, equiv-
alently, of 𝑃int, i.e., 𝑔(𝑇 ) = 𝑇 ⇒ 𝑑𝑔(𝑇 )

𝑑 𝑇 = 1, breaks
down the Third Law of thermodynamics. Indeed, at
𝑇 = 0, one finds 𝑠𝑖𝑑(𝑇 = 0, 𝜈) = 0 by construction,
whereas, for the full entropy density, one gets

𝑠(𝑇 = 0, 𝜇) = [1 + 𝑏 𝑛𝑖𝑑]
−1 𝑑𝑔(𝑇 )

𝑑 𝑇

𝑛𝑖𝑑∫︁
0

𝑑𝑛̃ 𝑓(𝑛(𝑛̃)) ̸= 0,

unless 𝑓 ≡ 0. Hence, the mean-field model with the
linear 𝑇 dependence of 𝑃int suggested in [14] may be
very good at high temperatures, for which the Boltz-
mann statistics is valid, but it is unphysical at 𝑇 = 0.

Of course, one can repair this defect by choos-
ing a more complicated function 𝑔(𝑇 ), which be-
haves at high 𝑇 as 𝑔(𝑇 ) ∼ 𝑇 . But its derivative
𝑔′(𝑇 ) vanishes at 𝑇 = 0, providing the fulfillment
of the Third Law of thermodynamics (see an exam-
ple in Sect. 5 for which 𝑔(𝑇 ) ∼ 𝑇 2 at low tempera-
tures). However, in this case, the whole idea to com-
pensate the defects of the VdW EoS by tuning the
interacting part of the pressure does not work at low
𝑇 , since, in this case, 𝑃int = 𝑔(𝑇 )𝐹 (𝑛𝑖𝑑) would vanish

faster than the first term staying on the right-hand
side of Eq. (17), i.e., the classical part of the pres-
sure 𝑇𝑛𝑖𝑑 = 𝑇𝑛/(1− 𝑏𝑛). Thus, we explicitly showed
here that, at low 𝑇, the mean-field models defined by
Eqs. (1)–(5) either are unphysical, if 𝑃int = 𝑇𝐹 (𝑛𝑖𝑑),
or they cannot go beyond the VdW approximation by
adjusting their interaction pressure 𝑃int.

Such a conclusion can be also applied to the one of
two ways to introduce the excluded volume correction
into the quantum second virial coefficients discussed
in Ref. [34]. Although the model of Ref. [34] contains
the scalar mean-fields which modify the masses of
particles, the effective potential approach to treat
the excluded volume correction of Ref. [34] with the
linear 𝑇 dependence of the repulsive effective poten-
tial 𝑊𝑖 (equivalent to the mean-field potential −𝑈 in
our notations) of the 𝑖-th particle sort [see Eqs. (20)
and (46) and (47) in [34]] should unavoidably lead
to a breakdown of the Third Law of thermodynam-
ics. Therefore, we conclude that such a way to intro-
duce the excluded volume correction into the quan-
tum second virial coefficients discussed in [34] is un-
physical. Thus, despite the claims of the author of
Ref. [34], such a generalization of the approach [7] to
include the hard-core repulsion in quantum systems
leads to a problem with the Third Law of thermo-
dynamics. To end this section, we express the tradi-
tional virial coefficients 𝑎𝑄𝑘 of the quantum VdW gas
of Eq. (17) in terms of the classical excluded volume 𝑏
and the quantum virial coefficients of point-like par-
ticles 𝑎

(0)
𝑘 . Expanding each denominator in Eq. (17)

into a series in powers of 𝑛, one can easily find

𝑝𝑖𝑑(𝑇, 𝜈) = 𝑇

[︃
𝑛+

∞∑︁
𝑘=2

𝑎𝑄𝑘 𝑛
𝑘

]︃
, (23)

where

𝑎𝑄2 = 𝑏+ 𝑎
(0)
2 , (24)

𝑎𝑄3 = 𝑏2 + 2 𝑏 𝑎
(0)
2 + 𝑎

(0)
3 , (25)

𝑎𝑄4 = 𝑏3 + 3 𝑏2 𝑎
(0)
2 + 3 𝑏1 𝑎

(0)
3 + 𝑎

(0)
4 , (26)

𝑎𝑄𝑘 = 𝑏𝑘−1 +

𝑘∑︁
𝑙=2

(𝑘 − 1)!

(𝑙 − 1)!(𝑘 − 𝑙)!
𝑏𝑘−𝑙𝑎

(0)
𝑙 . (27)

If the interaction pressure 𝑃int(𝑇, 𝑛𝑖𝑑(𝑛)) of model (1)
can be expanded into the Taylor series of the particle
number density 𝑛 at 𝑛 = 0, then one can obtain the
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full quantum virial expansion of this EoS. Note that
the coefficients 𝑎(0)𝑘 for model (1) depend on the tem-
perature only, while specific features of the EoS are
stored in 𝑏 and in 𝑃int(𝑇, 𝑛𝑖𝑑(𝑛)). For example, using
the coefficients 𝑏 = 3.42 fm3 and 𝑃int(𝑇, 𝑛) = 𝑎attr𝑛

2

(𝑎attr = 329 MeV · fm3) found in [15] for the quantum
VdW EoS of nuclear matter, one can calculate the
full quantum second virial coefficient of the model as

𝑎𝑄,tot
2 = 𝑏+𝑎

(0)
2 − 𝑎attr

𝑇
≃ 𝑏+

1

2
5
2 𝑑𝑝

[︂
2𝜋

𝑇 𝑚𝑝

]︂3
2

− 𝑎attr
𝑇

,

(28)

where, on the second step of the derivation, we used
the non-relativistic expression for the cluster integral
𝑏
(0)
2 (15). Taking results from [15], one can find that,

for nucleons (𝑑𝑝 = 4,𝑚𝑝 = 939MeV), the coefficient
𝑎𝑄,tot
2 (𝑇 ) is zero at 𝑇 ≃ 0.32 MeV and 𝑇 ≃ 90.5 MeV,

is negative between these temperatures. Then, above
𝑇 ≃ 90.5 MeV, it grows almost linearly with 𝑇 to
𝑎𝑄,tot
2 (𝑇 = 150MeV) ≃ (3.42 + 0.101 − 2.19) fm3 ≃

≃ 1.33 fm3 which corresponds to the equivalent hard-
core radius 𝑅eq ≃ 0.46 fm at 𝑇 = 150 MeV. From
this estimate, it is evident that the large value of the
equivalent hard-core radius 𝑅eq for model [15] is a
consequence of the unrealistically large hard-core ra-
dius of nucleons 𝑅𝑛 ≃ 0.59 fm obtained in [15] (see
also a discussion later). In the most advanced version
of the hadron resonance gas model, the hard-core ra-
dius of nucleons is 0.365 fm [25–27], and, in the IST
EoS of the nuclear matter, this radius is below 0.4 fm
[35]. It is obvious that a more realistic attraction than
the one used in [15] would decrease the values of 𝑅eq

and 𝑅𝑛 to physically more adequate ones. Although
the explicit quantum virial expansion (23)–(28) can
be used to find the appropriate attraction in order to
cure the problems of the VdW EoS and to extend it
to higher particle number densities and high/low 𝑇
values, the true solution of this problem is suggested
below.

3. EoS with Induced Surface Tension

In order to overcome the difficulties of the quantum
VdW EoS at high particle number densities, we sug-
gest the following EoS

𝑝 = 𝑝𝑖𝑑(𝑇, 𝜈1)− 𝑃int 1(𝑇, 𝑛𝑖𝑑 1), (29)

Σ = 𝑅𝑝 [𝑝𝑖𝑑(𝑇, 𝜈2)− 𝑃int 2(𝑇, 𝑛𝑖𝑑 2)], (30)

𝜈1 = 𝜇− 𝑉0 𝑝− 𝑆0 Σ+ 𝑈1(𝑇, 𝑛𝑖𝑑 1), (31)

𝜈2 = 𝜇− 𝑉0 𝑝− 𝛼𝑆0 Σ+ 𝑈2(𝑇, 𝑛𝑖𝑑 2), (32)

where 𝑛𝑖𝑑𝐴 ≡ 𝜕𝑝𝑖𝑑(𝑇,𝜈𝐴)
𝜕 𝜈𝐴

with 𝐴 = {1; 2}, 𝑆0 = 4𝜋𝑅2
𝑝

denotes the proper surface of the hard-core volume
𝑉0. Equation (29) is an analog of Eq. (1), while the
equation for the induced surface tension coefficient Σ
(30) was first introduced for the Boltzmann statistics
in [28]. System (29)–(32) is a quantum generalization
of the Boltzmann EoS in the spirit of work [7]. As
it was argued above, the temperature-dependent ef-
fective potentials considered in [34] may lead to an
unphysical behavior at low temperatures. Hence, we
would like to study this problem in detail. Below, we
will show what is a principal difference of EoS (29)–
(32) with the second way to include the hard-core
repulsion in quantum systems discussed in Ref. [34].

The quantity Σ defined by (30) is the surface part
of the hard-core repulsion [26]. As it will be shown
later, the representation of the hard-core repulsion
in pressure (29) in two terms, namely via −𝑉0𝑝 and
−𝑆0Σ, instead of a single term −4𝑉0𝑝, as it is done
in the quantum VdW EoS, has great advantages and
allows one to go beyond the VdW approximation.

Evidently, the self-consistency conditions for the
IST EoS are similar to Eqs. (4) and (5) (𝐴 = {1; 2})

𝑛𝑖𝑑𝐴
𝜕𝑈𝐴(𝑇, 𝑛𝑖𝑑𝐴)

𝜕 𝑛𝑖𝑑𝐴
=

𝜕𝑃intA(𝑇, 𝑛𝑖𝑑𝐴)

𝜕 𝑛𝑖𝑑𝐴
. (33)

The model parameter 𝛼 > 1 is a switch between the
excluded and proper volume regimes. To demonstrate
this property, let us consider the quantum distribu-
tion function

𝜑𝑖𝑑(𝑘, 𝑇, 𝜈2) ≡
1

𝑒
𝐸(𝑘)−𝜈2

𝑇 + 𝜁
=

=
𝑒

𝜈2−𝜈1
𝑇

𝑒
𝐸(𝑘)−𝜈1

𝑇 + 𝜁 − 𝜁
[︁
1− 𝑒

𝜈2−𝜈1
𝑇

]︁ =

= 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈1) 𝑒
𝜈2−𝜈1

𝑇 ×

×
{︂
1 +

∞∑︁
𝑙=2

[︁
𝜑𝑖𝑑(𝑘, 𝑇, 𝜈1) 𝜁

(︁
1− 𝑒

𝜈2−𝜈1
𝑇

)︁]︁𝑙}︂
, (34)

where, in the last step of the derivation, we have ex-
panded the longest denominator above into a series of
𝜑𝑖𝑑(𝑘, 𝑇, 𝜈1) 𝜁

(︁
1− 𝑒

𝜈2−𝜈1
𝑇

)︁
powers. Consider two lim-

its of (34), namely 𝑒
𝜈2−𝜈1

𝑇 ≃ 1 and 𝑒
𝜈2−𝜈1

𝑇 → 0 for
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𝜁 ̸= 0. Then the distribution function (34) can be
cast as:

𝜑𝑖𝑑(𝑘, 𝑇, 𝜈2) →

→ 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈1) 𝑒
𝜈2−𝜈1

𝑇

{︂
for 𝜁 ̸= 0, if 𝑒

𝜈2−𝜈1
𝑇 ≃ 1,

for ∀ 𝜁, if 𝑒
𝜈2−𝜈1

𝑇 → 0.
(35)

Further on, we assume that the inequality

(𝛼− 1)𝑆0 Σ/𝑛𝑖𝑑 2 ≫ (𝑈2 − 𝑈1)/𝑛𝑖𝑑 2, (36)

holds in either of the considered limits for
𝑒

𝜈2−𝜈1
𝑇 . Note that, in the case 𝑒

𝜈2−𝜈1
𝑇 ≃ 1, condition

(36) is a natural one, because, at low particle den-
sities, it means that the difference of two mean-field
potentials (𝑈2 −𝑈1) is weaker than the hard-core re-
pulsion term (𝛼− 1)𝑆0 Σ; whereas, for 𝑒

𝜈2−𝜈1
𝑇 → 0, it

means that such a difference is simply restricted from
above for large values of Σ, i.e., max{|𝑈1|; |𝑈2|} <
< Const < ∞. Evidently, in this limit, the mean-field
pressures should be also finite, i.e. |𝑃intA| < ∞.

In the case 𝑒
𝜈2−𝜈1

𝑇 ≃ 1, one immediately recovers
the relation

𝑝𝑖𝑑(𝑇, 𝜈2) ≃ 𝑒
(1−𝛼)𝑆0 Σ

𝑇 𝑝𝑖𝑑(𝑇, 𝜈1)

for 𝜁 ̸= 0, which exactly corresponds to the
Boltzmann statistics version [26] of system (29)–
(32). Hence, one recovers the virial expansion of
𝑝𝑖𝑑(𝑇, 𝜈1) [26] in terms of the particle number den-
sity 𝑛1 = 𝜕𝑝𝑖𝑑(𝑇,𝜈1)

𝜕 𝜇 |𝑈1
, which is calculated under the

condition 𝑈1 = const:

𝑝𝑖𝑑(𝑇, 𝜈1)

𝑇𝑛1
≃ 1 + 4𝑉0𝑛1 + [16− 18(𝛼− 1)] 𝑉 2

0 𝑛2
1 +

+

[︂
64 +

243

2
(𝛼− 1)2 − 216(𝛼− 1)

]︂
𝑉 3
0 𝑛3

1 + ... . (37)

Note that, due to the self-consistency condition (33),
one finds 𝜕𝑝(𝑇,𝜈1)

𝜕 𝜇 = 𝜕𝑝𝑖𝑑(𝑇,𝜈1)
𝜕 𝜇 |𝑈1 , and, therefore, 𝑛1

is the physical particle number density.
As it was revealed in [26] for 𝛼 = 𝛼𝐵 ≡ 1.245,

one can reproduce the fourth virial coefficient of the
gas of hard spheres exactly, while the value of the
third virial coefficient of such a gas is recovered with
the relative error about 16% only. Therefore, for low
densities, i.e., for 𝑉0𝑛1 ≪ 1, the IST EoS (29)–(32)
reproduces the results obtained for 𝜁 = 0, if condition
(36) is fulfilled.

On the other hand, from Eqs. (34) and (35), one
sees that, in the limit 𝑒

𝜈2−𝜈1
𝑇 → 0, the distribu-

tion function 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈2) with 𝜁 ̸= 0 acquires the
Boltzmann form. In this limit, we find 𝑝𝑖𝑑(𝑇, 𝜈2) ≃
≃ 𝑝𝑖𝑑(𝑇, 𝜈1) 𝑒

𝜈2−𝜈1
𝑇 and 𝑛

(0)
𝑖𝑑 2 ≃ 𝑛

(0)
𝑖𝑑 1 𝑒

𝜈2−𝜈1
𝑇 . Using

these results and Eq. (36), we can rewrite (30) as

Σ ≃ 𝑅𝑝

[︁
𝑝𝑖𝑑(𝑇, 𝜈1) 𝑒

(1−𝛼)𝑆0 Σ
𝑇 − 𝑃int 2(𝑇, 𝑛

(0)
𝑖𝑑 2)

]︁
. (38)

Here, we use the same notation as in the previous
section (see a paragraph before Eq. (14)). From
Eq. (38), one can see that, for 𝑉0 𝑝𝑖𝑑(𝑇,𝜈1)

𝑇 ≫ 1, the
surface tension coefficient Σ is strongly suppressed
compared to 𝑅𝑝 𝑝𝑖𝑑(𝑇, 𝜈1), i.e., one finds

Σ ≃ 𝑇

𝑆0 (𝛼− 1)
ln

[︂
𝑅𝑝 𝑝𝑖𝑑(𝑇, 𝜈1)

Σ

]︂
≪ 𝑅𝑝 𝑝𝑖𝑑(𝑇, 𝜈1).

Note that, for 𝛼 > 1, the condition 𝑒
𝜈2−𝜈1

𝑇 → 0 can
be provided by 𝑆0Σ/𝑇 ≫ 1 only. Thus, the second
term on the right-hand side of Eq. (38) cannot domi-
nate, since it is finite. It is evident that the inequality
𝑉0 𝑝𝑖𝑑(𝑇,𝜈1)

𝑇 ≫ 1 also means that 𝑛
(0)
𝑖𝑑 1𝑉0 ≫ 1. There-

fore, in this limit, the effective chemical potential (31)
can be approximated as

𝜈1 ≃ 𝜇− 𝑉0 𝑝+ 𝑈1(𝑇, 𝑛
(0)
𝑖𝑑 1), (39)

i.e., the contribution of the induced surface tension
is negligible compared to the pressure. This result
means that, for 𝑛

(0)
𝑖𝑑 1𝑉0 ≫ 1, i.e., at high particle

densities or for 𝑒
𝜈2−𝜈1

𝑇 → 0, the IST EoS corresponds
to the proper volume approximation.

On the other hand, Eq. (37) exhibits that, at low
densities, i.e., for 𝑒

𝜈2−𝜈1
𝑇 ≃ 1, the IST EoS recovers

the virial expansion of the gas of hard spheres up to
the fourth power of the particle density 𝑛1. Therefore,
it is natural to expect that, for intermediate values of
the parameter 𝑒

𝜈2−𝜈1
𝑇 ∈ [0; 1], the IST EoS will gradu-

ally evolve from the low-density approximation to the
high-density one, if condition (36) is obeyed. This is
a generalization of the previously obtained result [26]
onto the quantum statistics case.

Already from the virial expansion (37), one can see
that the case 𝛼 = 1 recovers the VdW EoS with
the hard-core repulsion. If, in addition, the mean-
field potentials are the same, i.e., 𝑈2 = 𝑈1 and,
consequently, 𝑃int 2 = 𝑃int 1, then one finds that
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𝜈2 = 𝜈1 and Σ = 𝑅𝑝 𝑝(𝑇, 𝜈1). In this case, the term
𝑉0 𝑝 + 𝑆0 Σ ≡ 4𝑉0 𝑝 exactly corresponds to the VdW
hard-core repulsion. If, however, 𝑈2 ̸= 𝑈1, but both
mean-field potentials are restricted from above, then
the model can deviate from the VdW EoS at low tem-
peratures only, while, at high temperatures, it again
corresponds to the VdW EoS. In the case 𝑈2 < 𝑈1,
this can be easily seen from Eqs. (34) and (35) in the
case 𝑒

𝜈2−𝜈1
𝑇 ≃ 0, if one sets 𝛼 = 1. Then, using the

same logic as in deriving Eq. (38), one can find that
Σ ≪ 𝑅𝑝 𝑝𝑖𝑑(𝑇, 𝜈1). Hence, the effective chemical po-
tential 𝜈1 acquires the form (39). In other words, at
low 𝑇 , the surface tension effect becomes negligible,
and the IST EoS corresponds to the proper volume
approximation, if 𝑒

𝜈2−𝜈1
𝑇 ≃ 0.

Finally, if the inequality 𝑈2 > 𝑈1 is valid, then,
at low 𝑇, expansion (34) has to be applied to the dis-
tribution function 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈1) instead of 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈2)
and then one arrives at the unrealistic case, since Σ ≫
≫ 𝑅𝑝 𝑝𝑖𝑑(𝑇, 𝜈1). In this case, the hard-core repulsion
would be completely dominated by the induced sur-
face tension term. Hence, even the second virial coef-
ficient would not correspond to the excluded volume
of particles.

4. Going Beyond VdW Approximation

Let us closely inspect the IST EoS and show explicitly
its major differences from the VdW one. For such a
purpose in this section, we analyze its effective and
true virial expansions and discuss somewhat unusual
properties of the entropy density.

4.1. Effective virial expansion

First, we analyze the particle densities 𝑛1(𝑇, 𝜈1) ≡
≡ 𝜕𝑝(𝑇,𝜈1)

𝜕 𝜇 and 𝑛̃2(𝑇, 𝜈2) ≡ 𝑅−1
𝑝

𝜕Σ(𝑇,𝜈2)
𝜕 𝜇 . For this

purpose, we differentiate Eqs. (29) and (30) with
respect to 𝜇 and apply the self-consistency condi-
tions (33)
𝑛1 = 𝑛𝑖𝑑 1

[︂
1− 𝑉0𝑛1 − 𝑆0

𝜕Σ

𝜕𝜇

]︂
, (40)

𝜕Σ

𝜕𝜇
= 𝑅𝑝 𝑛𝑖𝑑 2

[︂
1− 𝑉0𝑛1 − 𝛼𝑆0

𝜕Σ

𝜕𝜇

]︂
. (41)

Expressing 𝜕Σ
𝜕𝜇 from Eq. (41) and substituting it

into (40), one finds the particle number densities
(𝑛̃2(𝑇, 𝜈2) ≡ 𝑛2(1− 𝑉0𝑛1))

𝑛1 =
𝑛𝑖𝑑 1 (1− 3𝑉0 𝑛2)

1 + 𝑉0 𝑛𝑖𝑑 1 (1− 3𝑉0 𝑛2)
, (42)

𝑛2 =
𝑛𝑖𝑑 2

1 + 𝛼 3𝑉0 𝑛𝑖𝑑 2
, (43)

where we used the relation 𝑅𝑝𝑆0 = 3𝑉0 for hard
spheres. From Eq. (43) for 𝑛2, one finds that, for
𝛼 > 1, the term (1 − 3𝑉0 𝑛2) staying above is al-
ways positive, since, taking the limit 𝑛𝑖𝑑 2 → ∞ in
Eq. (43), one finds the limiting density of max{𝑛2} =

= [3𝛼𝑉0]
−1. Therefore, irrespective of the value of

𝑛𝑖𝑑 2 ≥ 0, one finds in the limit 𝑛𝑖𝑑 1𝑉0 ≫ 1 that
max{𝑛1} = 𝑉 −1

0 . This is another way to prove that
the limiting density of the IST EoS corresponds to
the proper volume limit, since, at high densities, it is
four times higher than the one of the VdW EoS. Wri-
ting the particle number density 𝑛𝑖𝑑 1 from Eq. (42)
as
𝑛𝑖𝑑 1 =

𝑛1

(1− 𝑉0 𝑛1) (1− 3𝑉0 𝑛2)
, (44)

one can get the formal virial-like expansion for the
IST pressure 𝑝𝑖𝑑(𝑇, 𝜈1) (29)

𝑝𝑖𝑑(𝑇, 𝜈1)

𝑇
=

∞∑︁
𝑘=1

𝑎
(0)
𝑘

[1− 3𝑉0 𝑛2]𝑘
[𝑛1]

𝑘

[1− 𝑉0 𝑛1]
𝑘
, (45)

where the expressions for the coefficients 𝑎
(0)
𝑘 are

given by Eqs. (9)–(16). This result allows us to for-
mally write the expansion

𝑝𝑖𝑑(𝑇, 𝜈1)

𝑇
≡

∞∑︁
𝑘=1

𝑎
(0),𝐼𝑆𝑇
𝑘

[𝑛1]
𝑘

[1− 𝑉0 𝑛1]
𝑘

(46)

with the coefficients 𝑎
(0),IST
𝑘 =

𝑎
(0)
𝑘

[1−3𝑉0 𝑛2]𝑘
which de-

pend not only on 𝑇 , but also on 𝑛2. Expansions (45)
and (46) are the generalizations of the ones used for
the EoSs of hard discs [32] and hard spheres [33].

Similarly to deriving Eq. (27), one can get the
quantum virial expansion for IST pressure 𝑝𝑖𝑑(𝑇, 𝜈1)
from (46):

𝑝𝑖𝑑(𝑇, 𝜈1) = 𝑇

∞∑︁
𝑘=1

𝑎𝑄,IST
𝑘 𝑛𝑘

1 , (47)

𝑎𝑄,IST
𝑘 =

𝑘∑︁
𝑙=1

𝐶
(𝑘)
𝑙

[1− 3𝑉0 𝑛2]𝑙
, (48)

𝐶
(𝑘)
𝑙 =

(𝑘 − 1)!

(𝑙 − 1)!(𝑘 − 𝑙)!
𝑉 𝑘−𝑙
0 𝑎

(0)
𝑙 , (49)

with the coefficients 𝑎𝑄,IST
𝑘 which are 𝑇 - and 𝑛2-de-

pendent. For the interaction pressure 𝑃int 1(𝑇, 𝑛𝑖𝑑 1)
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which is expandable in terms of the density 𝑛1,
Eq. (48) can be used to estimate the full quantum
virial coefficients of higher orders. Of course, Eq. (47)
is not the traditional virial expansion. But the fact
that it can be exactly obtained from the grand canon-
ical ensemble formulation of the quantum version of
the IST EoS for the third, fourth, and higher order
virial coefficients is still remarkable.

4.2. True quantum virial coefficients

Now, we consider an example on how to employ re-
sults (47)–(49) to estimate the true virial coefficients
at low densities and at sufficiently high temperatures
which provide the convergence of the virial expansion
(47). Apparently, in this case, one can expand the
density 𝑛2 ≃ 𝐵1𝑛1(1 + 𝐵2𝑛1) in powers of the den-
sity 𝑛1. From our above treatment of the low-density
limit 𝑒

𝜈2−𝜈1
𝑇 ≃ 1, it is clear that 𝐵1 = 1. Substitut-

ing this expansion for 𝑛2 into Eqs. (47) and (48) and
keeping only the terms up to 𝑛2

1, one can get the true
quantum virial coefficients 𝑎𝑄,tot

𝑘 as

𝑎𝑄,tot
2 = 𝑉0 + 𝑎

(0)
2 + 3𝑉0𝐵1 = 4𝑉0 + 𝑎

(0)
2 , (50)

𝑎𝑄,tot
3 ≃ 13𝑉 2

0 + 3𝑉0𝐵2 + 5𝑉0𝑎
(0)
2 + 𝑎

(0)
3 , (51)

𝑎𝑄,tot
𝑘≥3 ≃

𝑘∑︁
𝑙=1

𝐶
(𝑘)
𝑙 + 3𝑉0𝐵1

𝑘−1∑︁
𝑙=1

𝐶
(𝑘−1)
𝑙 𝑙+

+3𝑉0𝐵1

𝑘−2∑︁
𝑙=1

𝐶
(𝑘−2)
𝑙

[︂
3

2
𝑙(𝑙 + 1)𝑉0𝐵1 +𝐵2

]︂
, (52)

and replace the coefficients 𝑎𝑄,IST
𝑘 in Eq. (47) with

the true quantum virial coefficients 𝑎𝑄,tot
𝑘 which de-

pend on 𝑇 only. Note that the expression for the sec-
ond virial coefficient 𝑎𝑄,tot

2 is exact, while the ex-
pressions for the higher order virial coefficients are
the approximate ones, which, nevertheless, at high
values of temperature are rather accurate. Conside-
ring the limit of high temperatures which allows one
to ignore the quantum corrections in Eqs. (50) and
(51), one can find the coefficients 𝐵1 = 1 exactly
and 𝐵2 ≃ [7−6𝛼]𝑉0 approximately by comparing ex-
pressions (50) and (51) with the corresponding virial
coefficients of the Boltzmann gas in Eq. (37). Substi-
tuting the obtained expressions for 𝐵1 and 𝐵2 coeffi-
cients into Eq. (52), one gets the approximate formula

for higher-order virial coefficients 𝑎𝑄,tot
𝑘≥3 :

𝑎𝑄,tot
𝑘≥3 ≃

𝑘∑︁
𝑙=1

𝐶
(𝑘)
𝑙 + 3𝑉0

𝑘−1∑︁
𝑙=1

𝐶
(𝑘−1)
𝑙 𝑙+

+3𝑉 2
0

𝑘−2∑︁
𝑙=1

𝐶
(𝑘−2)
𝑙

[︂
3

2
𝑙(𝑙 + 1) + (7− 6𝛼)

]︂
=

=

𝑘∑︁
𝑙=1

(𝑘 − 1)!𝑉 𝑘−𝑙
0 𝑎

(0)
𝑙

(𝑙 − 1)!(𝑘 − 𝑙)!
+ 3

𝑘−1∑︁
𝑙=1

(𝑘 − 2)!𝑉 𝑘−𝑙
0 𝑎

(0)
𝑙

(𝑙 − 1)!(𝑘 − 1− 𝑙)!
𝑙+

+3

𝑘−2∑︁
𝑙=1

(𝑘 − 3)!𝑉 𝑘−𝑙
0 𝑎

(0)
𝑙

(𝑙 − 1)!(𝑘 − 2− 𝑙)!

[︂
3

2
𝑙(𝑙 + 1) + (7− 6𝛼)

]︂
,

(53)

where the second equality above is obtained by sub-
stituting Eq. (49) for the coefficients 𝐶

(𝑘)
𝑙 into the

first one.
Comparing now Eq. (53) for the IST EoS and

Eq. (27) for the VdW EoS, one can see that the first
sum on the right-hand side of (53) is identical to the
expression for the VdW quantum virial coefficients
with the excluded volume 𝑏 = 4𝑉0 replaced by the
proper volume 𝑉0. Apparently, the other two sums
on the right-hand side of (53) are the corrections due
to the induced surface tension coefficient.

Note that it is not difficult to get the exact expres-
sions for the third or fourth virial coefficients 𝑎𝑄,tot

𝑘

by inserting the higher order terms of the expansion
𝑛2(𝑛1) in powers of the density 𝑛1 into Eqs. (47) and
(48). Although, comparing the coefficients in front of
𝐵1 and 𝐵2 in the last sum of Eq. (52), one can see
that, even for 𝑙 = 1, the coefficient staying before
𝐵1 is essentially larger than the one staying before
𝐵2. This means that, at low densities, the role of 𝐵2

is an auxiliary one, if 𝛼 is between 1 and 1.5.

4.3. Virial expansion
for compressible spheres

It is of interest that the 𝑘-th term

1

[1− 3𝑉0 𝑛2]𝑘
[𝑛1]

𝑘

[1− 𝑉0 𝑛1]
𝑘
,

staying in sum (45) allows for a non-trivial interpreta-
tion. Comparing Eq. (17) and Eq. (45) and recalling
the fact that the particle number density 𝑛1 is pro-
portional to the number of spin-isospin configurations

ISSN 0372-400X. Укр. фiз. журн. 2018. Т. 63, № 10 871



K.A. Bugaev, A.I. Ivanytskyi, V.V. Sagun et al.

𝑑𝑝, one can introduce an effective number of such con-
figurations as 𝑑eff𝑝 =

𝑑𝑝

1−3𝑉0𝑛2
with the simultaneous

replacement of 𝑉0 by the effective proper volume

𝑉 eff
0 = 𝑉0 (1− 3𝑉0𝑛2)

in all terms which contain the powers of [1 − 𝑉0𝑛1]
on the right-hand side of (45). Then, at high densi-
ties, the effective number of spin-isospin configura-
tions 𝑑eff𝑝 ≤ 𝛼𝑑𝑝

𝛼−1 can be sizably larger than 𝑑𝑝, while
the effective proper volume 𝑉 eff

0 can be essentially
smaller than 𝑉0 (i.e., such effective particles are com-
pressible), if the coefficient 𝛼 > 1 is close to 1. More-
over, one can also establish the equivalent virial ex-
pansion of pressure (45) in terms of 𝑛1

(1−3𝑉0𝑛2)
pow-

ers. Then, instead of the coefficients 𝑎𝑄,IST
𝑘 (48), one

would get

𝑎̃𝑄,IST
𝑘 =

𝑘∑︁
𝑙=1

(𝑘 − 1)!

(𝑙 − 1)!(𝑘 − 𝑙)!

[︀
𝑉 eff
0

]︀𝑘−𝑙
𝑎
(0)
𝑙 , (54)

which shows that, at high densities, the contribu-
tions of low-order virial coefficients 𝑎

(0)
𝑙 into the co-

efficient 𝑎̃𝑄,IST
𝑘>1 are suppressed due to a decrease of

𝑉 eff
0 . Eq. (54) quantifies the source of softness of the

IST EoS compared to VdW one at high densities. It
is also interesting that the monotonic decrease of 𝑉 eff

0

at high densities is qualitatively similar to the effect
of the Lorentz contraction of a proper volume for rel-
ativistic particles [36].

Although the present model does not know any-
thing about the internal structure of considered par-
ticles, but the fact that 𝑑eff𝑝 increases with the par-
ticle number density 𝑛2 can be an illustration of the
in-medium effect that the IST hard-core interaction
“produces” the additional (or “enhances” the number
of existing) spin-isospin states which are well known
in quantum physics as excited states, but with an
excitation energy being essentially smaller than the
mean value of the particle free energy. In this way,
one can see that, at high densities, the IST effectively
increases the degeneracy factor of particles. This find-
ing is a good illustration that the claim of Ref. [34]
that accounting for the excluded volume correction in
the quantum case via the effective degeneracy leads to
a reduction of the latter (see a discussion of Eqs. (18)
and (19) in [34]) is not a general one. On contrary, a
more advanced EoS developed above requires not a

reduction of the effective number of degrees of free-
dom as it is suggested in [34], but their enhancement.

It is apparent that, for 𝛼 ≫ 1, the quantities 𝑉 eff
0

and 𝑑eff𝑝 are practically independent of 𝑛2, i.e., in this
case, the coefficients 𝑎𝑄,IST

𝑘 and 𝑎̃𝑄,IST
𝑘 are the true

quantum virial coefficients of the VdW EoS, but with
the excluded volume 𝑏 = 4𝑉0 replaced by 𝑉0.

4.4. Properties of entropy density

Next, we study the entropy density of the IST
EoS. Similarly to finding the derivatives of Eqs. (29)
and (30) with respect to 𝜇, one has to find their
derivatives with respect to 𝑇 in order to get the en-
tropy per particle

𝑠1
𝑛1

=

[︁
𝑠𝑖𝑑 1

𝑛𝑖𝑑 1
− 3𝑉0 𝑛2

𝑠𝑖𝑑 2

𝑛𝑖𝑑 2

]︁
[1− 3𝑉0 𝑛2]

, (55)

𝑠𝑖𝑑𝐴 ≡ 𝑠𝑖𝑑𝐴 + 𝑛𝑖𝑑𝐴
𝜕𝑈𝐴

𝜕 𝑇
− 𝜕𝑃int𝐴

𝜕 𝑇
, (56)

where the entropy density of point-like particles is
defined as 𝑠𝑖𝑑𝐴 ≡ 𝜕𝑝𝑖𝑑(𝑇,𝜈𝐴)

𝜕 𝑇 and 𝐴 ∈ {1; 2}. If the
mean-field potentials of the model have the form

𝑈𝐴 =
∑︁
𝜆

𝑔𝜆𝐴(𝑇 )𝑓
𝜆
𝐴(𝑛𝑖𝑑𝐴) (57)

and, for 𝑇 = 0, their derivatives obey the set of con-
ditions 𝑑𝑔𝜆

𝐴(𝑇 )
𝑑 𝑇 = 0, then it is easy to see that the en-

tropy per particle 𝑠1
𝑛1

also vanishes at 𝑇 = 0, i.e. the
Third Law of thermodynamics is obeyed under these
conditions. In a special case where the interaction
mean-field potentials do not explicitly depend on the
temperature 𝑇 , the expression for the entropy den-
sities (56) gets simpler, i.e., 𝑠𝑖𝑑𝐴 = 𝑠𝑖𝑑𝐴. This case
is important for the hadron resonance model and is
discussed in the Appendix in some details.

Apparently, to provide a positive value of the en-
tropy per particle 𝑠1

𝑛1
, one has to properly choose

the interaction terms in Eqs. (29) and (30). In other
words, the Third Law of thermodynamics provides
one of the basic constraints to the considered EoS. It
is clear that the corresponding necessary conditions
should not be very restrictive, because, at low den-
sities, i.e. for 3𝑉0 𝑛2 ≪ 1, the coefficient staying in
front of the term 𝑠𝑖𝑑 2

𝑛𝑖𝑑 2
is very small, while, at high

densities, it is 𝛼−1 < 1 for 𝛼 > 1. Although a discus-
sion of such conditions is far beyond the scope of this
work, we consider two important cases below.

872 ISSN 0372-400X. Укр. фiз. журн. 2018. Т. 63, № 10



Equation of State of Quantum Gases Beyond the Van der Waals Approximation

In the case 𝑈2(𝑇, 𝜌) ≡ 𝑈1(𝑇, 𝜌), condition (36) is
valid for any choice of parameters. Then one can show
a validity of the inequality 𝑠𝑖𝑑 1

𝑛𝑖𝑑 1
≥ 𝑠𝑖𝑑 2

𝑛𝑖𝑑 2
, since, for

𝛼 > 1, one finds 𝜈1 > 𝜈2. To prove this inequality,
one has to take into account that 𝑝𝑖𝑑(𝑇, 𝜈𝐴), and all
its derivatives are monotonically increasing functions
of 𝑇 and 𝜈𝐴. Then, using relations (34) and (35) be-
tween the quantum distribution functions, one can
show the validity of the inequality 𝑠𝑖𝑑 1

𝑛𝑖𝑑 1
≥ 𝑠𝑖𝑑 2

𝑛𝑖𝑑 2
for

two limits 𝑒
𝜈2−𝜈1

𝑇 ≃ 1 and 𝑒
𝜈2−𝜈1

𝑇 → 0. Similarly, one
can introduce an effective parameter of statistics

𝜁eff ≡ 𝜁 − 𝜁
[︁
1− 𝑒

𝜈2−𝜈1
𝑇

]︁
and study the quantities for the distribution func-
tion 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈2) with an effective parameter of statis-
tics 𝜁eff . However, one can easily understand that the
inequality 𝑠𝑖𝑑 1

𝑛𝑖𝑑 1
≥ 𝑠𝑖𝑑 2

𝑛𝑖𝑑 2
cannot be broken down for

any value of the exponential 𝑒
𝜈2−𝜈1

𝑇 obeying the in-
equalities 0 < 𝑒

𝜈2−𝜈1
𝑇 < 1. This is so, since the pres-

sure of point-like particles and its partial derivatives
are monotonic functions of the parameters 𝑇 and 𝜈1
(or 𝜈2), and the non-monotonic behavior of the en-
tropy per particle can be caused by the phase tran-
sition, which does not exists for an ideal gas. Note
that we do not consider a possible effect of the Bose–
Einstein condensation. Using the above inequality be-
tween the entropies per particle and requiring that
𝑈1 ≥ 0 and the inequalities 𝑑𝑔𝜆

𝐴(𝑇 )
𝑑 𝑇 > 0 for 𝑇 > 0 and

𝑑𝑔𝜆
𝐴(𝑇=0)
𝑑 𝑇 = 0 hold, one can show that 𝑠1

𝑛1
≥ 𝑠𝑖𝑑 2

𝑛𝑖𝑑 2
≥ 0,

using identity (5).
Another important case corresponds to the choice

𝑈1 > 0 and 𝑈2 < 0 in Eq. (57), i.e., the mean-field
𝑈1 describes an attraction, while 𝑈2 represents a re-
pulsion. Clearly, condition (36) in this case is also
fulfilled for any choice of parameters. Using the self-
consistency relation (33) or its more convenient form
(5), one can find that the term describing the mean-
field entropy in 𝑠𝑖𝑑 2 can be negative, i.e.,

𝑛𝑖𝑑 2
𝜕𝑈2

𝜕 𝑇
− 𝜕𝑃int 2

𝜕 𝑇
=
∑︁
𝜆

𝑑𝑔𝜆2 (𝑇 )

𝑑 𝑇

𝑛𝑖𝑑 2∫︁
0

𝑑𝑛 𝑓𝜆
2 (𝑛) < 0,

(58)

if 𝑔𝜆2 (𝑇 ) > 0, 𝑑𝑔𝜆
2 (𝑇 )
𝑑 𝑇 > 0, but 𝑈2 < 0 for 𝑇 ≥ 0 due

to the inequalities 𝑓𝜆
2 (𝑛) < 0. Such a choice of the in-

teraction allows one to decrease the effective entropy

density 𝑠𝑖𝑑 2 or even to make it negative by tuning the
mean-field 𝑈2 related to the IST coefficient. As a re-
sult, this would increase the physical entropy density
𝑠1. Note that, for the VdW EoS, this is impossible.

5. Application to Nuclear
and Hadronic Matter

5.1. Some important examples

As a pedagogical example to our discussion, we con-
sider the IST EoS for the nuclear matter and compare
it with the VdW EoS (1) having the interaction

𝑃VdW
int (𝑇, 𝑛𝑖𝑑) = 𝑎

[︂
𝑛𝑖𝑑

1 + 𝑏 𝑛𝑖𝑑

]︂2
+ 𝑇𝑛𝑖𝑑 −

𝑔(𝑇 )𝑛𝑖𝑑

1 + 𝑏 𝑛𝑖𝑑
−

− 𝑔(𝑇 )𝑏 𝑛2
𝑖𝑑

[1 + 𝑏 𝑛𝑖𝑑]
2 − 𝑔(𝑇 )𝐵3 𝑛

3
𝑖𝑑

[1 + 𝑏 𝑛𝑖𝑑]
3 − 𝑔(𝑇 )𝐵4 𝑛

4
𝑖𝑑

[1 + 𝑏 𝑛𝑖𝑑]
4 , (59)

where the virial coefficients 𝑏, 𝐵3, and 𝐵4 are intro-
duced above, and the function 𝑔(𝑇 ) ≡ 𝑇 2

𝑇+𝑇SW
with

𝑇SW = 1 MeV provides the fulfillment of the Third
Law of thermodynamics. Note that the term 𝑇𝑛𝑖𝑑

cancels exactly the first term of the quantum virial
expansion for 𝑝𝑖𝑑(𝑇, 𝜈) (see Eq. (17)), while the term
𝑎
[︀

𝑛𝑖𝑑

1+𝑏 𝑛𝑖𝑑

]︀2 in Eq. (59) accounts for an attraction and
the other terms proportional to 𝑔(𝑇 ) are the low-
est four powers of the virial expansion for the gas
of classical hard spheres for 𝑇 ≫ 𝑇SW. By construc-
tion, such an EoS reproduces, apparently, the four
first virial coefficients of the gas of hard spheres at
𝑇 ≫ 𝑇SW. Simultaneously, it obeys the Third Law of
thermodynamics at 𝑇 = 0.

For the IST EoS, we choose 𝛼 = 1.245 [26], 𝑃 IST
int 1 =

= 𝑎
[︀

𝑛𝑖𝑑 1

1+𝑏 𝑛𝑖𝑑 1

]︀2 and 𝑃 IST
𝑖𝑛𝑡 2 = 0 with the same con-

stants 𝑎 ≃ 329 MeV fm3 and 𝑏 = 4𝑉0 ≃ 3.42 fm3

which were found in [15] for the VdW EoS of nuclear
matter (𝑑𝑝 = 4,𝑚𝑝 = 939MeV), i.e., we took just the
parameters of Ref. [15] for a proper comparison. By
construction, the IST EoS and EoS (59) agree very
well (within one percent) for 𝑇 > 120 MeV and par-
ticle number densities 𝑛 ≤ 0.25 fm−3. In Fig. 1, we
compare three isotherms at 𝑇 = 19, 10, and 0 MeV of
these two EoS. For 𝑇 = 10 MeV, their isotherms agree
up to the packing fraction 𝜂 = 𝑉0𝑛 ≃ 0.09 (for the
nuclear density 𝑛 ≤ 0.11 fm−3), i.e., within the usual
range of the VdW EoS applicability [25,26]. However,
for 𝑇 = 0 and 𝑇 = 19 MeV isotherms, the both mod-
els agree up to the packing fraction 𝜂 = 𝑉0𝑛 ≃ 0.03
only (for 𝑛 ≤ 0.035 fm−3), i.e., far below the usual
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Fig. 1. Behavior of the pressure as a function of the particle
number density for isotherms of nuclear matter (see the text
for details)

Fig. 2. Packing fraction dependence of the quantum com-
pressibility factors Δ𝑍𝑄 of the GVdW EoS and IST EoS (see
the text)

range of the VdW EoS applicability due to the im-
portant role of the second and higher order quantum
virial coefficients 𝑎(0)𝑘≥2 defined by Eqs. (10)–(15). The
present example clearly shows that providing the four
virial coefficients of the gas of hard spheres for the
quantum VdW EoS of Ref. [15] at high temperatures,
one can, at most, get a good agreement with the IST
EoS for a single value of the temperature, namely for
𝑇 = 10 MeV. Figure 1 also shows that, for the same
parameters, the IST EoS is essentially softer that the
improved VdW one, hence, it does not require so
strong attraction and so strong repulsion to reproduce

the properties of normal nuclear matter. This conclu-
sion is supported by the results obtained recently for
the nuclear-matter EoS within the IST concept [35].

Recently, an interesting generalization of the quan-
tum VdW EoS (GVdW hereafter) was suggested in
[37]. This EoS allows one to go beyond the VdW ap-
proximation, but, formally, it is similar to the VdW
models discussed above. In terms of the ideal gas
pressure (2), the GVdW pressure can be written as
[37] (𝜂 = 𝑉0𝑛 is the packing fraction):

𝑝G(𝑇, 𝜇) = 𝑤(𝜂) 𝑝𝑖𝑑(𝑇, 𝜈G)− 𝑃intG(𝑛), (60)
𝜈G(𝜇, 𝑛) = 𝜇+ 𝑉0 𝑓

′(𝜂) 𝑝𝑖𝑑(𝑇, 𝜈G) + 𝑈G(𝑛), (61)

where 𝑛 is the particle density, and the multiplier
𝑤(𝜂) ≡ (𝑓(𝜂)− 𝜂𝑓 ′(𝜂)) is given in terms of the func-
tion 𝑓(𝜂) which is defined as

𝑓(𝜂) =

⎧⎨⎩
𝑓VdW(𝜂) = 1− 4𝜂, for VdW EoS,

𝑓CS(𝜂) = exp

[︂
− (4− 3𝜂)𝜂

(1− 𝜂)2

]︂
, for CS EoS,

(62)

where the function 𝑓VdW(𝜂) corresponds to the VdW
case, whereas the function 𝑓CS(𝜂) is given for the fa-
mous Carnahan–Starling (CS) EoS [17]. The interac-
tion terms of the GVdW EoS are given in terms of
a function 𝑢(𝑛): 𝑈G = 𝑢(𝑛) + 𝑛𝑢′(𝑛) and 𝑃intG =
= −𝑛2𝑢′(𝑛). This choice automatically provides the
self-consistency condition fulfillment. Since the po-
tentials 𝑈G and 𝑃intG are temperature-independent,
the Third Law of thermodynamics is obeyed.

The presence of the function 𝑤(𝜂) in front of the
ideal gas pressure in (60) allows one to reproduce
the famous CS EoS [17] at high temperatures, while
it creates the problems with formulating the GVdW
model for several hard-core radii, since the pressures
of point-like particles of kinds 1 and 2 cannot be
added to each other, if their functions 𝑤(𝜂1) and
𝑤(𝜂2) are not the same.

Using the quantum virial expansion (8) and the
particle number density expression 𝑛 = 𝑓(𝜂)×
×𝑛𝑖𝑑(𝑇, 𝜈G) [37], for 𝑃IG ≡ 𝑤(𝜂) 𝑝𝑖𝑑(𝑇, 𝜈G), one ob-
tains
𝑃IG = 𝑤(𝜂)𝑇

[︂
𝑛

𝑓(𝜂)
+

∞∑︁
𝑙=2

𝑎
(0)
𝑙

[︂
𝑛

𝑓(𝜂)

]︂𝑙]︂
, (63)

𝑤(𝜂)

𝑓(𝜂)
=

⎧⎪⎪⎨⎪⎪⎩
1

1− 4𝜂
≡ 1

𝑓VdW(𝜂)
, for VdW EoS,

1 + 𝜂 + 𝜂2 − 𝜂3

(1− 𝜂)3
, for CS EoS.

(64)
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Although this effective expansion can be used to de-
rive the true virial expansion for the CS parametriza-
tion of the GVdW EoS (for the VdW one, it is given
above), the result is cumbersome. Nevertheless, these
equations show that, due to the multiplier 𝑤(𝜂),
the first term of the quantum virial expansion in
Eqs. (63), (8), (17), and (47), i.e., the classical term,
exactly reproduces the pressure by the correspond-
ing classical EoS. Hence, all other terms in Eqs. (8),
(17), (47), and (63) are the quantum ones. A direct
comparison of the IST with 𝛼 = 1.245 and CS EoS
for classical gases shows that, for packing fractions
𝜂 > 0.22, the IST EoS is softer than the CS one
[25,26]. Figure 2 depicts the quantum compressibility
factors

Δ𝑍CS
𝑄 (𝜂) =

𝑃IG − 𝑤(𝜂)𝑇𝑛𝑖𝑑(𝑇, 𝜈G)

𝑇 𝑛

for the CS EoS of the GVdW model and the one for
the IST EoS defined similarly

Δ𝑍IST
𝑄 (𝜂) =

𝑝𝑖𝑑 1 − 𝑇𝑛𝑖𝑑 1(𝑇, 𝜈1)

𝑇 𝑛1

taken both for the same parameters 𝑏 = 3.42 fm3,
𝑃intG(𝑇, 𝑛) = 𝑎attr𝑛

2 with 𝑎attr = 329 MeV · fm3 (see
[37] for more details). As one can see from Fig. 2,
the quantum compressibility factors of these EoS dif-
fer essentially for 𝜂 ≥ 0.05. Therefore, for 𝜂 ≥ 0.1,
both the classical and quantum parts of the IST
pressure with 𝛼 = 1.245 [26] are essentially softer
than the corresponding terms of the CS version of
the GVdW model of Ref. [37]. One can easily un-
derstand such a conclusion comparing expansions
(63) and (45). Since, for the same packing fraction
𝜂 ≥ 0.1, the function 𝑓CS(𝜂) of the CS version of
the GVdW EoS vanishes essentially faster than the
term [1−3𝑉0𝑛2][1−𝑉0𝑛1] of the IST EoS, each term
proportional to 𝑛𝑘 in (63) with 𝑘 > 1 is larger than
the corresponding term proportional to 𝑛𝑘

1 = 𝑛𝑘 in
(45). It is necessary to note that such a property is
very important, because the softer EoS provides a
wider range of thermodynamic parameters for which
the EoS is causal, i.e. its speed of sound is smaller
than the speed of light.

5.2. Constraints on nuclear
matter properties

It is appropriate to discuss the most important con-
straints on the considered mean-field models which

are necessary to describe the strongly interacting
matter properties. According to Eqs. (17), (47), and
(63), the fermionic pressure for the considered EoS
consists of three contributions: the classical pressure
(the first term on the right-hand side of (17), (47),
and (63)), the quantum part of the pressure and the
mean-field 𝑃int. At temperatures below 1 MeV, the
classical part is negligible, but the usage of virial ex-
pansions discussed above is troublesome due to the
convergency problem. Since the exact parametriza-
tion of the function 𝑃int on the particle number den-
sity of nucleons is not known, it is evident that all
considered models are effective by construction. To
fix their parameters, one has to reproduce the usual
properties of normal nuclear matter, i.e. to get a
zero value for the total pressure at the normal nu-
clear density 𝑛0 ≃ 0.16 fm−3 and the binding en-
ergy 𝑊 = −16 MeV at this density [1]. Similarly
to the high-temperature case discussed at the end
of Section 2, there exists a freedom of parametriz-
ing the hard-core radius of nucleons, since the attrac-
tion pressure can be always adjusted to reproduce
the properties of normal nuclear matter and, there-
fore, all the model parameters are also effective by
construction.

However, in addition to the properties of normal
nuclear matter, there is the so-called flow constraint
at nuclear densities 𝑛 = (2–5)𝑛0 [38], which sets
strong restrictions on the model pressure dependence
on the nuclear particle density and requires a rather
soft EoS at these densities. Hence, it can be used to
determine the parameters of a realistic EoS at high
nuclear densities and 𝑇 = 0. Traditionally, such a
constraint creates troubles for the relativistic mean-
field EoS based on the Walecka model [4, 39, 40].

The validity of this statement can be seen from
Ref. [39] in which it is shown that only 104 of such
EoSs out of 263 analyzed in [39] are able to obey
the flow constraint despite the fact that they have
10 or even more adjustable parameters. At the same
time, as one can see from the simplest realization of
the IST EoS suggested in Ref. [35], the 4-parameter
EoS is able to simultaneously reproduce all prop-
erties of normal nuclear matter and the flow con-
straint. Furthermore, the IST EoS is able not only to
reproduce the flow constraint, but, simultaneously, it
is able to successfully describe the neutron star prop-
erties with the masses more than two Solar ones [41],
which sets another strong constraint on the stiffness
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of the realistic EoS at high particle densities and the
zero temperature. On the other hand, Fig. 2 shows
that the existing CS version of the GVdW EoS of
Ref. [37] is very stiff, and, hence, it will also have
troubles to obey the flow constraint [38].

5.3. Constraints on hadronic
matter properties

From the virial expansions of all models discussed
here, one sees that the EoS calibration on the prop-
erties of nuclear matter at low 𝑇 and at high densi-
ties involves mainly the quantum and mean-field pres-
sures. But, unfortunately, it also fixes the parameters
of the classical pressure at higher temperatures. It
is, however, clear that the one-component mean-field
models of nuclear matter cannot be applied at tem-
peratures above 50 MeV, since one has to include the
mesons, other baryons, and their resonances [31, 42].

Moreover, at high temperatures, the mean-fields
and the parameters of interaction should be re-ca-
librated because the very fact of resonance existence
already corresponds to a partial account for the in-
teraction [42]. For many years, it is well known that,
for temperatures below 170 MeV and densities be-
low 𝑛0, the mixture of stable hadrons and their res-
onances whose interaction is taken into account by
the quantum second virial coefficients behaves as a
mixture of nearly ideal gases of stable particles. The
latter, in this case, includes both the hadrons and
the resonances, but taken with their averaged masses
[42]. The main reason for such a behavior is rooted in
a nearly complete cancellation between the attraction
and repulsion contributions. The resulting deviation
from the ideal gas (a weak repulsion) is usually de-
scribed in the hadron resonance gas model (HRGM)
[19–27] by the classical second virial coefficients.

Nevertheless, such a repulsion is of principal impor-
tance for the HRGM. Otherwise, if one considers a
mixture of ideal gases of all known hadrons and their
resonances, then, at high temperatures, the pressure
of such a system will exceed the one of the ideal gas of
massless quarks and gluons [43]. Since such a behav-
ior contradicts the lattice version of quantum chro-
modynamics, the (weak) hard-core repulsion in the
HRGM is absolutely necessary. Moreover, to our best
knowledge, there is no other approach which is able to
include all known hadronic states into consideration
and to be consistent with the thermodynamics of lat-

tice quantum chromodynamics at low-energy densi-
ties and which, simultaneously, would not contradict
it at the higher ones.

Therefore, it seems that the necessity of a weak
repulsion between the hadrons is naturally encoded
in the smaller values of their hard-core radii (𝑅𝑝 <
< 0.4 fm) obtained within the HRGM compared to
the larger hard-core radius of nucleons in nuclear
matter 𝑅𝑛 ≥ 0.52 fm found in [37]. This conclu-
sion is well supported by the recent simulations of
the neutron star properties with masses more than
two Solar ones [41] which also favors the nucleon
hard-core radii below than 0.52 fm. Furthermore, the
small values of the hard-core radii provide the fulfill-
ment of the causality condition in the hadronic phase
[25, 26, 41, 46], while a possible break of causality
occurs in the region, where the hadronic degrees of
freedom are not relevant [46]. Hence, in contrast to
Ref. [37], we do not see any reason to believe that the
mean-field model describing the nuclear matter prop-
erties may set any strict conditions on the hadronic
hard-core radii of the HRGM.

Moreover, we would like to point out that a great
success achieved recently by the HRGM [19–27] sets
a strong restriction on any model of hadronic phase
which is claimed to be realistic. The point is that,
at the chemical freeze-out curve 𝜇 = 𝜇CFO(𝑇 ), the
mean-field interaction term of pressure (1) or (29)
must vanish. Otherwise, one would need a special pro-
cedure to transform the mean-field potential energy
into the masses and kinetic energy of non-interacting
hadrons (the kinetic freeze-out problem [44,45]). The
existing versions of the HRGM do not face such a
problem, since this model has the hard-core repul-
sion only, while the mean-field interaction in it is set
to zero [19–27]. Due to such a choice of the interac-
tion, the HRGM has the same energy per particle as
an ideal gas. Hence, it can be tuned to describe the
existing experimental hadronic multiplicities in cen-
tral nuclear collisions from the lower AGS collision
energy

√
𝑠𝑁𝑁 = 2.76 GeV to the ALICE center of

mass energy
√
𝑠𝑁𝑁 = 2.76 TeV with the total quality

of fit 𝜒2/dof ≃ 1.04 [25, 26].
Therefore, any realistic hadronic EoS of hadronic

matter should be able to reproduce the pressure, en-
tropy, and all charge densities obtained by the HRGM
at the chemical freeze-out curve 𝜇 = 𝜇CFO(𝑇 ). In
particular, for the mean-field models discussed here,
it means that they should be extended in order to
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include all other hadrons and, at the curve 𝜇 =
= 𝜇CFO(𝑇 ), the total interaction pressure must van-
ish, i.e., 𝑃int = 0, since it does not exist in the HRGM.

In other words, if, at the chemical freeze-out curve,
such a model EoS has a non-vanishing attraction,
then it must have an additional repulsion to provide
𝑃int = 0. Only this condition will help one to avoid a
hard mathematical problem of kinetic freeze-out to
convert the interacting particles into a gas of free
streaming particles [44,45], since the HRGM with the
hard-core repulsion and with vanishing mean-field in-
teraction has the same energy per particle as an ideal
gas. Due to its importance, we analyzed the IST EoS
in Appendix and show that this EoS also possesses
such a property. The condition 𝑃int = 0 at the chemi-
cal freeze-out curve will make a direct connection be-
tween the realistic EoS and the hadron multiplicities
measured in heavy ion collisions. It is clear that, with-
out 𝑇 -dependent mean-field interaction 𝑃int, such a
condition cannot be fulfilled.

Despite many valuable results obtained with the
HRGM, the hard-core radii are presently well estab-
lished for the most abundant hadrons only, namely,
for pions (𝑅𝜋 ≃ 0.15 fm), the lightest K±-mesons
(𝑅𝐾 ≃ 0.395 fm), nucleons (𝑅𝑝 ≃ 0.365 fm),
and the lightest (anti)Λ-hyperons (𝑅Λ ≃ 0.085 fm)
[25, 26]. Nevertheless, we hope for that the new high-
quality data on the yields of many strange hadrons
recently measured by the ALICE Collaboration at
CERN [47] at the center of mass energy

√
𝑠𝑁𝑁 =

= 2.76 TeV and the ones which are expected to be
measured during the Beam Energy Scan II at RHIC
BNL (Brookhaven) [48], and at the accelerators of
new generations, i.e., at NICA JINR (Dubna) [49,50]
and FAIR GSI (Darmstadt) [51,52] will help us to de-
termine their hard-core radii with high accuracy. We
have to add only that the IST EoS for quantum gases
is well suited for such a task due to the additive pres-
sure 𝑝𝑖𝑑(𝑇, 𝜈1,2), whereas the generalization of the
CS EoS of Ref. [37] to a multicomponent case looks
rather problematic, since the CS EoS [17] is the one-
component EoS by construction.

6. Conclusions

The self-consistent generalization of the IST EoS for
quantum gases is worked out. It is shown that, with
this EoS, one can go beyond the VdW approximation
at any temperature. The restrictions on the tempera-

ture dependence of the mean-field potentials are dis-
cussed. It is found that, at low temperatures, these
potentials either should be 𝑇 -independent or should
vanish faster than the first power of the temperature
providing the fulfillment of the Third Law of thermo-
dynamics. The same is true for the quantum VdW
EoS. Hence, the idea to improve the quantum VdW
EoS by tuning the interaction part of the pressure
[14, 15] is disproved for low temperatures 𝑇 : if this
part of the pressure is linear in 𝑇 , then the VdW EoS
breaks down the Third Law of thermodynamics; if
it vanishes faster than the first power of 𝑇 , then the
interaction part of the pressure is useless, since it van-
ishes faster than the first term of the quantum virial
expansion. An alternative EoS [37] allowing one to
abandon the VdW approximation for nuclear matter
is analyzed here, and it is shown that, for the same
parameters, the IST EoS is softer at low temperatures
at packing fractions 𝜂 ≥ 0.05.

The virial expansions for the quantum VdW and
IST EoS are established, and the explicit expressions
for all quantum virial coefficients, exact for VdW and
approximative ones for the IST EoS, are given. The-
refore, for the first time, the analytical expressions
for the third and fourth quantum virial coefficients
are derived for the EoS which is more realistic than
the VdW one. The source of softness of the IST EoS is
demonstrated, by using the effective virial expansion
for the effective proper volume which turns out to
be compressible. The generalization of the traditional
virial expansions for the mixtures of particles with
different hard-core radii is straightforward.

The general constraints on the realistic EoS for
nuclear and hadronic matter are discussed. We hope
for that, by using the revealed properties of the IST
EoS for quantum gases, it will be possible to go
far beyond the traditional VdW approximation, and,
due to its advantages, this EoS will become a use-
ful tool for heavy ion physics and for nuclear astro-
physics. Furthermore, we hope for that the developed
EoS will help us to determine the hard-core radii of
hadrons from the new high-quality ALICE data and
the ones which will be measured at RHIC, NICA, and
FAIR.
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APPENDIX

Here, we consider a special choice of the mean-field potentials
which are temperature-independent, i.e., 𝑈𝐴 = 𝑈𝐴(𝑛𝑖𝑑𝐴) and
show that, at low particle densities, the energy per particle of
such an EoS coincides with the one of the ideal gas. The analy-
sis is made for a single sort of particles, but it is evident that a
generalization to the multicomponent case is straightforward.

For the considered choice of the mean-field potentials,
Eq. (55) for the entropy per particle becomes

𝑠1

𝑛1
=

[︁
𝑠𝑖𝑑 1
𝑛𝑖𝑑 1

− 3𝑉0 𝑛2
𝑠𝑖𝑑 2
𝑛𝑖𝑑 2

]︁
[1− 3𝑉0 𝑛2]

≃
𝑠𝑖𝑑 1

𝑛𝑖𝑑 1
, (65)

where, in the first step, we applied the relation 𝑠𝑖𝑑𝐴 = 𝑠𝑖𝑑𝐴

with 𝐴 ∈ {1; 2} to Eq. (55), while, in the second step, we
used an approximation 𝑠𝑖𝑑 2

𝑛𝑖𝑑 2
≃ 𝑠𝑖𝑑 1

𝑛𝑖𝑑 1
. The latter result fol-

lows from condition (36). Then, in the low-density limit, i.e.,

for 𝑒
𝜈2−𝜈1

𝑇 ≃ 1, one gets relation (35) for the distribution
functions 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈2) and 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈1) which can be approx-
imated further on as 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈2) ≃ 𝜑𝑖𝑑(𝑘, 𝑇, 𝜈1). Therefore,
one finds 𝑝𝑖𝑑(𝑇, 𝜈2) ≃ 𝑝𝑖𝑑(𝑇, 𝜈1), 𝑛𝑖𝑑(𝑇, 𝜈2) ≃ 𝑛𝑖𝑑(𝑇, 𝜈1) and
𝑠𝑖𝑑(𝑇, 𝜈2) ≃ 𝑠𝑖𝑑(𝑇, 𝜈1).

The energy per particle for EoS (29) can be found from the
thermodynamic identity

𝜖1

𝑛1
= 𝑇

𝑠1

𝑛1
+ 𝜇−

𝑝(𝑇, 𝜇)

𝑛1
. (66)

Expressing the chemical potential 𝜇 via an effective one 𝜈1 from
Eq. (31), one can write 𝜇 = 𝜈1+𝑉0𝑝𝑖𝑑 1−𝑉0𝑃int 1+3𝑉0𝑝𝑖𝑑 2 −
− 3𝑉0𝑃int 2 − 𝑈1. Substituting this result into Eq. (66), one
finds
𝜖1

𝑛1
≃ 𝑇

𝑠𝑖𝑑 1

𝑛𝑖𝑑 1
+ 𝜈1 − 𝑈1 +

[︂
𝑉0 −

1

𝑛1

]︂
(𝑝𝑖𝑑 1 − 𝑃int 1)+

+3𝑉0(𝑝𝑖𝑑 2 − 𝑃int 2), (67)

where Eq. (65) was also used. Approximating the particle num-
ber density 𝑛1 in Eq. (42) as

𝑛1 ≃
𝑛𝑖𝑑 1

1 + 𝑉0 𝑛𝑖𝑑 1 + 3𝑉0 𝑛2
, (68)

and substituting it into Eq. (67), one obtains

𝜖1

𝑛1
≃

𝜖𝑖𝑑 1

𝑛𝑖𝑑 1
+ 3𝑉0𝑛2

[︂
𝑝𝑖𝑑 2

𝑛2
−

𝑝𝑖𝑑 1

𝑛𝑖𝑑 1

]︂
− 𝑈1 −

−
[︂
𝑉0 −

1

𝑛1

]︂
𝑃int 1 − 3𝑉0𝑃int 2, (69)

where we applied the thermodynamic identity (66) to the en-
ergy per particle for a gas of point-like particles with the chem-
ical potential 𝜈1. To simplify the evaluation, we assume for the
moment that all mean-field interaction terms obey the equality

(1− 𝑉0𝑛1)

𝑛1
𝑃int 1(𝑛𝑖𝑑 1)− 3𝑉0𝑃int 2(𝑛𝑖𝑑 2) = 𝑈1(𝑛𝑖𝑑 1). (70)

Using the first two terms of the virial expansion (8) in Eq. (69)
for the pressures 𝑝𝑖𝑑 1 and 𝑝𝑖𝑑 2 and Eq. (43) for 𝑛2, one finds
𝑝𝑖𝑑 2

𝑛2
−

𝑝𝑖𝑑 1

𝑛𝑖𝑑 1
≃ 𝑇

[︁
(1 + 𝑎

(0)
2 𝑛𝑖𝑑 2)(1 + 3𝛼𝑉0𝑛𝑖𝑑 2) −

− (1 + 𝑎
(0)
2 𝑛𝑖𝑑 1)

]︁
≃ 𝑇 (1 + 𝑎

(0)
2 𝑛𝑖𝑑 1)3𝛼𝑉0𝑛𝑖𝑑 1, (71)

where, in the last step of the derivation, we used the low-
density approximation 𝑛𝑖𝑑 2 ≃ 𝑛𝑖𝑑 1. Finally, under condition
(70), Eq. (69) acquires the form
𝜖1

𝑛1
≃

𝜖𝑖𝑑 1

𝑛𝑖𝑑 1
+ 9𝛼𝑉 2

0 𝑛2𝑛𝑖𝑑 1 𝑇 (1 + 𝑎
(0)
2 𝑛𝑖𝑑 1). (72)

Since the typical packing fractions 𝜂 = 𝑉0𝑛1 ≃ 𝑉0𝑛2 ≃ 𝑉0𝑛𝑖𝑑 1

of the hadron resonance gas model at the chemical freeze-out
do not exceed the value 0.05 [25], the second term on the right-
hand side of Eq. (72) is not larger than

0.025𝛼𝑇 (1 + 𝑎
(0)
2 𝑛𝑖𝑑 1). (73)

Comparing this estimate with the energy per particle for the
lightest hadrons, i.e., for pions, in the non-relativistic limit
𝜖𝑖𝑑 1
𝑛𝑖𝑑 1

⃒⃒
𝜋
≃ 𝑚𝜋 + 3

2
𝑇 (here, 𝑚𝜋 ≃ 140 MeV), one can be sure

that, for temperatures at which the hadron gas exists, i.e.,
for 𝑇 < 160 MeV, term (73) is negligible. Hence, one finds
𝜖1
𝑛1

≃ 𝜖𝑖𝑑 1
𝑛𝑖𝑑 1

with high accuracy.
Now, we discuss condition (70). It is apparent that, in the

general case, it can hold, if the mean-field interaction is absent,
i.e., 𝑈1 = 𝑈2 = 0 and 𝑃int 1 = 𝑃int 2 = 0. This is exactly the
case of the hadron resonance gas model. However, one might
think that there exists a special case for which Eq. (70) is the
simple differential equation for two independent variables 𝑛𝑖𝑑 1

and 𝑛𝑖𝑑 2. Let us show that this is impossible. First, with the
help of Eq. (42), we rewrite the term (1−𝑉0𝑛1)

𝑛1
= [𝑛𝑖𝑑 1(1−

− 3𝑉0𝑛2)]−1. Then Eq. (70) can be cast as

𝑃int 1(𝑛𝑖𝑑 1)/𝑛𝑖𝑑 1

(1− 3𝑉0𝑛2(𝑛𝑖𝑑 2))
− 3𝑉0𝑃int 2(𝑛𝑖𝑑 2) = 𝑈1(𝑛𝑖𝑑 1). (74)

From this equation, one sees that the only possibility to de-
couple the dependences on 𝑛𝑖𝑑 1 and 𝑛2 in the first term
above is to assume that 𝑃int 1 = 𝐶𝑛𝑖𝑑 1 where 𝐶 is some
constant. However, in this case, one finds that the 𝑛𝑖𝑑 1-
dependence of the right-hand side of Eq. (74) remains, since
𝑈1 = 𝐶 ln(𝑛𝑖𝑑 1). Therefore, there is a single possibility to de-
couple the functional dependence of 𝑛𝑖𝑑 1 from 𝑛2, namely,
𝐶 = 0 which means that 𝑃int 2 = 0.

One can, however, consider Eq. (74) under the low-density
approximation, by assuming that 𝑛𝑖𝑑 2 = 𝑛𝑖𝑑 1. In this case,
Eq. (74) defines the functional dependence of 𝑃int 2(𝑛𝑖𝑑 1) for
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any reasonable choice of the potential 𝑈1(𝑛𝑖𝑑 1). Note that, in
this case, the function 𝑃int 2(𝑛𝑖𝑑 1) can be rather complicated
even for the simplest choice of 𝑈1(𝑛𝑖𝑑 1). Hence, the practical
realization of dependence (74) seems to be problematic. There-
fore, the most direct way to avoid the problem to convert the
interacting particles into the free streaming ones [44, 45] is to
use only the hard-core repulsion between hadrons and set all
other interactions at the chemical freeze-out to zero.
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РIВНЯННЯ СТАНУ КВАНТОВИХ ГАЗIВ ПОЗА
РАМКАМИ НАБЛИЖЕННЯ ВАН-ДЕР-ВААЛЬСА

Р е з ю м е

Нещодавно запропоноване рiвняння стану з iндукованим
поверхневим натягом узагальнено на випадок квантових га-
зiв iз взаємодiєю середнього поля. Для такої моделi зна-
йдено умови самоузгодженостi i умови, необхiднi для ви-
конання Третього Початку термодинамiки. На вiдмiну вiд
традицiйних сподiвань показано, що внесення в тиск мо-
делi Ван-дер-Ваальса третього i бiльш високих вiрiальних
коефiцiєнтiв газу твердих сфер за низьких температур або
порушує Третiй Початок термодинамiки, або не дозволяє
вийти за рамки наближення Ван-дер-Ваальса. Продемон-
стровано, що узагальнене рiвняння стану з iндукованим по-
верхневим натягом дозволяє уникнути цих проблем i вийти
за рамки наближення Ван-дер-Ваальса. Крiм цього отрима-
но ефективне вiрiальне розкладання квантової версiї рiвня-
ння стану з iндукованим натягом i його вiрiальнi коефiцiєн-
ти знайдено точно. Явнi вирази для справжнiх квантових
вiрiальних коефiцiєнтiв будь-якого порядку цього рiвняння
стану подано в наближеннi низької густини. Обмiрковано
деякi базовi умови на такi моделi, якi необхiднi для опису
властивостей ядерної i адронної матерiй.
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