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MAGNETOGENESIS IN NATURAL INFLATION MODELUDC 524.85

We study the process of inflationary magnetogenesis in the natural single-field inflation model,
whose parameters are chosen in accordance with the recent observations by the Planck collabo-
ration [1]. The conformal invariance of the Maxwell action is broken by a kinetic coupling with
the inflaton field by means of the coupling function as a power of the scale factor, 𝐼(𝜑) ∝ 𝑎𝛼,
and 𝛼 < 0 is used in order to avoid the strong coupling problem. For such 𝛼, the electric com-
ponent of the energy density dominates over the magnetic one and, for 𝛼 . −2.2, it causes a
strong back-reaction, which can spoil inflation and terminate the enhancement of the magnetic
field. It is found that the magnetic fields generated without back-reaction problem cannot exceed
∼10−20 𝐺 at the present epoch, and their spectrum has a blue tilt.
K e yw o r d s: natural inflation, magnetogenesis, kinetic coupling, large-scale magnetic fields.

1. Introduction
Magnetic fields are present on various scales in the
Universe including stars, galaxies, and clusters of
galaxies. There is also some evidence that they ex-
ist in galaxies at cosmological distances. The typi-
cal magnetic field strengths range from a few 𝜇G in
galaxies and galaxy clusters up to 1015 G in magne-
tars (see, e.g., Refs. [2–8]. Observations of the cosmic
microwave background (CMB) [9,10] and the gamma
rays from distant blazars [11–14] yield the follow-
ing upper and lower bounds on the strength of the
present large-scale magnetic fields: 10−17 . 𝐵0 .
. 10−9 G. The remarkable feature of the magnetic
fields observed in voids is the fact that they have a
very large coherence scale. Therefore, in order to un-
derstand the origin of these fields, one needs to be
able to explain how they could be generated in the
vacuum and could have such a large coherence scale.

There are generally two groups of theories trying
to explain the origin of these magnetic fields (see
Refs. [3, 6–8]). One possibility is that the magnetic
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fields were generated during the process of structure
formation due to astrophysical mechanisms such as
Biermann battery [15] and then amplified by means of
different types of dynamo [16–19] and spread into the
intergalactic medium by outflows from galaxies [20–
23]. Another possibility is that the observed magnetic
fields have primordial origin and were produced in the
early Universe [24–28]. Although cosmological phase
transitions could produce primordial magnetic fields
of the necessary strength [26–31], the comoving coher-
ence length of such magnetic fields cannot be larger
than the Hubble horizon at the phase transition that
leads to the coherence scale much smaller than Mpc
today. Consequently, the most natural mechanism for
the generation of the large-coherence-scale magnetic
fields is the inflation [24], which is a period of rapid
expansion in the early Universe.

It is well known that quantum fluctuations of mass-
less scalar and tensor fields are very strongly ampli-
fied in the inflationary stage and create considerable
density inhomogeneities evolving later into the large-
scale structure of the observed Universe [32–36] or
relic gravitational waves [37–39]. However, the large
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scale fluctuations of electromagnetic fields usually are
not generated, because the Maxwell action is con-
formally invariant [40]. If the conformal invariance is
broken, then the magnetic fields would be generated
from quantum perturbations and may become very
large due to the expansion of the Universe. Obviously,
this could explain the presence of magnetic fields with
large coherence scale.

One can break the conformal invariance of the
electromagnetic sector in various ways, e.g., by the
coupling of the electromagnetic field to a scalar or
pseudo-scalar field or to the curvature invariant. Al-
though many models are described in the literature
[25, 41–44], we adopt, in our study, the kinetic cou-
pling model 𝐼2(𝜑)𝐹𝜇𝜈𝐹

𝜇𝜈 firstly introduced by Ratra
[25], where 𝐼(𝜑) is a coupling function of the inflation
field 𝜑, and 𝐹𝜇𝜈 is the electromagnetic field tensor
(see [45–52] for later works).

There is a great variety of inflationary models with
different numbers of free parameters (for a review, see
Ref. [53]). Their suitability can be judged by the spec-
tral index of scalar primordial perturbations 𝑛𝑠 and
the tensor-to-scalar ratio 𝑟 in the corresponding mod-
els and could be measured from the cosmic microwave
background observations. According to the most re-
cent data by the Planck Collaboration [1], only a few
inflationary models are in a satisfactory accordance
with the observations. For example, the most popu-
lar chaotic inflationary models like the large field in-
flation with power-like potentials are disfavored due
to their high tensor-to-scalar ratio. Among the favor-
able ones are the 𝑅2 Starobinsky model, the quar-
tic hill-top model, and the natural inflation model
with periodic inflaton potential. An advantage of the
natural inflation model is that its potential is pro-
tected from radiative corrections by a nonperturba-
tive shift symmetry preserving the slow-roll dynamics
[54, 55]. In this paper, we will investigate the magne-
togenesis process in the natural inflation model. Mag-
netogenesis in the Starobinsky model was studied in
Ref. [52].

This paper is organized as follows. We determine
the numerical values of the model parameters and
find a solution of the background equations in the
natural inflation model in Sec. 2. In Sec. 3, we con-
sider the kinetic coupling of the inflaton field 𝜑 to
the electromagnetic field, calculate the power spectra
of generated electric and magnetic fields, determine
the range of parameters, for which the back-reaction

problem does not occur, and estimate the value of
generated magnetic fields at the present epoch. The
summary of the obtained results is given in Sec. 4.

2. Natural Inflation

Natural inflation was proposed in Refs. [54, 55] in or-
der to resolve the problem of radiative corrections
to the inflaton potential. A successful realization of
the slow-roll regime requires the inflaton potential
to be sufficiently flat. The radiative corrections can
break this flatness and spoil the inflation, unless the
potential is protected by some symmetry. The natu-
ral inflation model contains a complex scalar field Φ
with a “Mexican hat” potential and obeys the global
𝑈(1) symmetry. On some energy scale 𝑓, this sym-
metry is spontaneously broken. Then the “absolute
value” |Φ| obtains the finite vacuum expectation value
𝑓/

√
2, and the ‘phase’ degree of freedom becomes a

Nambu–Goldstone boson, which plays the role of the
inflaton. Since it comes from an angular variable, it
acquires the discrete shift symmetry 𝜑 → 𝜑 + 2𝜋𝑓,
and its effective potential, which arises from the in-
teraction with other fields, must be periodic with a
period 2𝜋𝑓 . The simplest choice is the well-known co-
sine potential

𝑉 (𝜑) = Λ4

[︂
1− cos

(︂
𝜑

𝑓

)︂]︂
, (1)

where 𝑓 and Λ are parameters of the model. As we
will see, the recent observations of CMB require the
super-Planckian values of the decay constant 𝑓 . In
principle, the energy scale of the symmetry breaking
could be well below the Planck scale, if there are sev-
eral identical fields with the same potential, and they
will effectively reproduce the picture with a super-
Planckian decay constant [56]. However, the presence
of many identical fields seems too artificial. There-
fore, we will restrict our analysis to the single-field
case and will consider 𝑓 as a free parameter.

The Lagrangian of the inflaton field interacting
with the electromagnetic field reads

𝑆 =

∫︁
𝑑4𝑥

√
−𝑔

[︂
1

2
𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 𝑉 (𝜑)

]︂
−

− 1

4

∫︁
𝑑4𝑥

√
−𝑔
[︀
𝑔𝜇𝛼𝑔𝜈𝛽𝐼2 (𝜑)𝐹𝛼𝛽𝐹𝜇𝜈

]︀
. (2)

The equation of motion for the inflaton is given by
1√
−𝑔

𝜕𝜇

[︀√
−𝑔𝑔𝜇𝜈𝜕𝜈𝜑

]︀
+

𝑑𝑉

𝑑𝜑
= −𝐼

2

𝑑𝐼

𝑑𝜑
𝐹𝜇𝜈𝐹𝜇𝜈 . (3)
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In our study, we will neglect the back-reaction
of the generated electromagnetic fields on the back-
ground evolution and will discuss the applicability of
this approximation in the next section. Technically,
we omit the right-hand side of Eq. (3) and neglect
the electromagnetic energy density on the right-hand
side of the Friedmann equation.

We will use the spatially flat Friedmann–Lemâıtre–
Robertson–Walker metric in terms of the cosmic time
with 𝑔00 = +1. The inflationary evolution is governed
by the following system of equations:

𝐻2 =
1

3𝑀2
𝑝

[︃
�̇�2

2
+ 𝑉 (𝜑)

]︃
, (4)

𝜑+ 3𝐻�̇�+ 𝑉 ′
𝜑 = 0, (5)

where 𝑀𝑝 = (8𝜋𝐺)−1/2 = 2.4 × 1018 GeV is the re-
duced Planck mass. In order to analyze the genera-
tion of electromagnetic fields, we need to determine
the time dependences of the inflaton and scale fac-
tor. However, before numerically integrating Eqs. (4)
and (5), it is useful to carry out the slow-roll analysis.

In the slow-roll approximation, the evolutionary
equations can be simplified:

𝐻2 ≃ 1

3𝑀2
𝑝

𝑉 (𝜑) ,
𝑑𝜑

𝑑𝑡
≃ − 1

3𝐻

𝑑𝑉

𝑑𝜑
. (6)

The applicability of these equations is determined by
the smallness of the slow-roll parameters, which are
defined as usual: [57]

𝜖 =
𝑀2

𝑝

2

(︂
𝑉 ′
𝜑

𝑉

)︂2
, (7)

𝜂 = 𝑀2
𝑝

𝑉 ′′
𝜑

𝑉
. (8)

Using the explicit expression for the inflaton poten-
tial, we obtain

𝜖 =
𝑀2

𝑝

2𝑓2
ctg2

𝜑

2𝑓
, 𝜂 = 𝜖−

𝑀2
𝑝

2𝑓2
. (9)

For 𝜖 ≪ 1 and 𝜂 ≪ 1, Eqs. (6) approximately de-
termine the scale factor 𝑎 and inflation field 𝜑 as func-
tions of time. For the scale factor, we have

𝑎 (𝜑) =
cos𝛽

(︁
𝜑
2𝑓

)︁
cos𝛽

(︁
𝜑𝑖

2𝑓

)︁ , (10)

where 𝛽 = 2𝑓2/𝑀2
𝑝 . The time evolution of the infla-

ton field 𝜑 is determined by the following equation:

sec

(︂
𝜑

2𝑓

)︂
+tan

(︂
𝜑

2𝑓

)︂
=

[︂
sec

(︂
𝜑𝑖

2𝑓

)︂
+tan

(︂
𝜑𝑖

2𝑓

)︂]︂
×

× exp

(︃
−
√︂

2

3

Λ2

2𝑓2
𝑀𝑝𝑡

)︃
. (11)

The inflation ends, when 𝜖 = 1. Using Eq. (9), we
find
1

𝛽
ctg2

𝜑𝑒

2𝑓
= 1, (12)

that gives the value of the inflaton field at the end of
the inflation

𝜑𝑒 = 𝑓 arccos

(︂
𝛽 − 1

𝛽 + 1

)︂
= 2𝑓 arcctg

√︀
𝛽. (13)

It is useful to find out how 𝜑 depends on the number
of e-folds 𝑁 = ln(𝑎𝑒/𝑎) during the inflation. Using
Eq. (10), we have

𝑁 = 𝛽 ln
cos(𝜑𝑒/2𝑓)

cos(𝜑/2𝑓)
. (14)

Combining Eqs. (13) and (14), we obtain

𝜑(𝑁) = 2𝑓 arccos

(︃
𝑒−𝑁/𝛽

√︃
𝛽

𝛽 + 1

)︃
. (15)

The quasiexponential expansion of the Universe
during the inflation stage leads to the amplification
of primordial scalar and tensor perturbations. Their
amplitudes and the corresponding spectral indices are
determined by the model parameters. In particular,
the spectral index of scalar perturbations and the
tensor-to-scalar ratio can be expressed in terms of
the slow-roll parameters as follows [53, 58]:

𝑛𝑠 = 1− 6𝜖* + 2𝜂*, (16)

𝑟 = 16𝜖*, (17)

where the quantities with asterisk should be taken at
𝑁* e-folds before the inflation end, when the pivot
scale 𝑘* crosses the horizon. Using Eqs. (9) and (15),
we find

𝑛𝑠 = 1− 2

𝛽
− 4

𝛽

[︂
𝑒2𝑁*/𝛽

(︂
1 +

1

𝛽

)︂
− 1

]︂−1

, (18)

𝑟 =
16

𝛽

[︂
𝑒2𝑁*/𝛽

(︂
1 +

1

𝛽

)︂
− 1

]︂−1

, (19)
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Fig. 1. Theoretical prediction for 𝑛𝑠 and 𝑟 from the natural
inflation model (region between two growing curves) for 50 <

< 𝑁* < 60 and 0 < 𝑓/𝑀𝑝 < +∞ and marginalized joint 68%
CL and 95% CL regions for 𝑛𝑠 and 𝑟 at 𝑘* = 0.002Mpc−1

from the latest Planck observations [1]
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Fig. 2. The parameter Λ (panel a) and the Hubble parameter
at the moment of the pivot scale horizon crossing 𝐻* (panel b)
as functions of 𝑓 for fixed 𝑁* = 50 (solid lines) and 𝑁* = 60

(dashed lines) obtained from Eqs. (21) and (22)

For given 𝑁* and 𝑓, these equations parametri-
cally determine a point on the (𝑛𝑠, 𝑟) diagram,
which is often used to constrain inflationary mod-
els. Figure 1 shows such a diagram for the natural in-
flation model. The region between two growing curves
is filled with points which can be achieved by a vari-
ation of the model parameters: 50 < 𝑁* < 60 and
0 < 𝑓/𝑀𝑝 < +∞. Thick lines correspond to fixed
values of the parameter 𝑓, which are written near the
corresponding lines. Smaller and larger points corre-
spond, respectively, to 𝑁* = 50 and 𝑁* = 60. The
lines connecting them correspond to intermediate val-
ues. For comparison, we also show the marginalized
joint 68% confidence level (CL) and 95% CL regions
for 𝑛𝑠 and 𝑟 at 𝑘* = 0.002Mpc−1 from the latest
Planck observations [1].

According to Fig. 1, the most favorable value cor-
responds to 𝑓 ∼ 7𝑀𝑝. More precisely, the analy-
sis carried out in Ref. [1] gives at 95% CL that
log10(𝑓/𝑀𝑝) > 0.84, i.e., 𝑓/𝑀𝑝 & 6.91.

The value of Λ in Eq. (1) can be fixed by the re-
quirement that the amplitude of primordial scalar
perturbations at 𝑁* e-folds before the inflation end
equals [1]

𝒫ℛ =

(︂
𝐻2

2𝜋|�̇�|

)︂2 ⃒⃒⃒⃒
⃒
𝑁*

= 2.2× 10−9. (20)

Using Eqs. (6), we find(︂
Λ

𝑀𝑝

)︂2
=

√︂
2

3

2𝜋
√
𝒫ℛ

𝑓/𝑀𝑝

cos(𝜑/2𝑓)

sin2(𝜑/2𝑓)

⃒⃒⃒⃒
𝑁*

. (21)

Similarly, we calculate the Hubble parameter at the
time moment of the pivot mode horizon crossing:

𝐻*

𝑀𝑝
=

2𝜋
√
𝒫ℛ

𝑓/𝑀𝑝
ctg

𝜑*

2𝑓
. (22)

The scalar field value at 𝑁* e-folds before the end of
the inflation is given by Eq. (15). Then, for given 𝑁*
and 𝑓, we can determine the values of Λ and 𝐻*. The
corresponding dependences are shown in Fig. 2.

Without the loss of generality, we can choose the
initial moment of time at 𝑁𝑡𝑜𝑡 = 𝑁* e-folds before
the end of the inflation, when the physically relevant
modes start to cross the horizon. Therefore, we have
𝜑𝑖 = 𝜑(𝑁*). For example, for 𝑁* = 60, 𝑓 = 7.5𝑀𝑝,
we obtain 𝜑𝑖 = 14.2𝑀𝑝 and Λ = 6.5 × 10−3 𝑀𝑝 =
= 1.56× 1016 GeV. Using these initial conditions, we
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find numerically the solutions of Eqs. (4), (5) and use
them to determine the power spectra of generated
electromagnetic fields in the next section.

3. Magnetic Field Generation

In this section, we consider the time evolution of
the electromagnetic field in the expanding inflation-
ary background described in Sec. 2. We determine
the range of parameters, for which the back-reaction
problem can be avoided, and estimate the present
value of the observed large-scale magnetic field.

3.1. Basic equations

Maxwell’s equations following from action (2) take
the form

𝜕𝜇

[︀√
−𝑔𝑔𝜇𝛼𝑔𝜈𝛽𝐼2 (𝜑)𝐹𝛼𝛽

]︀
= 0. (23)

In the Coulomb gauge 𝐴0 = 0, 𝜕𝑖𝐴𝑖 = 0, they yield
the following equation for the vector potential:

𝐴𝑗 + �̇�𝑗

(︃
𝐻 + 2

𝐼

𝐼

)︃
− 𝜕𝑖𝜕

𝑖𝐴𝑗 = 0. (24)

Since the equation of motion (24) is linear, the
quantum field 𝐴𝑗 can be decomposed into the sum
over the creation �̂�†k,𝜆 and annihilation �̂�k,𝜆 operators
for modes with momentum k and transverse polar-
ization 𝜆

𝐴𝑗(x, 𝑡) =

∫︁
𝑑3k

(2𝜋)3/2
×

×
2∑︁

𝜆=1

𝜀𝑗(𝜆,k, 𝑡)�̂�k,𝜆𝐴𝜆(k, 𝑡)𝑒
𝑖k·x + h.c., (25)

where 𝐴𝜆(k, 𝑡) is a mode function, and 𝜀𝑗(𝜆,k, 𝑡)
is a polarization vector that is also time-dependent,
because it satisfies the normalization condition in
the expanding Universe 𝜀𝜇(𝜆,k, 𝑡)𝜀𝜈(𝜆,k, 𝑡)𝑔

𝜇𝜈 = −1
[47]. It is convenient to use a rescaled mode func-
tion 𝒜 (𝑡, 𝑘) = 𝑎 (𝑡) 𝐼 (𝑡)𝐴 (𝑡, 𝑘). Since the coupling
between the electromagnetic field and the inflaton
is insensitive to the polarization, we will omit the
polarization index in the mode function in what
follows. Then, substituting decomposition (25) into
Eq. (24), we obtain the following equation governing
the evolution of the mode function:

𝒜 (𝑡, 𝑘)+𝐻�̇� (𝑡, 𝑘)+

(︃
𝑘2

𝑎2
−𝐻

𝐼

𝐼
− 𝐼

𝐼

)︃
𝒜 (𝑡, 𝑘)=0. (26)

For modes, which are far inside the horizon, the first
term in the brackets gives the leading contribution.
Thus, the behavior of the mode function could be
described by the Bunch–Davies vacuum initial condi-
tion
𝒜(k, 𝑡) =

1√
2𝑘

𝑒−𝑖𝑘𝜏(𝑡), −𝑘𝜏 → ∞, (27)

where 𝜏(𝑡) =
∫︀ 𝑡 𝑑𝑡′

𝑎(𝑡′) is the conformal time.
For an analytical treatment, the simplest case cor-

responds to the coupling function with power depen-
dence on the scale factor

𝐼∞𝑎𝛼, (28)

where 𝛼 is a free dimensionless parameter, which
must be chosen negative in order to avoid the strong
coupling problem [48]. Using Eq. (10) and requiring
that the inflaton field lies in the potential minimum
𝜑 = 0 at the end of the inflation, the coupling func-
tion could be written in the following form:

𝐼 (𝜑) = cos𝛼𝛽
(︂
𝜑

2𝑓

)︂
. (29)

The generated electromagnetic fields are character-
ized by the power spectra

𝑑𝜌𝐵
𝑑 ln 𝑘

=
1

2𝜋2

(︂
𝑘

𝑎

)︂4
𝑘|𝒜 (𝑡, 𝑘) |2, (30)

𝑑𝜌𝐸
𝑑 ln 𝑘

=
1

2𝜋2

(︂
𝑘

𝑎

)︂2
𝑘𝐼2 (𝑡)

⃒⃒⃒⃒
𝜕

𝜕𝑡

(︂
𝒜 (𝑡, 𝑘)

𝐼 (𝑡)

)︂⃒⃒⃒⃒2
. (31)

3.2. Back-reaction problem

After the inflation in the epoch of reheating, the Uni-
verse becomes filled with all sorts of particles, and its
conductivity strongly increases. As a result, electric
fields quickly dissipate, and magnetic fields survive
due to the magnetic flux conservation. Despite the
fact that the electric fields disappear in the primor-
dial plasma, one cannot neglect them during the infla-
tion, since their energy density may be large enough
to cause the back-reaction and may spoil the inflation.

In order to ensure that the back-reaction problem
does not occur, one has to check that the following
condition is satisfied for all physically relevant modes
[47]:

𝑑𝜌𝐸
𝑑 ln 𝑘

⃒⃒⃒⃒
inf

+
𝑑𝜌𝐸
𝑑 ln 𝑘

⃒⃒⃒⃒
inf

< 𝜌inf . (32)
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For power-like coupling functions in the de Sitter
space-time, the power spectra of generated electro-
magnetic fields are well-known [47]. For 𝛼 < −1/2,
they are
𝑑𝜌𝐵
𝑑 ln 𝑘

=
𝐻4

2𝜋2
ℱ(𝛼)

(︂
𝑘

𝑎𝐻

)︂6+2𝛼

, (33)

𝑑𝜌𝐸
𝑑 ln 𝑘

=
𝐻4

2𝜋2
ℱ(𝛼)

(︂
𝑘

𝑎𝐻

)︂4+2𝛼

, (34)

where

ℱ(𝛼) =
𝜋

22𝛼+3Γ2(𝛼+ 3/2) cos2(𝜋𝛼)
. (35)

All modes, which crossed the horizon during the
inflation, contribute to the energy density. Therefore,
condition (32) must be satisfied for all momenta in the
range 𝑎𝑖𝐻 < 𝑘 < 𝑎𝑒𝐻. Let us analyze the behavior
of the power spectra for different values of 𝛼.

1. For 𝛼 ∈ (−2; −1/2), the main contribution to
the energy densities comes from large momenta 𝑘 ∼
∼ 𝑎𝑒𝐻. Therefore,

𝜌𝐵 ∼ 𝜌𝐸 ∼ 𝐻4 ≪ 𝜌inf = 3𝐻2𝑀2
𝑝 (36)

for 𝐻 ≪ 𝑀𝑝. Thus, there is no back-reaction.
2. For 𝛼 ∈ (−3; −2), the magnetic energy density

is determined by short-wavelength modes 𝑘 ∼ 𝑎𝑒𝐻
and cannot cause the back-reaction similarly to the
previous case. However, the electric power spectrum
is dominated by long modes with 𝑘 ∼ 𝑎𝑖𝐻

𝜌𝐸 =
𝐻4

2𝜋2

ℱ(𝛼)

2|𝛼| − 4
𝑒2𝑁𝑒(|𝛼|−2). (37)

Therefore, the electric component determines the
back-reaction. It can be neglected, if 𝜌𝐸 < 𝜌inf , which
implies that

|𝛼| < 2 +
1

𝑁𝑒

(︂
ln

𝑀𝑝

𝐻
+

1

2
ln

12𝜋2(|𝛼| − 2)

ℱ(𝛼)

)︂
. (38)

3. For 𝛼 < −3, the leading contribution to the elec-
tric and magnetic energy densities is given by long-
wavelength modes, which cross the horizon at the
beginning of the inflation, 𝑘 ∼ 𝑎𝑖𝐻. Although both
components could attain very large values, the main
effect is due to the electric component, because it
has two more powers of 𝑎𝑒/𝑎𝑖. The condition to avoid
the back-reaction is, thus, the same as in the previ-
ous case.

We would like to mention that, in order to estimate
the “critical” value of 𝛼, for which the back-reaction

problem occurs, one can use the value of the Hub-
ble parameter 𝐻 = 𝐻*, because it varies very slowly
during the inflation. On the other hand, the situation
with 𝑁𝑒 is more delicate. If we assume that the infla-
tion lasts only from the moment, when the pivot scale
crosses the horizon, then we may set 𝑁𝑒 = 𝑁*. In
this case for 𝑁* = 60 and 𝑓 = 7.5𝑀𝑝, we have
𝛼 & −2.2. However, in a more realistic situation, the
inflation can last many e-folds before the pivot scale
horizon crossing, and a lot of modes which are longer
than the pivot one (and, therefore, are not physically
relevant at the present epoch) would be also enhanced
and contribute to the energy density. In this case, one
would not deal with the back-reaction problem only
in the case of scale-invariant or blue electric power
spectrum, i.e., for 𝛼 ≥ −2.

To investigate the most favorable situation, we
assume that the enhancement occurs only for the
modes, which are shorter than the pivot scale 𝑘*. In
this case, we numerically solve the mode equation
(26) for all modes, which cross the horizon during
the inflation, and plot the corresponding electric and
magnetic power spectra in Fig. 3. In numerical simu-
lations, we set 𝑁* = 60 and 𝑓 = 7.5𝑀𝑝. The numer-
ical results nicely confirm the theoretical constraint
𝛼 > −2.2 for the absence of the back-reaction.

3.3. Magnetic field at the present epoch

The present-day value of the observed magnetic field
is determined by the modes, which can survive the
further evolution of the Universe. Assuming the flux
conservation, we have

𝐵0 =

(︂
𝑎𝑒
𝑎0

)︂2⎯⎸⎸⎸⎷2

𝑘diff∫︁
𝑎𝑖𝐻

𝑑𝑘

𝑘

𝑑𝜌𝐵
𝑑 ln 𝑘

, (39)

where 𝑘diff is the momentum, which now corresponds
to the cosmic diffusion scale, i.e., the smallest size
of a magnetic configuration, which can survive the
diffusion in the late stages of the Universe evolu-
tion. It could be estimated as 𝑘diff/𝑎0 ∼ 1A.U.−1 =
= 1.3× 10−27 GeV [3].

Since 6 + 2𝛼 > 0 in the region without back-
reaction, the magnetic power spectrum has a blue
tilt. Therefore, the main contribution to the magnetic
field comes from the upper integration boundary

𝐵0 =

(︂
𝑎𝑒
𝑎0

)︂2
𝐻2

2𝜋

√︂
2ℱ(𝛼)

3 + 𝛼

(︂
𝑘diff
𝑎𝑒𝐻

)︂3+𝛼

. (40)
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Fig. 3. The magnetic (a) and electric (b) power spectra at
the end of the inflation for different values of the parameter
𝛼. The left shaded region corresponds to unphysical modes,
which are outside the horizon even before the beginning of the
inflation. The right shaded region corresponds to very short
modes, which are inside the horizon during the inflation stage
and undergo no enhancement. The orange horizontal line cor-
responds to the energy density of the inflaton field at the end
of the inflation

The value of 𝑎0

𝑎𝑒
can be found, by using the fact

that the pivot scale 𝑘* crosses the horizon 𝑁* e-folds
before the end of the inflation
𝑎0
𝑎𝑒

=
𝑎*
𝑎𝑒

𝑎0𝐻*

𝑘*
= 𝑒−𝑁*

𝑎0𝐻*

𝑘*
. (41)

Then the present-day strength of the magnetic field
equals

𝐵0 =
𝑀2

𝑝

2𝜋

√︂
2ℱ(𝛼)

3 + 𝛼

[︂
𝑘diff
𝑎0𝑀𝑝

]︂3+𝛼 [︂
𝑘*𝑒

𝑁*

𝑎0𝑀𝑝

]︂−1−𝛼

=

= (1.6× 10−23 𝐺)

√︂
2ℱ(𝛼)

3 + 𝛼

[︂
1.03× 1014

exp(𝑁*)

]︂𝛼+2

×

×
[︂
𝑘diff/𝑎0

1A.U.−1

]︂3+𝛼 [︂
𝑘*/𝑎0

0.002Mpc−1

]︂−1−𝛼

𝑒𝑁*−60. (42)
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Fig. 4. The present-day value of the magnetic field as a func-
tion of 𝛼 for different numbers of e-folds 𝑁* = 50, 55, 60. The
shaded region is forbidden in view of the back-reaction problem

Now, setting 𝑓 and 𝑁*, we calculate the corre-
sponding 𝐻* and determine the allowed region for
the parameter 𝛼, by using Eq. (38). After that, using
Eq. (42), we compute the present-day value of the
magnetic field 𝐵0. The corresponding result is shown
in Fig. 4 for 𝑓 = 7.5𝑀𝑝 and three different e-fold
numbers 𝑁*. In the calculations, we used the stan-
dard values of the pivot scale (𝑘*/𝑎0 = 0.002Mpc−1

used by the Planck Collaboration [1]) and the cosmic
diffusion scale (𝑘diff/𝑎0 = 1A.U.−1 from [3]).

Unfortunately, the value of 𝐵0 is considerably
smaller than the lower bound required by the observa-
tions of distant blazars [11–14]. The power spectrum
of the magnetic field has a blue tilt because the spec-
tral index is positive

𝑛𝐵 = 6 + 2𝛼 > 0. (43)

This means that the coherence length of such mag-
netic fields is of the order of cosmic diffusion scale,
i.e., 1 A.U.

4. Conclusions

In this work, we studied the generation of large-scale
magnetic fields in the natural inflation model, which
is one of the favored models according to the latest
results of the Planck Collaboration [1]. In order to
break the conformal invariance of the electromagnetic
action, we chose the kinetic coupling 𝐼2(𝜑)𝐹𝐹 of the
inflaton field with the electromagnetic field through
the coupling function, which behaves like a negative
power of the scale factor 𝐼 ∝ 𝑎𝛼, 𝛼 < 0. Since 𝐼 = 1 at
the end of the inflation and is a decreasing function,
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the strong coupling problem does not occur during
the inflation [48].

We performed the slow-roll analysis and compared
the predictions of the model with observational re-
sults of the Planck Collaboration [1]. In our numeri-
cal simulations, we used the values of the model pa-
rameters, which are in the best accordance with ob-
servational data and provide the correct amplitude
of scalar primordial perturbations. Using them, we
solved the background equations, which govern the
evolution of the scale factor and the inflaton field.

The simple choice of the coupling function allowed
us to use the well-known analytic expressions for the
electromagnetic power spectra from Ref. [47] and to
determine the parameter range, for which the back-
reaction problem does not occur. Then we determined
the power spectra numerically and confirmed the cor-
rectness of our analytic estimates.

Finally, we considered the subsequent evolution
of the generated magnetic fields up to the present
epoch. Considering only the modes, which can sur-
vive the cosmic diffusion during the Universe lifetime,
we calculated the present value of the large-scale mag-
netic field.

It is well known [47, 48, 52] that the back-reaction
may spoil the inflation and the process of magneto-
genesis. However, it is not necessarily the case. This
problem only signals that we cannot solve the back-
ground equations and the equations for the electro-
magnetic field separately, and the electromagnetic
fields also influence the evolution of the Universe. It
is possible that the electromagnetic field will continue
to grow but in other regime. We plan to address this
question in future studies.

The authors are grateful to E.V.Gorbar and
S.I. Vilchinskii for critical comments and useful
discussions during the preparation of the manus-
cript. The work of O. S. is supported by the Depart-
ment of targeted training of Taras Shevchenko Na-
tional University of Kyiv under the National Academy
of Sciences of Ukraine, project 6F-2017. O. S. is
grateful to M.E. Shaposhnikov for his kind hospitality
at the Institute of Physics, École Polytechnique Fé-
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МАГНЕТОГЕНЕЗИС У МОДЕЛI
ПРИРОДНОЇ IНФЛЯЦIЇ

Р е з ю м е

Дослiджено процес iнфляцiйного магнетогенезису у моде-
лi природної iнфляцiї з одним полем, параметри якої ви-
брано згiдно з даними нещодавнiх спостережень Колабора-
цiї Planck [1]. Конформну iнварiантнiсть максвеллiвської дiї
порушено кiнетичним зв’язком з iнфлатонним полем через

функцiю, яка поводить себе як степiнь масштабного фа-
ктора, 𝐼(𝜑) ∝ 𝑎𝛼, i значення 𝛼 < 0 використано для того,
щоб уникнути проблеми сильного зв’язку. Для таких зна-
чень 𝛼 електрична компонента густини енергiї домiнує над
магнiтною i для 𝛼 . −2,2 вона призводить до сильної зво-
ротної реакцiї, що може порушити iнфляцiйну динамiку i
припинити пiдсилення магнiтного поля. Показано, що ма-
гнiтнi поля, згенерованi без спричинення зворотної реакцiї,
не можуть перевищувати в теперiшню епоху ∼10−20 Гс, а
їхнiй спектр має блакитний ухил.

680 ISSN 0372-400X. Укр. фiз. журн. 2018. Т. 63, № 8


