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OF NON-MAGNETIC DEGENERATE DWARFS

Using the equation of state of the electron-nuclear model at high densities and the mechanical
equilibrium equation, we have investigated the influence of interparticle interactions and the
azial rotation on the macroscopic characteristics (mass, surface shape) of massive degenerate
dwarfs. We propose a method of solving the equilibrium equation in the case of rotation that
uses the basis of universal functions of the radial variable. The conditions, under which the
azial rotation can compensate for a weight loss of the mass due to the Coulomb interactions,
have been established. The maximal value of the relativistic parameter, at which the stability
is disturbed, is determined within the general theory of relativity (GTR).
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1. Introduction

The discovery of the degenerate dwarfs at the begin-
ning of the XXth century [1] gave rise to the prob-
lem of existence and stability of stars, which have no
sources of energy. R. Fowler’s idea [2]| that the exis-
tence of these objects is due to the pressure of the
degenerate electron gas at high densities of matter
led to the formation of an electron-nuclear model, in
which a star consists of an ideal degenerate relativis-
tic electron subsystem in the paramagnetic state at
T = 0 K and a static nuclear subsystem, which is con-
sidered as a continuous classical environment [3,4]. In
the frame of this model, the theory of cold degener-
ate dwarfs was constructed by S. Chandrasekhar, the
main results of which are restrictions on the mass
(M < 1.45Mg) and the peculiar “mass-radius” ra-
tio. In the works by E. Shatzman [5], S. Kaplan [6],
R. James [7], E. Salpeter [8], Ya. Zeldovich and I. No-
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vikov [9], S. Shapiro and S. Teukolsky [10], and other
researchers, some generalizations of Chandrasekar’s
model, which consider important factors of the for-
mation of a structure of degenerate dwarfs, were pro-
posed.

The development of the theory was restrained by
the lack of observable data. The situation changed at
the end of the XXth century, when a large amount of
spectral data on the degenerate dwarfs in a vicinity
of the Sun was obtained with help of the space ob-
servatories. It turned out that the degenerate dwarfs
are characterized by the same variety of charac-
teristics like stars of other types. The most strik-
ing fact indicating the limitation of applying Chan-
drasekhar’s model is the distribution of dwarfs with
small and medium masses on the “mass-radius” plane
[11], which is a manifestation of the incomplete degen-
eration of the subsystem of electrons, since the effec-
tive temperatures of the photosphere of some dwarfs
reach 10° K. However, the influence of temperature
effects on the characteristics of massive dwarfs is very
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small. In the case of massive non-magnetic dwarfs,
the main factors of the structure formation are inter-
particle Coulomb interactions and the axial rotation,
which are competing ones. The dwarfs with masses
approaching Chandrasekar’s limit are found in the bi-
nary systems, where the important factor at certain
stages of evolution is the exchange of mass between
the components.

The detailed calculations of the degenerate dwarf
characteristics, when various factors of the forma-
tion of these objects are simultaneously taken into
account, are relevant in connection with the problem
of the stability of the degenerate dwarfs, as well as
with the hypothesis that massive degenerate dwarfs
are precursors of supernovae of type la.

The main purpose of our work is to set restrictions
on the mass of dwarfs, while considering the Coulomb
interactions and the axial rotation.

2. Equilibrium Equation

The internal structure of a star with axial rotation is
determined by the equilibrium equation [12]: at each
point given by the radius vector r, the condition

VP(r) = =p(r) V{@gray (r) + c(r)} (1)

is satisfied, where P(r) is the local pressure, p(r) is
the local density of matter,

r’)dr’
Bonlr) =G [ 2T 2
determines the gravity potential, and ®.(r) is the cen-
trifugal one. We consider that the distribution of mat-
ter has the axial symmetry, and the axis of rotation
passes through the center of mass of the star. In the
spherical coordinate system, the coordinate origin be-
ing at the center of mass,

1
D (r) = ~5 w?r?sin? 0, (3)

where w is the constant angular velocity, and 6 is the
polar angle. The density of matter p(r) is expressed in
terms of the local value of the relativistic parameter

£(r) = — 3nPn(r), (4)

mopc

my is the electron mass, c¢ is the speed of light, and
n(r) is the number density of electrons at the point
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r. According to definition (4),

) (M, )

where m,, is the atomic mass unit, p. = A/z (A is
the mass number, z is the charge of a nucleus).

The equation of state of the macroscopic homoge-
neous electron-nuclear model at T = 0 K was ob-
tained in work [13]. This equation is convenient to
present in the form

My e
372

p(r) = mypen(r) =

4.5
TMgC
3h3

P(x) = {F(z) = f(zl2)}, (6)
where F(x) is the contribution of the degenerate ideal
relativistic electron gas, and f(z|z) > 0 is the contri-
bution of interactions (see Appendix 1). To describe
the star, we have used expression (6) in the local
approximation by replacing x with its local value
z(r). In this approximation, the equilibrium equation
is reduced to such differential equation for the local
value of the relativistic parameter:

2
2 1/2 W My e
A{[L+a?@)]? — 1y =2 e
3212G
~ iy (mubemoc®)a®(w) +

+ 20) ™ (55 1aw)l) Aalr) +

s (L[ el (e @

Here, A is the Laplace operator in the variables
(r,0). The derivatives from Eq. (7) are illustrated in
Fig. 1.

Let us introduce the dimensionless variables

E=2, Y(£,0) =y ({1 +22(r)]Y? — 1}, (8)

>\ b
as well as the dimensionless angular velocity accord-
ing to the expression

2

Moy fre A

0*=2 (9)

moc3eg
where
g0 = eolxo) = [1 4+ 22)V/2 -1,

xo = z(0). (10)
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If the scale X is determined by the expression

322G
L(muuemoczx\go)2 =1,

3(he)3 (11)

then the equilibrium equation has the following di-
mensionless form:

roe [ 2ren) 5t [2reo] ) o2

Here, the notations are as follows:

9 1/2
P(e.6) [W(w) n EOY@,e)} ;

_3df (z|2)
¢1(£,0]2) = (2z) 2= ;
' dr  {,—s(c.0)

©2(E,6]2) = ?i{;dfﬁ”}

z(§,0) = eol'(€,0);

_ L _ 10 (20},
0 0
0= =) g

) 13
z=x(&,0) ( )

t = cos0;

A

In Eq. (12), the independent parameters g, 22, z ap-
pear. The equation in partial derivatives (12) satisfies
the boundary conditions
0

Y(0,0) =1; a—EY(f,Q) =0 by &£=0. (14)
In order to highlight the analytical dependence on
model parameters, we introduce an approximate so-
lution of Eq. (12). Let us consider Eq. (12) without
rotation, by setting = 0 and replacing Y (¢, §) with
the function y(§) according to the spherical symmetry
of the problem.

3. Influence of the Interactions

The function y(€) satisfies the one-dimensional differ-
ential equation

3/2
Acy(e) = —{y?(&) n foy@)} n
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Fig. 1. Dependence of the functions @1 (z|z) = (2z(r)) ™3 x

x df (z(r))|z)/dz(r) (a) and dpi(x|z)/dz (b) on the relativistic

parameter = and the nuclear charge z (curve I — z = 2; 2 —

z=6; 8- 2z =12)

9 1/2
+ p1(&]2)Ae {yQ(ﬁ) + goy(é)] +

Foalel){ [+ Zv(6) /}

in which zy and z are the parameters, and the func-
tions ¢;(£|z) are determined by Egs. (13), where
one should make a replacement =z — go(y2(£) +
+ %y(f))l/Q. Regular solutions of the equation sat-
isfy the conditions y(0) = 1, ¥’(0) = 0. The condi-
tion y(£) = 0 determines the dimensionless radius of
the star &;(xo|z). Setting 1 = w2 = 0, the equa-
tion becomes a one-parameter equilibrium equation
of Chandrasekar’s model (the standard model). The

779

(15)



M.V. Vavrukh, D.V. Dzikovskyi, S.V. Smerechynskyi

Table 1. Dependence of the dimensionless
radius &1 (xo|z) on the parameters xo and z (£1(xzo)
corresponds to the standard model)

&1(zolz)

xo &1(zo)
z=2 z2=206 z=12 z =26
1.0 1.03401 1.00101 0.98801 0.97401 0.94801
2.0 2.06001 2.02501 2.00601 1.98501 1.94801
3.0 2.78201 2.74601 2.72401 2.70001 2.65601
4.0 3.30701 3.27001 3.24701 3.22001 3.17201
5.0 3.70701 3.67001 3.64501 3.61701 3.56601
6.0 4.02301 3.98601 3.96001 3.93101 3.87801
7.0 4.28001 4.24301 4.21701 4.18701 4.13201
8.0 4.49301 4.45601 4.43001 4.39901 4.34401
9.0 4.67401 4.63701 4.61001 4.57901 4.52201
10.0 4.82801 4.79101 4.76401 4.73301 4.67601
15.0 5.35801 5.32201 5.29401 5.26301 5.20301
20.0 5.67001 5.63501 5.60701 5.57501 5.51501
25.0 5.87701 5.84201 5.81401 5.78201 5.72201
30.0 6.02401 5.98901 5.96101 5.92901 5.86901

Table 2. Dependence of the dimensionless
mass M (xo|z) on the parameters xo, z (M(xo)
corresponds to the standard model)

M(zolz)
o M(zo)
z=2 z=26 z =12 z = 26
1.0 | 0.707066 | 0.689037 | 0.673304 | 0.65581 | 0.624491
2.0 1.24303 1.22092 1.20126 | 1.17904 | 1.13834
3.0| 1.51862 1.49465 1.47331 | 1.44912 1.4045
4.0 | 1.67141 1.64646 1.62426 | 1.59907 | 1.55247
5.0 1.76395 1.73843 1.71573 | 1.68996 | 1.64222
6.0 | 1.82404 1.79816 1.77515 | 1.74901 | 1.70056
7.0| 1.86521 1.83909 1.81586 | 1.78948 | 1.74054
8.0 | 1.89462 1.86832 1.84495 | 1.81839 | 1.76911
9.0 1.91634 1.88992 1.86645 | 1.83976 | 1.79023
10.0 | 1.93284 1.90633 1.88277 | 1.85599 | 1.80626
15.0 | 1.97619 1.94943 1.92567 | 1.89863 | 1.84839
20.0 | 1.99337 1.96651 1.94268 | 1.91554 | 1.86508
25.0 | 2.00186 1.97495 1.95108 | 1.92389 | 1.87331
30.0 | 2.00665 1.97972 1.95583 | 1.92861 | 1.87795

solutions of Eq. (15) were found numerically. The
dependence & (zg|z) on the parameters zy and z is
shown in Table 1, where the dimensionless radius of
the star in the standard model &;(z) is given for
comparison. As can be seen from this table, account-

780

ing for interactions leads to a decrease of the radius
{51(.%0) —fl(xg\z)}(fl(xo))*l by 0.7% at z = 2, 1.2%
at 2 =6, 1.85% at z = 12 and 3% at z = 26.

The mass and radius of the star are determined by
the expressions

M(zolpe]2) = 20 M(zol2),
1(aol) , g
M(zolz) = 52{y2<§> T 50y<§>} g, (16)
0
Ry &i(2ol2)
R(x0|ue\z) = ZT’

where the mass and radius scale are the combinations
of the universal constants

3 1/2 1 he 3/2
M = | = —_— | — =
= (3) (@) ™

= 5.740247 x 10%® g ~ 2.88695 M;

R B §1/2i E 1/2 1 B
°~ \2 47 \cG momy

=0.776885 x 10 cm ~ 1.11623 x 107 Rg.

The dependence M (zp|z) on the parameters xy and
z and the dimensionless mass M(xg) in the stan-
dard model are given in Table 2. The relative de-
crease of the mass caused by the influence of inter-
actions {M(z¢) — M(z0|2)}(M(z0))~! is approxi-
mately 1.4% at z =2, 2.7% at z =6, 4.1% at z = 12,
and 7% at z = 26 in the region zg > 10 (see Table 2).

For intermediate and large values of the relativis-
tic parameter, the function f(z|z) is approximately
proportional to z*. In other words, the expression
x73df /dr is close to the constant value, and its
derivative with respect to z is very small. This gives
the opportunity to get an approximate estimate of
dwarf’s characteristics without solving Eq. (15) nu-
merically. Due to the fact that, in the core of a
massive dwarf, z(r) is very close to g, the expres-
sion z73(r)df (z(r))/dx(r) can be replaced by the
©1(wo|z) = df (xo]z)/dxzo. One can neglect the term
proportional to (V(r))? and introduce a new dimen-
sionless coordinate & = £/k at k = {1 — @1 (xo|2)}/2.
In this case, Eq. (15) can be reduced to the equation
of the standard model. In this approximation, the so-
lution of Eq. (15) is y(&) = §(¢/k), where §(§) is a
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solution of the equation in the standard model

3/2
Aci(€) = —{g?(&) t g(s)} ,

&1(wolz) = k& (x0), M(molz) = K> M(mo),

€1 (o) 5 3/2
[ elror 2o
A 0

The dimensionless mass and radius calculated by for-
mulae (18) are shown in Table 3. As was shown in
Tables 2 and 3, the relative error of the determina-
tion of the mass in the range xy > 5 does not ex-
ceed 1%. At xg > 10, it is smaller than 0.3%. The
calculation error of the radius increases with z. At
z = 2, it is at most 0.4%. At z = 26, it is smaller
than 3%.

(18)

M(zo) =

4. Influence of Interactions
and the Axial Rotation

The comparison of Tables 2 and 3 shows that Eq. (12)
at Q) # 0 can be substantially simplified by neglecting
the multiplier 2(&,6|2z) and by replacing the term
proportional to ¢1(&,0]z) by ¢1(zo|2)A(£,0)Y (&, 6)
without accuracy loss. One can introduce the dimen-
sionless radial coordinate £ = r / A, where X is deter-
mined from the equation

322G

7(mu,uemoc2eo;\)2 =1—¢1(x0|2).

3(hce)3 (19)

Then Eq. (12) takes the form

o ) o o _ _ Y32
AGOT(E.0) =0 {W(sw S e)} . (20)

€o
where

~2 2w2mu,ue

Q2 = A2 = Q%(1 — o1 (0]2)). (21)

moc2eg
Formally, Eq. (20) coincides with the equilibrium
equation of a degenerate dwarf with axial rotation
in the standard model written in the dimensionless
form. The solution of Eq. (12) is

Y(€,0) =Y(Ek,0) =Y(,0), (22)

where Y(£,0) is a solution of Eq. (20), and k =
=[1- cpl(x0|z)]1/2. Therefore, we will omit “~” over

the variable &, while looking for the solutions of
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Table 3. Dependence of M (zo|z) and &1 (xo|z)
on the relativistic parameter and the nuclear charge

xo z=2 z=06 z=12 z =26
M(zol2)
1.0 0.698071 0.689712 0.680305 0.663335
2.0 1.22614 1.21149 1.19504 1.16539
3.0 1.49846 1.48056 1.46048 1.42434
4.0 1.64937 1.62967 1.60756 1.5678
5.0 1.74063 1.71984 1.6965 1.65452
6.0 1.79981 1.77832 1.75418 1.71075
7.0 1.84033 1.81835 1.79366 1.74923
8.0 1.86927 1.84694 1.82186 1.77671
9.0 1.89065 1.86807 1.84269 1.79701
10.0 1.9069 1.88412 1.85852 1.81242
15.0 1.94967 1.92639 1.9002 1.853
20.0 1.9667 1.9432 1.91678 1.86913
25.0 1.97512 1.95153 1.92498 1.8771
30.0 1.97988 1.95623 1.92961 1.8816
&1(xolz)
1.0 1.03067 1.02654 1.02185 1.01328
2.0 2.05071 2.04251 2.03323 2.01627
3.0 2.76986 2.75879 2.74626 2.72342
4.0 3.29291 3.27975 3.26485 3.23771
5.0 3.69122 3.67647 3.65977 3.62933
6.0 4.00587 3.98986 3.97173 3.93868
7.0 4.26151 4.24447 4.22518 4.19000
8.0 4.47378 4.4559 4.43563 4.39868
9.0 4.65315 4.63455 4.61347 4.57502
10.0 4.80689 4.78768 4.7659 4.72616
15.0 5.33474 5.31341 5.28922 5.24507
20.0 5.64552 5.62295 5.59735 5.55058
25.0 5.85091 5.82752 5.80097 5.75247
30.0 5.99691 5.97294 5.94573 5.896

Eq. (20). In the case of massive degenerate dwarf,
Eq. (20) has two small parameters Q2 and e =
= [(1 +22)'/? = 1]~%. In the limit Q — 0, zyp — oo,
Eq. (20) transforms to the equation of the polytropic
model with index n = 3. At Q # 0 and g — oo,
Eq. (20) describes the equilibrium in the polytropic
model (with index n = 3), i.e., one rotating with con-
stant angular velocity Q2.

The solutions of an equilibrium equation in the
standard model (Eq. (15) at ¢1(&|z) = ¢2(&|z) = 0)
for massive dwarfs can be expanded in the small pa-
rameter ey L

y(&) = vo(&) +

T (23)
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Fig. 2. Numerical solutions of the system of equations (24)

The functions yo(§), y:(§) are determined from the
chain of equations

Aeyo(€) +y3 (&) =0;
Aeyi(€) + 3y1(§)wg () = —3u5(£);

€
Agy2(€) +3y2(§)yp (§) =
3

= 59O {1 +451(9) + 201 (O} -
with boundary conditions: 30(0) = 1; 4;(0) = 0 at
I > 1; yj(0) = 0 at I > 0. The functions y;(§) ob-
tained numerically are depicted in Fig. 2. They do
not have any parameters and represent a universal
basis for calculation of the dwarf characteristics in
the standard model as functions of the parameters xq
and p.. Herewith, yo(&) is a solution of the equilib-
rium equation in the polytropic model with n = 3.

Similarly, the solution of Eq. (20) can be repre-
sented as the expansion

Y(€7 9) = YVZ’)(& 9) + Z Eal(xO)E(§7 9)7

1>1

(25)

where Y3(&,6) is a solution of the equilibrium equa-
tion for the polytrope with index n = 3 in the pres-
ence of a rotation, and Fj(£,0) are the unknown
functions. Substituting series (25) in Eq. (20) and ex-

panding the expression {Y?+2Y/ 60}3/2
€o ! we obtain the following chain of equations:

AY3(§7 9) + }/33(57 9) =
AF(£,0) + 3F1(£,0)YE(£,0) =
782

in powers of

—3Y$(€,0),

AF2(§7 0) + 3F2(£7 9)Y32(£ﬂ 9) =
— S HEOHARE) +2FE 0} (20

where A = A(€,0). The substitutions

Y3(£,0) = yo(€) + 2 fo (¢, 0);

Fi(&,0) = y(&) + Q*fi(€,0) by 1 > 1
are justified, because the parameter 2 is small for
massive dwarfs. With these substitutions, we can ex-

clude the parameter Q2 from system (26) and rewrite
it in a universal form:

Afo(€,0) +3fo(&,0)y3 (&) =
Af1(£,0) +3f1(€,0)y3 (&) =
(
)=

(27)

= —6y0(§) fo(§, DL +y1(§)];

Afa(&,0) +3f2(€,0)y3 (¢

= —6/1(& 0)[1 +y1()] = 6fo(&, )yo(E)y2(&); - -
We have used another substitution, namely
fo(€,0) = 1bo,0(§) + AP2(cos 0)vo,2(),

J1(€:0) = 10(€) + Pa(cos 0)ir2(E),

where Ps(cosf) is the Legendre polynomial of the
second order, ! > 1. Substitutions (29) allow us
to separate the variables in Egs. (28) and to get a
chain of equations for the functions ;0(§), ¥2(§)
at [ > 0. Only the equation for ¢y 2(§) is linear and
homogeneous:

Actoa(€) = Yo (6) {3y8<s> N ;}

All other functions are solutions of the linear inho-
mogeneous equations:

Aeto,0(€) + 3y5(€)vo,0(6) =

Aethr0(§) + 3y5 () v10(8) =

= —6[1 +y1(§)]yo(€)0,0(8);

Agth20(8) + 3y () 1h2,0(€) = —6¢10(§[1 + 41 (£)] —
= 60(§)y2()b0,0(8);

Aeth12(8) — 5%%,2(5) +3ygt 2(8) =

= —614%,2(5)[1 +y1(9);

Acta2(€) — e ¢2 2() + 3yghaa(€) =

= 6[1 + y1(&)]0,2(€) — 64y (&)y2(£)v0,2(£);

(29)

(30)

(31)
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According to (14), all functions v;,0(€), ¥12(§) at [ >
>0 satisfy the boundary conditions 4 ¢(0) =1 2(0) =
=0, e¥1,0(6) = Fetr2(§) =0 at £ =0.

In work [14] devoted to the polytropic stars with
axial rotation, the functions g ,0(£) and 1 2(§) were
calculated by the numerical integration, and the
constant of integration A = —0.72325 was deter-
mined. Using the same method, we have found the so-
lutions of the equation for ¢ ¢(§), 1.2(§) at I = 1 and
2. The results of calculations for the universal func-
tions y;(€), ¥1,0(§) and ¢, 2(§) at I > 0 have been pre-
sented in the form of the Pade-approximants given in
Appendix 2. The functions y;(£), 11,0(§) and ¥;2(§)
do not depend on any parameters and form a univer-
sal system, which makes it possible to present all the
characteristics of massive dwarfs with axial rotation
in the form of an expansion in powers of the small
parameter £ " (2).

According to Eq. (25), the solution of (20) reads
Y(£,0) = y(&lzo) +
+ Q% {W(€|zo) + Pa(cos 0)Wa(€lzo)}, (32)

where y(&|z) is a solution of the equilibrium equation
for a degenerate dwarf in the standard model,

Wo(€lzo) = vo,0(§) + Y ¢r0()ep (zo);

=l (33)
Uy (Elwo) = Avho2(€) + Y thua(€)zg " (wo)-
>1
The conditions
~ s 0 -~ 7r
V(65) =0 g7 (63) =0 (34)

determine the maximal value of the angular veloc-
ity Qumax(z0) and corresponding maximal value of
the dimensionless equatorial radius €22 (zg). At Q >
> Qmax, the stability of a star is disturbed in a vicin-
ity of the equator, and the function Y (£, 6) becomes a
non-monotonous function of £&. The root of the equa-
tion Y (£,0)=0 at Q < Qp.x determines the shape of
a star,

£1(0) = &1(0]o, Q). (35)
The dependence of function (32) on the variables
(€,0) is illustrated in Fig. 3 for ¢ = 0 and 6 = 7/2
in the case Q2 (7¢) at ¥p = 10. The solution of
the standard model is given for comparison. One can

ISSN 0372-400X. Vxp. ¢is. orcypn. 2018. T. 63, Ne 9

1
0.8 A ~
x,=10.0, &, . =0.00972
0.6 1
0.4 4
0.2 A
1 3 é
0 T T T T r T

Fig. 3. Dependence of function (32) at a fixed value of z¢ and
2. (curve I corresponds to the angle § = 0, curve 2 shows
solutions of the equilibrium equation in the standard model,
curve & presents the angle § = 7/2)

Table 4. Dependence of the maximal

value of the parameter Q2 corresponding

to the dimensionless equatorial and polar radii,
as well as the dimensionless radius of the dwarf
without rotation, on the parameter xg

T Q2. | &@o) | &e(@ola) | &(20]020x)
6.0 | 0.0164 4.023 5.401 3.801
8.0 | 0.0119 4.493 6.001 4.271
10.0 | 0.00972 | 4.828 6.461 4.591
15.0 | 0.00733 | 5.358 7.231 5.111
20.0 | 0.00632 | 5.670 7.651 5.421
25.0 | 0.00579 | 5.887 8.021 5.631

find the dependence of Q2
rial & (20|Q2,,,) and polar &,(x0|Q2,,,) radii, on the
relativistic parameter zq (see Table 4).

The approximate solution of Eq. (12) has been ob-
tained by replacing £ — k¢ in expression (32), where
k = [1—1(20]2)]*/2. Therefore, the mass of a degen-
erate dwarf in a model with interactions is determined

by the expression

M, -
M (0, pe, 2,w) = 7;(1—%(960|Z))3/2M($0|Q)7 (36)

e

as well as the equato-

where

M(z0]Q) = /dt
0

£1(6)20,%)
£2de x

0

— 9 3/2
0
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Fig. 4. Dependence of dwarf’s mass on the relativistic param-
eter in different approximations (see the text)

0

and the polar and the equatorial radii are

Ry

Rp(x07ue7z7w) = /J@ngp(xO,Z,Q%
Ry ~
Re(l'Oa/J'evZaW) - Eofe(xmzaﬂ)v (38)

517(330’ 2, Q) = [1 - @1($0|2)}1/2€1(0|$05 Q)’
Ee(m0,2,Q) = [1 — @1 (wo2)]"/ 261 (7/2|20, ).

The dimensionless radius &, (0, z,Q) calculated at
Q= Qmax(xo) is given in Table 5.

The influence of interactions and the axial rota-
tion on the dwarf mass as a function of the pa-
rameter xg is shown in Fig. 4. Curve I corresponds
to the dimensionless mass of a dwarf rotating with
maximal angular velocity Qmax(xo) without interac-
tions (M (o|Qmax)). The crosses correspond to the

Table 5. Dependence of the dimensionless
equatorial and polar radii on the relativistic
parameter xg and the charge of nucleus z

&e (o, 2, fl) &p(o, 2, Q)
o
z2=2|2=12 | 2=26 | z2=2 | 2=12 | z=26
6.0 | 5.377 5.331 5.287 3.784 3.752 3.721
8.0 | 5.974 5.923 5.874 4.252 4.216 4.181
10.0 | 6.432 6.377 6.324 4.570 4.531 4.494
15.0 | 7.199 7.137 7.078 5.088 5.045 5.003
20.0 | 7.617 7.552 7.489 5.397 5.351 5.306
25.0 | 7.985 7.917 7.851 5.606 5.558 5.511
784

mass value, which was calculated in work [7] for sev-
eral values of the relativistic parameter in the region
0.5 < zy < 6.24. Curve 2 corresponds to formula (36)
and involves both factors, the interactions and the ro-
tation with Qmax(ajo) at z = 12. Curve 3 corresponds
to the standard model and considers neither interac-
tions nor rotation (M/(xg)). Curve 4 is constructed
according to formula (18) at z = 12 and involves the
influence of interactions in the dwarf model without
rotation. As can be seen from the figure, the maxi-
mal mass of a dwarf at the maximal rotation velocity
exceeds the mass in the standard model without ro-
tation and interactions approximately by a factor of
5.4% at o = 10; 4.4% at zg = 20; and 4.1% at
o — 30.

The dependences of dwarf’s mass on the xg
in Chandrasekhar’s model M (zo) [the model wi-
thout rotation, but accounting the interactions [1 —
—@1(wo, 2)]>/2M(x0)], the maximal mass in the
model with rotation (but without the interactions)
M(mo,ﬁmax), and the mass in the model with ro-
tation and interactions [1—¢1(xo, z)]?’/QJ\/l(a;o7 Qmax)
are given in Table 6.

5. Stability of Degenerate Dwarfs

The maximal mass of dwarfs is related to the problem
of their stability. There are two main causes for the
instability of such star at high densities. The first of
them is the neutronization process, which leads to a
decrease of the electrons concentration. The thresh-
old value of the relativistic parameter at the center
of the star

1/3
Ty = apQyg (3772 /J0> ,

— (39)

where ag is the Bohr radius, «q is the fine structure
constant, and pg is the threshold density of neutron-
ization reaction. In Table 7, we give the value of pg
for several chemical elements (in g/cm”) taken from
work [15] and the calculated threshold value of the
relativistic parameter xg,

9 \1/3
zo = () 0.7976 x 10 2pp/>.

e (40)

The influence of the neutronization was considered
in [16].

The second cause for the instability is the effects
of general theory of relativity (GTR). Restrictions
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on the degenerate dwarf mass involving the effects
of GTR were first considered in work [6] in the ap-
proximation of Chandrasehkar’s model (without in-
teractions and rotation). For the consideration of the
interactions, we use the Oppenheimer—Volkoff equa-

tions
£ ot 21

x (1 + 4m3]\f(53)62> (1 - zeﬂfc(g))_l, (41)
W g

in which M (r) is the mass in a sphere of radius r. Let
us substitute the expression for the pressure (6) in the
left-hand side of the first equation and expand the
right-hand side in a series in ¢~2, by retaining only
linear terms and putting f(x(r)|z) = 0 in them. In
the dimensionless variables (8), Eq. (41) is reduced
to the differential equation

1/2
Ld { 2%y —«S%(&IZ)C% {y2+20y} } =

£2de > de e
3/2
=— {92 - 602/} {1 + 7(330)9(5)} -
B (o) dg(§)
e M(§) i (42)

Here, we used the notations

. d 9 1/2
(612) = (20) > 1 flols) by 2 =0 (17 + 20)
B 1 ) 2 1/2
9&) =7 (y + 501/) +
3 2 2 (43)
; (?f + Eoy) ;

& 3/2
M) = [ {y2<ﬁ’>+;y<5'>} @'
0

In the nonlinear integral-differential equation (42),
two independent parameters xg and z appear, as well
as the dimensionless parameter

mo

o _3
~ — x107°.
Moy e 4

¥(20) = €o(z0) (44)
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Substituting ¢(£|z) to ¢(xolz) and introducing the
new variable £ = £/k (where k = [1 — p(z0]2)]'/?),

Table 6. Dependence of the dimensionless

dwarf mass on the parameter x¢ in different
approximations: M(zo), (1 — @1(z0,2))3/2M(z0),
M (o, ﬁmaX)a 1 — e1(zo, Z))S/ZM(‘EOa fzmaX)

(see text)

(1 = ¢1(z0,2))*/> M(z0)
xo M(zo)
z=2 z=12 z =26
5.0 1.76395 1.740419 1.696298 1.654323
6.0 1.82404 1.799697 1.754065 1.710638
7.0 1.86521 1.840310 1.7936401 1.7492106
8.0 1.89462 1.869321 1.821909 1.776757
9.0 1.91634 1.890746 1.842785 1.797095
10.0 1.93284 1.907022 1.858643 1.812542
15.0 1.97619 1.949781 1.900299 1.853099
20.0 1.99337 1.966725 1.916804 1.869154
25.0 2.00186 1.975098 1.924957 1.877079
30.0 2.00665 1.979821 1.929557 1.881546
- (1 _901(1'072:))3/2'/\/[(1:01@1116’()
o M(I07 Qmax)
z=2 z=12 z =26
5.0 1.863482 1.838623 | 1.792012 | 1.747669
6.0 1.928908 1.903166 1.854910 1.808987
7.0 1.968121 1.941846 1.892602 1.845721
8.0 1.998099 1.971418 | 1.921417 | 1.873799
9.0 2.017770 1.990821 1.940322 | 1.892214
10.0 2.033656 2.006491 1.955589 | 1.907083
15.0 2.068962 2.041313 | 1.989509 | 1.940093
20.0 2.081174 2.053355 | 2.001235 | 1.951486
25.0 2.087382 2.059477 | 2.007194 | 1.957270
30.0 2.088186 2.060267 | 2.007960 | 1.957998
Table 7. Threshold of of the neutronization
process for several chemical elements
Nucleus o o
4He 1.37 x 101! 41.117
§C 3.90 x 100 27.048
360 1.90 x 1010 21.283
20Ne 6.21 x 10° 14.661
24Mg 1.97 x 10° 9.999
S8Fe 1.14 x 109 8.332
785




M.V. Vavrukh, D.V. Dzikovskyi, S.V. Smerechynskyi

1.6

gx)

1.4 1

1.2 1

0.8 A

0.6 T T T T T

1 2 3 4 5 6
Fig. 5. Dependence of the function §(£) on the variable &
at different values of the relativistic parameter z¢ (curve 1 —
z0 = 15; 2 - o = 20; 8 — 0 = 25)

15,
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Fig. 6. Solutions of Eq. (50) at different values of the rel-
ativistic parameter zo (curve I — zg = 15; 2 — zg = 20; 3 —
zo = 25)

we transform (42) to the form

1d (md)_ f, 21"
8%@§®_ @+%% .

~ T - dg
x{1+v(xo)§(£)}—7<§20) 9 Z(gc), (45)
where
o k€ 3/2
m@ = [@r e+ 2if . (46)
0
786

and §(€) is related to §(€) by the expression

2 ~ ~
fM©+

2
P (172 + 2~>. (47)
AM(E) €0
The terms in Eq. (45), which are proportional to
the parameter y(zp), play the role of small correc-
tions. So, to simplify the finding of the solution, we
calculate them, by basing on gg (5 ), which satisfies the
zero-approximation equation

1d (pd \__[o, 21"
& dé (5 d5y0> - {y”eoy”} '

In this approximation, the functions g(g) and % i g(f)

(48)

are simply the given functions of the variable & and
the parameter xo. The function §(€) is depicted in
Fig. 5.

With the help of the substitution

(&) = §0(€) + (o) (),
we get the equation for 7y (€):
1 d (xd 1

5 (@) + 30 [300+ |

XW@+;wﬂW:

(49)

) di(E

ME O
& dg

The boundary conditions corresponding to this equa-

tion are

(0 (0) =0,

9 P
gao+m@ﬁ -
[=00]

jéfgl@ —0 by £=0, (51)

and the asymptotics

71(6)=— i {1 + 50}2{1 +3 (1 + i>3/2}+ . (52)

at € < 1. Solutions of Eq. (50) obtained by the nu-
merical integration are depicted in Fig. 6.
In the used approximation, the mass of a star

{1 — 0|Z)}3/2 X
x {M(zo) — 7(560)/\41(330)}7
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M (x0lz) =

(53)
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where M(xg) corresponds to the standard model,

§1(mo)

Mio) =3 [ En@ [@0(5)+€10]><
0
] e
% [ﬂ%(é‘HfOzJ (5)} . (54)

Ratios (53) and (54) determine the mass of a dwarf
with regard for the interactions and the effects of
GTR, but without rotation. As is shown in Table 6,
under the influence of the axial rotation, the mass of
a dwarf increases by the magnitude

AM(‘TO’ZvQ) = {1 - @(IO|Z)}3/2 x

x {M(xq, Q) — M(x0)}. (55)
Now, the dimensionless mass of a degenerate dwarf
in the model with the rotation, interactions, and the
GTR effects can be written in the form

METR (20 2.Q) = M(xg, 2) +AM(z0,2,Q) =

= {1 — p(xo|2)}¥*{M (20, Q) —v(20) M1 (z0)}. (56)

The maximal value of the magnitude corresponds to
Q= Qmax(xo), and the minimal one to = 0. Be-
cause the parameter vy(xzg) is proportional to (),
the quantity MSTR(x, 2, Q) as a function of zy has
the maximum at some point z{, which is approxi-
mately determined by the equation

Mo

d
M () = ——M(xp, Q).

Moy fle dmo <57)

We have that zj is in the region of large values
of the relativistic parameter, where the derivative
%M(xm ) is about 1073. As can be seen from Ta-

ble 6, this derivative decreases with increasing €2, so
the increase of the angular velocity leads to a de-
crease of ;. Furthermore, 2 almost does not depend
on the nuclear charge z, in contrast to the maximal
value of the mass METR (g%, 2, Q). In Table 8, we give
the masses with the interactions, MGTR(JUS, z,0), and
with the interactions and rotation, MGTR(QUS,Z,Q)
(SM corresponds to the model without interactions
and rotation). As follows from the numerical calcula-
tion, x(()l) < xg < x(()Q) at the change of the angular
velocity from 2 = Qunax t0 © = 0. The maximal mass
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Table 8. Critical parameters
of the degenerate dwarfs in the difference models

w(()Q) MGTR(mO,Z7O)

26.2 SM z=2 z=12 z =26
1.97531 1.94889 1.89942 1.85217

xél) MGTR(QCO,Z,Q)

23.2 SM z=2 z=12 z =26
2.06117 2.03362 1.98199 1.93270

of a degenerate dwarf at the fixed value of z varies
within MGTR(:U((JQ),Z,O) to MGTR(:Eél),z7Q), where
2 =232 (at © = Qa); i = 26.2 (at @ = 0). As
shown in Table 8, the change area x{ is small, and xél)
is close to the threshold values of the parameter x,

corresponding to the processes of neutronization (see
Table 7).

6. Conclusions

We have shown that the influence of the compet-
ing factors significantly affects the characteristics
and internal structure of degenerate dwarfs. The in-
teractions cause a decrease of the mass of degen-
erate dwarfs. The axial rotation can partially (de-
pending on the ) compensate the influence of the
Coulomb interactions at z < 15. In this case, the
dwarf mass can exceed Chandrasekhar’s limit. In
the region z > 15, this compensation is generally
impossible, so the masses of such dwarfs cannot
exceed this limit. The effects of GTR slightly re-
duce the mass of a dwarf, but cause the instabil-
ity. The parameter xfj, at which instability occurs,
does not depend on z, but only on Q. The critical
value of xf; decreases with increasing the parame-
ter Q. The area of existence for helium, carbon, and
oxygen depends on the effects of GTR. For mag-
nesium, silicon, and iron, the instability is caused
by the neutronization effects. This implies that, for
the majority of real dwarfs, the processes of neu-
tronization and the effects of GTR may be equally
important.

Our conclusions are in accordance with the fact
that the dwarfs with masses, which are very close or
exceed Chandrasekhar’s limit, are observed in binary
systems, where the accretion plays a key role. After
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Table 9. Coefficients of Pade approximants in (68)

Parameter al az as b1 bo
10,0(€) 0.153879 0.0053588 0.000783991 0.128076 0.00472131

Apg 2(&) —0.715078 —0.0281033 —0.00189924 0.246085 0.0107499
¥1,0(8) —0.07444 0.00657361 —5.31141-10~° 0.0325496 —8.49965 x 10~°
¥1,2(€) —0.0474332 0.220168 —0.0139001 0.522588 0.000121221
b2,0(§) 0.0855804 —0.0143799 0.000190155 0.00216296 4.69667 x 1075
2,2(8) —0.399671 0.0584875 —0.00113677 —0.0051055 3.2652 x 10~°
y1(§) —0.499189 —0.034939 —1.42124 x 10—° 0.315363 0.0286252
y2(&) —0.377538 0.162672 0.000116145 1.00894 0.057591

all, the matter consisting of elements with small z
falls, during the accretion process, on a degenerate
dwarf.

APPENDIX 1.
The equation of state in the electron-nuclear
model at T =0 K

In work [13], the energy in the electron-nuclear model was pre-
sented in the form

E(z]z) = Ee(z) + Epol(z]2) + Er(z]2), (58)

where E.(x) is the energy of the homogeneous relativistic elec-
tron subsystem with the Coulomb interactions, Eyq1(x|z) is the
energy of a polarization of the electron subsystem by nuclei,
Ep (z]z) is the energy of effective n-particle screening interpar-
ticle interactions.

Herewith,

Ec(z) = Eo(z) + Eur(z) + Ec(x), (59)

where Eo(z) is the energy in the homogeneous ideal electron
model, Epr(z) = —3/(47) Neagmoc?z is the Hartree-Fock ap-
proximation term, Ec(z) = = Nemoc?adec(z) is the correla-
tion energy, and ag = = €2/(hc) is the fine structure constant.

The dimensionless factor e.(z) was approximated with the
expression

T

bo / bia + t1/2 y
2 J t3/2 4 tbia + t1/2bza? + bzad
0

ee(z) =

« 1+ ait+ a2t2
1+ dot

a = (aon)/?; n=(97/4)"3; a1 = 2.25328;

az = 4.87991; do = 0.924022; by = 0.0621814;

by = 9.81379; by = 2.82214; bz = 0.69699.

The polarization energy

Epoi(z) = Nemoczzag/2€pol(x), (61)

dt, (60)

where, in the approximation of two-particle correlations,

T
( ) / Co+clt+62t2+63t3
> Tr) = —
pol 14 dit + dot? + d3t3

dt, (62)

788

co = 4.06151; c¢; = 32.6118; co = —43.6587;
c3 =104.13; di = 73.8252; dp = —67.1028;
d3 = 189.781.
In the same approximation, the lattice energy (the sum of
two-particle effective interactions)

Ep(z|2) = Nemoc?p2z0-61803¢ ()

)

x

t t2
e () = _/ g1 + g2t + g3 tdt, (63)
J 14 qit + g2t? + g3t3

g1 = 18.5394; go = —15.7018; g5 = 52.9999;
q1 = 42.5037; go = —39.1122; g3 = 132.253.

The relationship between the pressure and the energy

dE(z|z) z* /moc\3 1 dE(z|2)
P == ——) —=— 64
@) == =N ( h ) or2  dv (64)
leads to expression (6), where
fwv>=2am4{l—
™
_dd (z0‘61803€L(z)+za1/2€ o1($)+aoec(m)) . (65)
3dx o P

At large values of the relativistic parameter x, all energy terms
are proportional to z. The contributions of three-particle cor-
relations are negligible.

APPENDIX 2.
Approximation for the basis functions

The Pade approximant for yo(§) given in (31)
 14a182 + asf* + azé®

= , 66
N = e ety e (66)
where
a1 = 37.9322, a2 = —0.339691, a3 = —0.00963653,
b1 = 38.0974, by = 5.9891, bz = 10.0382075. (67)

The Pade approximant for y1(£), y2(£), ¥1,0(£), ¥1,2(£) (see

(31))
_a18% + apt* + azé®
1= 14 b1&2 +bpét

The coefficients are shown in Table 9.

(68)
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BPAXYBAHHA KOHKYPYIOYIX
DAKTOPIB ITP11 POSPAXYHKAX XAPAKTEPUCTUK
HEMATHITHUX BUPO/>KEHUX KAP/JINKIB

Peszmowme

Ha ocnosi mobymoBaHOro pasimie piBHSIHHSI CTAHy €JIEKTPOH-
SZIEPHOI MOJIeJIi IIPU BHCOKHMX I'yCTHHAX Ta 3a JOIOMOIOIO0 PiB-
HSIHHSI MEXaHIYHOI PiBHOBArw JOCJI/I?KEHO BILJIUB MiXKYaCTHH-
KOBHUX B3a€EMOJIill 1 0CbOBOro Ob6epTaHHsl Ha MAKPOCKOIIYHI Xa-
pakTepucTuku (Maca, GpopMa IOBEpXHi) MACHBHUX BHPOJKE-
HUX KapJIUKiB. 3aIIPOIIOHOBAHO METO 3HAXOIKEHHS PO3B’A3KiB
piBHSAHHS PIBHOBAru 3a HasiBHOCTI 0O€pTaHHS, 110 I'PYHTYETHCH
Ha BUKOPHCTaHHI 6asnucy yHiBepcaJbHuUX (DYHKIIH paaiaabHOT
3MiHHOI. BcTaHOBI/IEHO YMOBH, IIPU SKUX OCbOBE OOEPTAHHS MO-
2Ke KOMIIEHCYBATH 3MEHIIIEHHSI MaCH, 3yMOBJIEHE KYJIOHIBCbKU-
MU B3aeMoZisMu. BusHadeHo MakcuMasbHe 3HAYECHHS I1apaMe-
Tpa PeISTUBI3MY, IDU SIKOMY [TOPYIIYE€ThCs CTablJIbHICTD 3a pa-
XYHOK ed€eKTiB 3araJbHOI Teopil BiJHOCHOCTI.
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