О.Г. ТРУБАЄВА,¹ М.А. ЧАЙКА,² О.В. ЗЕЛЕНСЬКА¹

¹ Інститут сцинтиляційних матеріалів НАН України

(Просп. Науки, 60, Харків; e-mail: trubaeva.olya@gmail.com)

(Ал. Льотніков, 32/46, Варшава, Польща)

ЗМІШАНІ КРИСТАЛИ ZnS_xSe_{1-x} ЯК МОЖЛИВІ МАТЕРІАЛИ ДЛЯ ДЕТЕКТОРІВ АЛЬФА ТА РЕНТГЕНІВСЬКОГО ВИПРОМІНЮВАННЯ

Вивчено можливість використання матеріалу ZnS_xSe_{1-x} як детектора для рентгенівського та альфа випромінювання. Досліджено вплив вмісту сірки на властивості об'ємних кристалів ZnS_xSe_{1-x} . Об'ємні кристали ZnS_xSe_{1-x} були вирощені методом Бриджмена-Стокбаргера. Отримано шість сполук з різним вмістом компонентів: $ZnS_{0,07}Se_{0,93}$, $ZnS_{0,15}Se_{0,85}$, $ZnS_{0,22}Se_{0,78}$, $ZnS_{0,28}Se_{0,72}$, $ZnS_{0,32}Se_{0,68}$, $ZnS_{0,39}Se_{0,61}$. Було виявлено, що інтенсивність спектрів рентгенолюмінесценції кристалів ZnS_xSe_{1-x} зростає зі збільшенням вмісту сірки і досягає максимуму для складу $ZnS_{0,22}Se_{0,78}$. Світловихід змішаних кристалів ZnS_xSe_{1-x} вище, ніж у комерційних кристалів ZnSe(Te)і ZnSe(Al). Показані переваги змішаних кристалів на основі ZnS_xSe_{1-x} в порівнянні з кристалами ZnSe(Te) і ZnSe(Al).

Kлючов
іcлова: сцинтилятор, змішані кристали, ${\rm ZnS}_x{\rm Se}_{1-x},$ альфа-детектор, рентгенолюмін
есценція.

1. Вступ

УДК 538.958

Твердотільні сцинтиляційні детектори, що містять сцинтиляційні кристали та кремнієві p-i-n фотодіоди, широко використовуються в радіометрах, дозиметрах, спектрометрах, в технологічному обладнанні для митного контролю, контролю безпеки, медичної діагностики, моніторингу навколишнього середовища та інших [1]. В даний час для реєстрації різноманітних типів випромінювання використовуються різні сцинтиляційні детектори. Для реєстрації рентгенівського та γ випромінювання широко застосовуються кристали ZnSe, ZnSe(Al), ZnSe(Te), для виявлення альфавипромінювання найпоширенішими сцинтиляторами є CsI(Tl), NaI(Tl), ZnS(Ag). Однак ці кристали

ZnSe мають низький світловий вихід, ZnSe(Al) – високий коефіцієнт термогасіння [2], в кристалах ZnSe(Te) – "повільна" до сотні мікросекунд, кінетика висвічування, сцинтилятори CsI(Tl), NaI(Tl) гігроскопічні, що вимагає додаткового захисту від вологи [3]. Недоліком кристалів на основі ZnS(Ag), є те, що вони погано пропускають фотони видимого світла, і можуть використовуватися тільки у вигляді тонких шарів [4].

Перспективним сцинтилятором для детекторів альфа та рентгенівського випромінювання є $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ [5–7]. Серед переваг цього матеріалу можна виділити негіроскопічність, прозорість до власної довжини хвилі, необмежену взаємну розчинність, внаслідок чого існує можливість створювати матеріал з будь-яким вмістом компонентів [8]. Також за рахунок збільшення ширини забороненої зони в $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ можна значно підняти температуру гасіння [9], що відіграє важливу роль при створенні детекторів.

² Інститут фізики ПАН

[©] О.Г. ТРУБАЄВА, М.А. ЧАЙКА, О.В. ЗЕЛЕНСЬКА, 2018

ISSN 0372-400X. Укр. фіз. журн. 2018. Т. 63, № 6

Puc. 1. Фотографія змішаних кристалів ${\rm ZnS}-x{\rm Se}_{1-x}$ після полірування

Багато публікацій присвячено змішаним кристалам $\operatorname{ZnS}_x\operatorname{Se}_{1-x}$ [9–12, 14–18], в більшості з них описані кристали, вирощені з парової фази, і лише кілька пов'язані з кристалами, отриманими методом вирощування з розплаву [8–10]. Направлені методи затвердіння дозволяють створювати досить великі змішані кристали $\operatorname{ZnS}_x\operatorname{Se}_{1-x}$, що важливо для використання в ролі детекторів частинок високої енергії. На даний момент властивості $\operatorname{ZnS}_x\operatorname{Se}_{1-x}$ кристалів як детекторів частинок високої енергії недостатньо вивчені, тим більше їх переваги порівняно з класичними сцинтиляторами ZnSe, ZnSe(Al) ZnSe(Te) ще не доведено.

У цій роботі досліджені сцинтиляційні і оптичні властивості об'ємних кристалів $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ з урахуванням можливого застосування їх в ролі рентгенівських і альфа детекторів. Особливу увагу було приділено порівнянню властивостей $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ і комерційних сцинтиляторів ZnSe, ZnSe(Al), ZnSe(Te).

2. Експериментальна частина

Було досліджено шість кристалів $\text{ZnS}_x\text{Se}_{1-x}$, різного складу, отриманих методом Бріджмена– Стокбаргера. Вирощування змішаних кристалів $\text{ZnS}_x\text{Se}_{1-x}$ проводили з шихти з вихідними значеннями x = 0.05; 0,1; 0,15; 0,2, 0,25 і 0,3. Перед вирощуванням шихту прожарювали для видалення кисневих домішок в атмосфері водню в кварцовому тиглі при 1220 К протягом 5 годин. Ріст здійснювали за методом Бріджмена–Стокбаргера в графітових тиглях діаметром 25 мм під тиском інертного газу (Аг, $P = 10^7 - 10^9$ Па), швидкість протягання тигля через зону кристалізації була 7 мм/год, температуру нагрівача встановлювали від 1870 до 2000 К, залежно від складу вихідної шихти.

Після вирощування змішані кристаз номінальним складом $ZnS_{0,05}Se_{0,95}$, ли $ZnS_{0,1}Se_{0,9}, ZnS_{0,15}Se_{0,85}, ZnS_{0,2}Se_{0,8}, ZnS_{0,25}Se_{0,75}$ та ZnS_{0.3}Se_{0.7} були розрізані перпендикулярно напрямку росту і відполіровані, отримані таблетки діаметром і товщиною 25 і 4 мм відповідно (див. рис. 1). Повністю досліджена одна таблетка кожного з шести кристалів $\operatorname{ZnS}_x \operatorname{Se}_{1-x}$. Властивості об'ємних кристалів ZnS_xSe_{1-x} порівнювали з кристалами ZnSe, ZnSe(Al) i ZnSe(Te), отриманих в аналогічних умовах і більш докладно описаних [15, 16]. Для визначення вмісту катіонних домішок, а також фактичного складу кристала був проведений хімічний аналіз, який показав шість складів для цих кристалів: ZnS_{0.07}Se_{0.93}, $ZnS_{0,15}Se_{0,85}$, $ZnS_{0,22}Se_{0,78}$, $ZnS_{0,28}Se_{0,72}$, ZnS_{0,32}Se_{0,68}, ZnS_{0,39}Se_{0,61}. Зразки відпалювали в парах цинку (T = 1223 K, $P_{\text{Zn}} = 5 \cdot 10^7$ Па, t = 48 год); який використовувався для остаточного утворення люмінесцентних центрів, а також для придушення безвипромінювальних релаксаційних каналів, збуджуваних носіями заряду [15, 16]. Після проведено шліфування та полірування зразків алмазним порошком. На рис. 1 зображена фотографія полірованих кристалів $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$.

Спектри рентгенолюмінесценції реєстрували із застосуванням спектрофотометрического комплексу КСВУ-23. Як джерело рентгенівського випромінювання використовувався рентгенівський апарат РЕІС-І (Сu, U = 10-45 кеВ). Вимірювання відносного світловиходу і післясвітіння виконувалися з використанням рентгенівської трубки з вольфрамовим анодом і кремнієвим фотодіодом PD-24 Smiths Heimann AMS-1 з наступною автоматичною математичною обробкою даних.

Вимірювання технічного світлового виходу, змішаних кристалів $\text{ZnS}_x\text{Se}_{1-x}$ спектрометричним методом проводилися з використанням джерел γ квантів, таких як ¹³⁷Cs ($E\gamma = 662$ кеВ), ²⁴¹Am ($E\gamma = 59,5$ кеВ) і джерелом альфа частинок ²³⁹Pu ($E\alpha = 5156$ кеВ) при робочій температурі 294 К. Як фотоприймач ми використовували фотопомно-

ISSN 0372-400X. Укр. фіз. журн. 2018. Т. 63, № 6

жувач (РМТ) типу R1307. ГОСТ 17038.2-79 використовувався в ролі стандартного [2].

3. Результати та їх обговорення

Змішані кристали $\text{ZnS}_x\text{Se}_{1-x}$ були отримані методом Бріджмена–Стокбаргера, таких складів: $\text{ZnS}_{0,07}\text{Se}_{0,93}$, $\text{ZnS}_{0,15}\text{Se}_{0,85}$, $\text{ZnS}_{0,22}\text{Se}_{0,78}$, $\text{ZnS}_{0,28}\text{Se}_{0,72}$, $\text{ZnS}_{0,32}\text{Se}_{0,68}$, $\text{ZnS}_{0,39}\text{Se}_{0,61}$. Для порівняння використовувалися кристали ZnSe(Te)і ZnSe(Al), отримані в аналогічних умовах.

Оптичні дослідження проводилися при кімнатній температурі для зразків $\text{ZnS}_x \text{Se}_{1-x}$ з різним вмістом компонентів. Спектри пропускання об'ємних кристалів $\text{ZnS}_x \text{Se}_{1-x}$ показані на рис. 2. Пропускання змішаних кристалів $\text{ZnS}_x \text{Se}_{1-x}$ знаходилося в діапазоні від 61% до 67% для $\text{ZnS}_{0,07} \text{Se}_{0,93}$ і $\text{ZnS}_{0,39} \text{Se}_{0,61}$ відповідно при $\lambda = 1100$ нм. Це вказує на високу оптичну якість кристалів.

Генерація світла в кристалах $\text{ZnS}_x\text{Se}_{1-x}$ при перетворенні енергії рентгенівських або γ -квантів відбувається на структурі дефектів. Ці дефекти можна ідентифікувати за допомогою рентгенолюмінесценції. Нормалізовані спектри рентгенолюмінесценції кристалів $\text{ZnS}_x\text{Se}_{1-x}$ з різним співвідношенням компонентів показані на рис. 3. У змішаних кристалах $\text{ZnS}_x\text{Se}_{1-x}$ спостерігається широка смуга з максимумом 584 до 591 нм (рис. 3). Збільшення концентрації сірки приводить до зсуву максимуму смуги люмінесценції в короткохвильову область, це пов'язано зі збільшення мицентрації сірки при збільшення концентрації сірки при збільшення концентрації сірки при збільшення концентрації сірки [13].

Положення смуги рентгенолюмінесценції кристалів ZnSe(Al), збігається з ZnS_xSe_{1-x} і відповідає світінню потрійного комплексу $V_{Zn}Zn_iO_{Se}$, отже, механізм радіаційних переходів цих кристалів ідентичний [18–20]. Нормалізована інтенсивність рентгенолюмінесценції зростає зі збільшенням концентрації сірки і досягає максимуму для складу ZnS_{0,22}Se_{0,78} за рахунок утворення в цих кристалах оптимальної кількості потрійних комплексів $V_{Zn}Zn_iO_{Se}$ (вставка на рис. 3). Подальше збільшення вмісту сірки призводить до зниження інтенсивності рентгенолюмінесценції, через збільшення дефектності в об'ємних кристалах ZnS_xSe_{1-x}.

Світловихід є однією з важливих характеристик сцинтилятора, яка визначає його якість як детектора. Для отримання більш точних результа-

ISSN 0372-400Х. Укр. фіз. журн. 2018. Т. 63, № 6

Рис. 2. Прозорість кристалів ZnS_xSe_{1-x}

Рис. 3. Нормалізовані спектри рентгенолюмінесценції для об'ємних кристалів $\text{ZnS}_x\text{Se}_{1-x}$ після відпалу в парах Zn зразків: $1 - \text{ZnS}_{0,07}\text{Se}_{0,93}$, $2 - \text{ZnS}_{0,15}\text{Se}_{0,85}$, $3 - \text{ZnS}_{0,22}\text{Se}_{0,78}$, $4 - \text{ZnS}_{0,28}\text{Se}_{0,72}$, $5 - \text{ZnS}_{0,32}\text{Se}_{0,68}$, $6 - \text{ZnS}_{0,39}\text{Se}_{0,61}$, $7 - \text{ZnS}_{2,10}$. На вставці показана залежність інтенсивності смуги люмінесценції від складу для об'ємних кристалів $\text{ZnS}_x\text{Se}_{1-x}$

тів світловихід змішаних кристалів був виміряний $\operatorname{ZnS}_x\operatorname{Se}_{1-x}$ двома методами: при збудженні рентгенівським випромінюванням і спектрометричним методом. Світловий вихід об'ємних кристалів $\operatorname{ZnS}_x\operatorname{Se}_{1-x}$, при збудженні рентгенівським випромінюванням, знаходився на рівні $\operatorname{ZnSe}(\operatorname{Te})$ і вище. Світловихід зразка $\operatorname{ZnS}_{0,22}\operatorname{Se}_{0,78}$ був в 1,6 раза вище, ніж світловий вихід еталонного кристала $\operatorname{ZnSe}(\operatorname{Te})$ (див. табл. 1).

Післясвітіння визначає не тільки інерційність сцинтилятора, а і динамічний діапазон записа-

Рис. 4. Амплітудні спектри кристалів: $1 - \text{ZnS}_{0,15}\text{Se}_{0,85}$, $2 - \text{ZnS}_{0,22}\text{Se}_{0,78}$, $3 - \text{ZnS}_{0,39}\text{Se}_{0,61}$ і 4 - ZnSe(Al) для γ -променів, отриманих з використанням: $a - {}^{137}\text{Cs}$ і $b - {}^{241}\text{Am}$ джерел

Tаблиця 1. Дані для вимірювання світлового виходу змішаних кристалів ZnS_xSe_{1-x} при збудженні рентгенівським випромінюванням

№ Зразка	Відносний світловихід, %	Післясвітіння, %		
		5 мс	15 мс	25 мс
$ZnS_{0,07}Se_{0,93}$	98	0,24	< 0,02	< 0,02
$ZnS_{0,15}Se_{0,85}$	84	0,15	< 0,02	< 0,02
$ZnS_{0,22}Se_{0,78}$	159	0,40	< 0,02	< 0,02
$ZnS_{0,28}Se_{0,72}$	122	0,54	< 0,02	< 0,02
$ZnS_{0,32}Se_{0,68}$	103	0,37	< 0,02	< 0,02
$ZnS_{0,39}Se_{0,61}$	136	$0,\!46$	0,07	< 0,02
ZnSe(Te)	100	0,30	$0,\!17$	< 0,02
ZnSe(Al)	95	$0,\!40$	< 0,02	< 0,02
ZnS	75	58,04	39,74	31,77

Рис. 5. Амплітудні спектри кристалів: $1 - \text{ZnS}_{0,22}\text{Se}_{0,78}$, 2 - ZnSe(Te) і 3 - ZnSe(Al) для α -променів, отриманих з використанням ²³⁹Pu джерела (b – енергетичний спектр)

них сигналів. Післясвітіння змішаних кристалів $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ становило близько 0.02% через 15 мс, за винятком зразка $\operatorname{ZnS}_{0,39}\operatorname{Se}_{0,61}$, і було досить коротким у порівнянні з відомими люмінесцентними матеріалами, такими як ZnS, CsI(Tl), Lu₂SiO₅ : Ce [21–23] (див. табл. 1).

Вимірювання світловиходу для полірованих, відпалених у цинку кристалів ZnSe(Al) і $\text{ZnS}_x\text{Se}_{1-x}$ проводилося спектрометричним методом, з джерелами ²⁴¹ Am і ¹³⁷Cs. У кристалах $\text{ZnS}_{0,22}\text{Se}_{0,78}$ після збудження ¹³⁷Cs та ²⁴¹ Am спостерігається задовільне розділення (рис. 4, *a*, *b*), що підтверджує високу ефективність реєстрації даними сцинтиляторами низькоенергетичних квантів.

548

Табли	ця 2. Да	ні по вим	ірюванню	
світло	виходу	змішаних	к кристалів	$\mathbf{ZnS}_{x}\mathbf{Se}_{1-x}$
в спе	ктромет	ричному	режимі	

Сцинтилятор	137 Cs – $E_g = 662$ кеВ		$^{241}\text{Am} - E_g = 59,5$ кеВ	
	$V_{\rm max},$ кеВ	$I_1/I_2, \%$	$V_{\rm max},$ кеВ	$I_1/I_2, \%$
$\begin{array}{l} {\rm ZnSe(Al)} \\ {\rm ZnS}_{0,15}{\rm Se}_{0,85} \\ {\rm ZnS}_{0,22}{\rm Se}_{0,78} \\ {\rm ZnS}_{0,39}{\rm Se}_{0,61} \end{array}$	649 443 756 606	100.0 68,3 116,6 93,4	$47 \\ 33 \\ 61 \\ 46$	100,0 70,7 129,9 98,8

Світловихід зразків $ZnS_{0,22}Se_{0,78}$ становив 116,6% при вимірах з ¹³⁷Cs та 130% при вимірах з ²⁴¹Am відносно ZnSe(Al) (табл. 2). Для змішаних кристалів $ZnS_{0,15}Se_{0,85}$ і $ZnS_{0,39}Se_{0,61}$ (табл. 2) спостерігається погіршення спектрометричних параметрів щодо зразка $ZnS_{0,22}Se_{0,78}$, аналогічно даним по вимірюванню світловиходу цих зразків при збудженні рентгеном (див. табл. 1).

Для проведення досліджень властивостей ZnS_xSe_{1-x} кристалів у ролі альфа детекторів, з кристала $ZnS_{0,22}Se_{0,78}$ відпаленого в Zn було вирізано зразок $10 \times 10 \times 2$ мм. Для порівняння використовувалися відпалені в Zn кристали ZnSe(Al) і ZnSe(Te) тих самих розмірів. Дослідження світловиходу тонких зразків кристалів ZnSe(Al), ZnSe(Te) і ZnS_xSe_{1-x} проводилося спектрометричним методом, з джерелом альфа частинок ²³⁹Pu.

Енергетичне положення піків (рис. 5, *a*) свідчить про більший світловихід змішаних кристалів $\text{ZnS}_{0,22}\text{Se}_{0,78}$ щодо кристала ZnSe(Al) і ZnSe(Te). Для кристалів $\text{ZnS}_{0,22}\text{Se}_{0,78}$ спостерігається також задовільне розділення (рис. 5, *b*) для енергії 5156 кеВ, що підтверджує високу ефективність реєстрації даними сцинтиляторами альфа частинок.

4. Висновки

Об'ємні кристали $\text{ZnS}_x \text{Se}_{1-x}$ були вирощені методом Бріджмена–Стокбаргера в діапазоні від x == 0,07-0,39. Вирощені кристали мали хорошу прозорість, коефіцієнт пропускання на довжині хвилі $\lambda = 1100$ нм вище 61%. Показано, що сцинтиляційні властивості кристалів $\text{ZnS}_x \text{Se}_{1-x}$ залежать від вмісту сірки, залежність інтенсивності рентгенолюмінесценції від концентрації сірки немонотонна і досягає максимуму для складу $\text{ZnS}_{0,22} \text{Se}_{0,78}$.

ISSN 0372-400Х. Укр. фіз. журн. 2018. Т. 63, № 6

Ці дослідження показали, що об'ємні кристали $\operatorname{ZnS}_x\operatorname{Se}_{1-x}$ можна використовувати в ролі високоефективних рентгенівських і гамма детекторів. Перші дослідження показали перспективність використання змішаних кристалів у ролі альфадетекторів, кристали $\operatorname{ZnS}_{0,22}\operatorname{Se}_{0,78}$ мали кращий світловихід і енергетичне розділення при вимірах з ²³⁹Pu.

Колектив авторів висловлює подяку канд. техн. наук, ст. наук. співр. Галкіну Сергію Миколайовичу за допомогу в обговоренні результатів.

- L.V. Atroshenko, L.P. Galchinetskii, S.N. Galkin *et al.* Distribution of tellurium in melt-grown ZnSe(Te) crystals. *J. Cryst. Growth* **197**, 471 (1999).
- N.G. Starzhinskiy, B.V. Grinyov, L.P. Galchinetskii et al. The Scintillators Based Compounds AIIBVI. Preparation, Properties and Features of the Application (Institute for Single Crystal, 2007).
- A. Wagner, W.P. Tan, K. Chalut *et al.* Energy resolution and energy–light response of CsI(Tl) scintillators for charged particle detection. *J. Cryst. Growth* **456** (3), 290 (2001).
- 4. S. Usuda. Development of ZnS (Ag)/NE102A and ZnS (Ag)/Stilbene phoswich detectors for simultaneous α and $\beta(\gamma)$ counting. J. Nucl. Sci. Tech. **29** (9), 927 (1992).
- T. Homann, U. Hotje, M. Binnewies *et al.* Compositiondependent band gap in ZnS_xSe_{1-x}: A combined experimental and theoretical study. *Solid State Sci.* 81, 44 (2006).
- A.I. Focsha, P.A. Gashin, V.D. Ryzhikov *et al.* Preparation and properties of an integrated system "photosensitive heterostructure-semiconductor scintillator" on the basis of compounds AIIBVI. *Intern. J. Inorg. Mat.* 38, 1223 (2001).
- 7. M. Emam-Ismail, M. El-Hagary, E. Ramadan *et al.* Influence of γ -irradiation on optical parameters of electron beam evaporated $\text{ZnSe}_{1-x}\text{Te}_x$ nanocrystalline thin films. *Radiat Eff. Defects Solids* **169** (1), 61 (2014).
- R.H. Hussein, O. Pags, S. Doyen-Schuler *et al.* Percolationtype multi-phonon pattern of Zn(Se, S): Backward/forward Raman scattering and ab initio calculations. *J. Cryst. Growth* 644, 704 (2015).
- R. Hajj Hussein, O. Pags, F. Firszt *et al.* Near-forward Raman study of a phonon-polariton reinforcement regime in the Zn(Se, S) alloy. *J. Appl. Phys.* **116** (8), 083511 (2014).
- R.H. Hussein, O. Pags, A. Polian *et al.* Pressure-induced phonon freezing in the ZnSeS II—VI mixed crystal: phonon–polaritons and ab initio calculations. *J. Phys.: Cond. Matt.* 28 (20), 205401 (2016).
- 11. K. Mochizuki, M. Takakusaki. Growth of in-doped $\text{ZnS}_x\text{Se}_{1-x}$ single crystals and their photoluminescence. *Phys. Status Solidi A* **94** (1), 243 (1986).

- M.E. Ozsan, J. Woods. Green electroluminescence in crystals of ZnS_{0.6}Se_{0.4}. J. Appl. Phys. Let. 25, 489 (1974).
- S. Larach, R.E. Shrader, C.F. Stocker. Anomalous variation of band gap with composition in zinc sulfo-and selenotellurides. *Phys. Rev.* 108 (3), 587 (1957).
- 14. S. Fujita. Growth of cubic ZnS, ZnSe and $\text{ZnS}_x\text{Se}_{1-x}$ single crystals by iodine transport. J. Cryst. Growth. **33** (10), 324 (1976).
- N.B. Su Ching-Hua, A. Bradley, C. Fow-Sen. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals. *Opt. Mat.* **60**, 474 (2016).
- 16. E.L. Trukhanova, V.I. Levchenko, L.I. Postnova. Crystal growth of $\text{ZnSe}_{1-x}\text{S}_x$ solid solutions at the lowest possible vapor pressure. J. Appl. Phys. **40** (1), 083511 (2014).
- A. Catano, Z.K. Kun. Growth and characterization of ZnSe and homogeneous ZnS_xSe_{1-x} crystals. J. Cryst. Growth 47 (9), 647 (1979).
- 18. Y. Shirakawa, H. Kukimoto. The electron trap associated with an anion vacancy in ZnSe and $\text{ZnS}_x\text{Se}_{1-x}$. Solid State Com. **34**, 359 (1980).
- G.D. Watkins. Radiation Effects in Semiconductors (Gordon and Breach, 1971).
- V.D. Ryzhikov, N.G. Starzhinskiy, L.P. Gal'chinetskii *et al.* The role of oxygen in formation of radiative recombination centers in ZnSe_{1-x}Te_x crystals. *Intern. J. .Inorg. Mat.* **116** (8), 083511 (2014).
- N.N. Berchenko, V.E. Krevs, V.G. Sredin. Semiconductor Solid Solutions and Their Application (Voenizdat, 1982) (in Russian).

- 22. A.M. Gurvich. Introduction to Physical Chemistry of Crystal Phosphors (Vysshaya Shkola, 1982) (in Russian).
- U. Kilgus, R. Kotthaus, E. Lange. Prospects of CsI (Tl)-photodiode detectors for low-level spectroscopy. Nucl. Instrum. and Meth. Phys. Res. 297 (3), 425 (1990).

Одержано 25.01.18

O.G. Trubaieva, M.A. Chaika, O.V. Zelenskaya

MIXED ZnS_xSe_{1-x} CRYSTALS AS A POSSIBLE MATERIAL FOR ALPHA-PARTICLE AND X-RAY DETECTORS

Summary

A possibility to use $\text{ZnS}_x\text{Se}_{1-x}$ as a material for the detection of X-rays and alpha particles has been studied. The influence of the sulfur content on the properties of bulk $\text{ZnS}_x\text{Se}_{1-x}$ crystals is analyzed. Six specimens with different component contents were grown, by using the Bridgman–Stockbarger method: $\text{ZnS}_{0.07}\text{Se}_{0.93}$, $\text{ZnS}_{0.15}\text{Se}_{0.85}$, $\text{ZnS}_{0.22}\text{Se}_{0.78}$, $\text{ZnS}_{0.28}\text{Se}_{0.72}$, $\text{ZnS}_{0.32}\text{Se}_{0.68}$, and $\text{ZnS}_{0.39}\text{Se}_{0.61}$. The intensity of X-ray luminescence spectra of $\text{ZnS}_x\text{Se}_{1-x}$ crystals is found to increase with the sulfur content and reaches a maximum for the composition $\text{ZnS}_{0.22}\text{Se}_{0.78}$. The luminescence light yield of mixed $\text{ZnS}_x\text{Se}_{1-x}$ crystals is higher than that of commercial ZnSe(Te)and ZnSe(Al) crystals. The advantages of mixed crystals based on $\text{ZnS}_x\text{Se}_{1-x}$ over the ZnS(Te) and ZnSe(Al) crystals have been discussed.