В. ШМІД,
¹ А. ПОДОЛЯН,¹ А. НАДТОЧІЙ,¹ О. КОРОТЧЕНКОВ,¹ Б. РОМАНЮК,² В. МЕЛЬНИК,² В. ПОПОВ,² О. КОСУЛЯ
 2

¹ Київський національний університет імені Тараса Шевченка, фізичний факультет (Вул. Володимирська, 64/13, Київ 01601; e-mail: shmdvi@gmail.com)

² Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України (Пилит Илити (1. К. ї. 02028)

(Просп. Науки, 41, Київ 03028)

УДК 538.9

ФОТОЕЛЕКТРИЧНІ ВЛАСТИВОСТІ ПЛІВОК SiGe, ПОКРИТИХ ШАРАМИ АМОРФНОГО ТА ПОЛІКРИСТАЛІЧНОГО КРЕМНІЮ

Виявлено, що тонкі шари аморфного та полікристалічного Si (відповідно a-Si та poly-Si), нанесені на поверхню Ge_{0,25}Si_{0,75}, суттево зменшують величину негативної фото-EPC, відтворюваній у шарі Ge_{0,25}Si_{0,75}, нанесеному на підкладку кристалічного Si. У той самий час, при достатній глибині проникнення світла, що включає обидва нанесені шари та приповерхневу область підкладки Si, у проміжки часу, більші за $\approx 10-$ 20 мкс після закінчення світлового імпульсу, спостерігається фото-EPC позитивного знака. Виявлено також, що насичення киснем шару a-Si в гетероструктурі a-Si/Ge_{0,25}Si_{0,75}/c-Si призводить до суттевого зростання величини додатної складової сигналу фото-EPC (в 6 разів у наших експериментах). Такий ефект може бути використано для розробки ефективних сонячних елементів на основі гетероструктури a-Si/Ge_xSi_{1-x}/c-Si.

Ключові слова: фото-ЕРС, SiGe, a-Si, poly-Si.

1. Вступ

В останні роки значно зріс інтерес до фотоелектричних властивостей гетероструктур Ge/Si, особливо в спектральному діапазоні 1,3–1,55 мкм. Інтенсивно розробляються нові типи фотодетекторів на міжзонних переходах в низьковимірних гетероструктурах кремнію і германію. Такі пристрої можуть застосовуватися в волоконно-оптичних лініях зв'язку і системах спостереження [1–3].

Крім того, інтерес до гетероструктур Ge/Si проявляється через величезні перспективи їх використання в сонячній енергетиці [4–7]. Однак, технології виготовлення високоефективних сонячних батарей досі в значній мірі покладаються на структури на основі кристалічного кремнію (с-Si). Ві-

© В. ШМІД, А. ПОДОЛЯН, А. НАДТОЧІЙ,

О. КОРОТЧЕНКОВ, Б. РОМАНЮК, В. МЕЛЬНИК, В. ПОПОВ, О. КОСУЛЯ, 2019 домо, що обірвані зв'язки на поверхні с-Si діють як ефективні рекомбінаційні центри, зменшуючи час життя носіїв заряду [8]. Для збільшення коефіцієнта оптичного поглинання та часу життя фронтальна поверхня сонячного елемента на базі кристалічного Si зазвичай покривається антирефлексійним пасивуючим шаром SiO₂ чи Si₃N₄ [9, 10].

В альтернативному підході в ролі пасивуючого шару на поверхні с-Si може використовуватись аморфний кремній (a-Si) [11–17]. Підкреслювалось, наприклад, що гетероструктури a-Si/c-Si мають переваги щодо більшої довжини рознесення фотогенерованих носіїв заряду протилежного знака [18], коли носії заряду відштовхуються від межи поділу з відповідним зменшенням темпу поверхневої рекомбінації.

Крім с-Si, широко вживаними є сонячні елементи, виготовлені із а-Si та полікристалічного кремнію (poly-Si) [19–21]. Однак, poly-Si страждає від

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 5

Puc.1. Зразки, використані у вимірюваннях. Зразок $\rm F-Ge_{0,25}Si_{0,75}$ на с-Si, $\rm F_1$ – poly-Si/Ge_{0,25}Si_{0,75}/c-Si, $\rm F_2$ – a-Si/Ge_{0,25}Si_{0,75}/c-Si, $\rm F_2'$ – a-Si(O)/Ge_{0,25}Si_{0,75}/c-Si

наявності границь зерен, що погіршують електричні та оптичні властивості, впливаючи на ефективність пристрою. Ця ефективність для poly-Si багато в чому залежить від властивостей переносу заряду, обмежених міжзеренними потенціальними бар'єрами та дефектними станами. Для зменшення впливу цих станів їх можна пасивувати, наприклад, плазмовою гідрогенізацією [22–25] чи обробкою у парі H₂O [26].

В той самий час, практично відсутні роботи, присвячені дослідженню особливостей фотоелектричного перетворення у гетероструктурах Ge/Si. Наявні повідомлення стосуються покращення ефективності енергоперетворення у подвійному гетеропереході a-Si/c-Ge_xSi_{1-x}/c-Si [27], зменшення швидкості рекомбінації у структурі n-Si_{0,85}Ge_{0,15}/ p-c-Si при покритті верхнього шару пасивуючою плівкою гідрогенізованого a-Si:H [28], процесів надбар'єрної активації носіїв заряду на гетеропереходах у структурі a-Si/c-Ge_xSi_{1-x}/p-c-Si [29]. Наше попереднє дослідження демонструє суттєве збільшення величини фото-EPC у структурі "наноострівці Ge_xSi_{1-x}/c-Si" при покритті кремнійгерманієвого шару пасивуючою плівкою a-Si [30].

Тому метою даної роботи було дослідження фото-ЕРС у структурах підкладка с-Si/100-нм шар Ge_{0,25}Si_{0,75} при нанесенні на них плівок a-Si та poly-Si.

2. Зразки та методика експерименту

Зразки Ge_{0,25}Si_{0,75}/с-Si виготовлялись методом епітаксіального нарощування (LP(RT)CVD) навмисно нелегованого кремній-германієвого шару товщиною 100 нм на підкладці Cz–Si(100) *p*-типу з питомим опором близько 10 Ом-см (зразок F у подальших вимірах). У подальшому на шар Ge_{0.25}Si_{0.75} наносилася плівка навмисно нелегованого аморфного кремнію a-Si товщиною 10 нм (зразок F₂). Нанесення проводилось при температурі 520 °C методом плазмохімічного осадження (PECVD). Частина зразків F₂ прогрівалася протягом 5 хв при 400 °C в атмосфері кисню (зразок F_2). Для створення плівки на основі полікристалічного кремнію poly-Si на частину зразків F за допомогою плазмохімічного методу був нанесений шар навмисно нелегованого аморфного кремнію товщиною 15 нм, який відпалювався при температурі 640 °С. В результаті відпалу плівка кристалізувалася в poly-Si (зразок F₁). Усі зразки, які використовувались в вимірах, наведені на рис. 1.

Розподіл концентрації германію по товщині шару Ge_{0,25}Si_{0,75} аналізувався з використанням часопролітного масспектрометра Ion-Tof-SIMS IV при розпиленні поверхні іонами кисню з енергією пучка 1 кеВ. Необхідність такого контролю зумовлена тим фактом, що температурний відпал, зокрема для зразка F₁, може призводити до розмиття гетероінтерфейсів Ge_{0,25}Si_{0,75}/с-Si внаслідок дифузії германію. Попередніми дослідженнями вирощування тонких шарів $\operatorname{Ge}_x \operatorname{Si}_{1-x}$ на підкладці кремнію при температурі близько 700 °C встановлено, що така дифузія, особливо в полі просторовонеоднорідних деформацій, може бути суттєвою [31]. Результати, подані на рис. 2, свідчать про відсутність дифузії германію в плівку полікремнію в наших зразках.

Експериментальна установка для вимірювання поверхневої фото-ЕРС зображена на рис. 3. Для збудження сигналу фото-ЕРС використовувались

Рис. 2. Профілі розподілу домішок кремнію, германію та карбону в зразках F (верхній графік) та F₁ (нижній графік). Піки на гетероінтерфейсі Ge_{0,25}Si_{0,75}/Si пов'язані зі збільшенням чутливості методики в цій області

напівпровідникові світлодіоди з максимумами в спектрах випромінювання на $\lambda_p = 400$ нм та 870 нм. Прямокутні імпульси напруги живлення світлодіодів тривалістю 1 мкс формувались з використанням генератора Г5-54. Відомо, що світло з довжиною хвилі близько 400 нм сильно поглинається плівками a-Si та poly-Si (глибина проникнення $\alpha^{-1} \sim 30$ нм, де α – коефіцієнт оптичного поглинання) [32]. Воно також сильно поглинається в шарі Ge_{0.25}Si_{0.75} (глибина проникнення світла ~20 нм) [33]. Внаслідок цього нерівноважні носії заряду будуть генеруватись, в основному, в тонкому шарі в околі гетеропереходів a-Si/Ge_{0.25}Si_{0.75} та poly-Si/Ge_{0,25}Si_{0,75}. В той самий час світло із довжиною хвилі на $\lambda_p = 870$ нм слабкіше поглинається в a-Si, poly-Si, Ge_{0,25}Si_{0,75} та с-Si (глибина проникнення світла ~15 мкм), викликаючи майже однорідне збудження нерівноважних носіїв заряду в шарі Ge_{0,25}Si_{0,75}, тобто в околі обох гетеропереходів, утворюваних на границях шару Ge_{0,25}Si_{0,75}.

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 5

Рис. 3. Схематичне зображення експериментальної установки: 1 – скло; 2 – напівпрозорий електрод; 3 – зразок; 4 – слюда; 5 – прижимний контакт; 6 – опір навантаження

Рис. 4. Схема, яка дозволяє пов'язати величину сигналу фото-ЕРС ($U_{\rm PV}$) та вихідний сигнал підсилювача. R_s – опір зразка, R_i – опір навантаження, C_m – ємність, яка виникає між зразком та електродом, C_i – вхідна ємність підсилювача

Світло проходить крізь скло, напівпрозорий електрод та слюду і потрапляє на зразок. Між зразком та напівпрозорим електродом є тонкий шар слюди, приблизно 20 мкм, який утворює плоскопаралельний конденсатор. Зразок закріплений прижимним контактом, який, в свою чергу, був заземлений. Сигнал, отриманий з напівпрозорого електрода, підсилювався і подавався на осцилограф. Опір навантаження перед підсилювачем становив 1 ГОм. Для запобігання зовнішніх впливів на реєструючу електроніку, вимірювальну комірку було розміщено в металевому екрануючому боксі.

Величину вихідного сигналу можна пов'язати із сигналом поверхневої фото-ЕРС, скориставшись еквівалентною схемою, поданою на рис. 4.

Розрахунок дає зв'язок між значеннями вихідного сигналу ΔU підсилювача та сигналу фото-ЕРС у вигляді:

$$\Delta U = (\omega C_m R_i U_{\rm PV}) / (\omega C_m R_s + \omega C_i R_i + \omega C_m R_i + i (\omega^2 C_i C_m R_i R_s - 1)),$$

415

Рис. 5. Схема виникнення поверхневої фото-ЕРС в напівпровіднику, який займає область, ліворуч від вертикальної лінії. E_C і E_V – краї відповідно зони провідності та валентної зони. При поглинанні фотонів з енергією $h\nu$ внаслідок фотозбудження (процес 1) утворюються вільні електрони (e^-) та дірки (h^+). Внаслідок існування приповерхневої області просторового заряду й відповідного вигину зон (пунктирні лінії) спостерігається просторове розділення $e^$ і h^+ у процесах, позначених стрілками 2 і 3. Позначення $U_{PV sat}$ відповідає значенню фото-ЕРС в стані насичення, що спостерігатиметься при високій інтенсивності світла, коли вигини зон повністю компенсуються (суцільні горизонтальні лінії)

де i – уявна одиниця, а ω – циклічна частота модуляції світла.

Отриманий сигнал ΔU зчитується з екрана осцилографа, після чого криві спаду фото-ЕРС програмно обробляються.

Для вивчення зміни кінетики фото-ЕРС в залежності від інтенсивності світла методом інтегруючої сфери досліджувалась залежність потужності випромінювання світлодіодів від струму їх живлення, яка виявляла досить гарну лінійну характеристику.

3. Експериментальні результати та їх обговорення

Відомо, що формування сигналу фото-ЕРС відбувається за рахунок просторового розділення нерівноважних електронів і дірок (e^- і h^+ на рис. 5) полем приповерхневої області просторового заряду напівпровідника. При цьому вигин енергетичних зон в приповерхневому шарі (пунктирні лінії на рис. 5) зменшується. Очевидно, що зі зростанням інтенсивності падаючого світла буде зростати

темп генерації нерівноважних електронів та дірок, що супроводжується зростанням величини сигналу фото-ЕРС та ще більшим згладжуванням вигину зон. Слід очікувати, що починаючи з певного значення інтенсивності падаючого світла темп генерації нерівноважних носіїв досягне такого значення, що енергетичні зони будуть повністю спрямленими (суцільні горизонтальні лінії на рис. 5) [34]. При цьому величина сигналу фото-ЕРС досягне свого максимального значення $U_{\rm PVsat}$ (позначене на рис. 5), яке не буде зростати при подальшому збільшенні інтенсивності фотогенеруючого світла. При цьому максимальне значенням сигналу фото-ЕРС та її знак визначають відповідно абсолютне значення рівноважного вигину зон та напрямок цього вигину. Так, у схемі рис. 5 електрони локалізуватимуться під поверхнею напівпровідника (стрілка 2). Навпаки, при вигині зон у зворотний бік спостерігатиметься приповерхнева акумуляція дірок.

Однак даний метод визначення вигину зон відносно легко застосувати лише для структур, в яких формування сигналу фото-ЕРС відбувається на одному інтерфейсі (наприклад, біля поверхні у схемі на рис. 5). Якщо ж напівпровідникова структура, прикладом якої є кожна з досліджуваних в роботі структур, має декілька інтерфейсів (гетеропереходи та поверхня), розділення нерівноважних носіїв на кожній з меж поділу буде давати свій окремий внесок у результуючу фото-ЕРС.

Для прикладу на рис. 6 зображено зонну структуру для зразка F, побудовану із врахуванням того факту, що гетероперехід $Ge_x Si_{1-x}/Si$ формується у вигляді переходу другого роду [35, 36]. Зрозуміло, що при приповерхневому поглинанні світла (при $\lambda_p = 400$ нм в умовах наших дослідів) фотозбуджені в процесах 1 і 1' електрони e⁻ можуть локалізуватися в мінімумах енергії як в приповерхневій області (стрілка 2), так і біля поверхні підкладки Si (стрілка 2'). При цьому дірки h^+ зосереджуватимуться в глибині шару $\operatorname{Ge}_x \operatorname{Si}_{1-x}$ (стрілка 2" на рис. 6). Як наслідок, виникають дві різнополярні складові сигналу фото-ЕРС, $-U_{\rm PV1}$ та $+U_{\rm PV2}$ на рис. 6, із результуючим значенням $U_{\rm PV} = -U_{\rm PV1} + U_{\rm PV2}$, що характеризується загалом різними часами релаксації цих двох складових. Якщо ж світло поглинається на більшій глибині й проникає в підкладку Si (при $\lambda_p = 870$ нм в нашому випадку), реалізуватимуться також про-

цеси фотозбудження електронів та дірок, позначені стрілкою 1" на рис. 6. Концентрація дірок в глибині шару $\text{Ge}_x \text{Si}_{1-x}$ зросте внаслідок їх переміщення із підкладки Si, позначеного стрілкою 2" на рис. 6. Як наслідок, складова $+U_{\rm PV2}$ сигналу фото-ЕРС суттєво збільшиться у порівнянні з випадком приповерхневого поглинання світла.

Окрім того, кожен із доданків $-U_{\rm PV1}$ та $+U_{\rm PV2}$ буде набувати максимального значення з відповідним спрямленням вигину зон при різних значеннях інтенсивності фотогенеруючого світла. Зрозуміло, що при наявності додаткового шару а-Si чи poly-Si на поверхні структури в зразках F₁, F₂ та F₂ ситуація ще більш ускладнюється. Це означає, що з граничного значення результуючого сигналу фото-EPC ($U_{\rm PVsat}$ на рис. 5), взагалі кажучи, неможливо визначити рівноважні вигини зон на кожному з інтерфейсів.

Беручи до уваги ці факти, в наших вимірах вибиралась така інтенсивність фотогенеруючого світла, яка задовільняла умову низького рівня збудження, при якій зумовлені освітленням зміни вигинів зон на кожному з інтерфейсів були набагато меншими за рівноважні вигини зон.

Типова зміна кінетики фото-ЕРС в залежності від потужності світла у використаній області зміни її значень подана на рис. 7. Наведені криві спаду сигналу фото-ЕРС добре апроксимуються біекспоненціальним законом, $|U_{\rm PV}| = U_1 \exp(-t/\tau_1) +$ $+U_2 \exp(-t/\tau_2)$, зі сталими часу релаксації τ_1 і τ_2 , поданими в таблиці 1. Отримані дані свідчать про те, що зміна потужності світлового випромінювання практично не впливає на форму кінетики фото-ЕРС (близькі значення часів релаксації для різних потужностей у табл. 1). Також не спостерігається насичення сигналу фото-ЕРС в області зміни *P* (вставка на рис. 7).

Часові залежності загасання сигналу фото-ЕРС, зареєстровані в різних досліджених зразках після відключення освітлення із $\lambda_p = 400$ нм та 870 нм, подано відповідно на рис. 8 та 9. Видно, що при фотозбудженні із $\lambda_p = 400$ нм сигнал фото-ЕРС набуває від'ємної величини із відповідним вигином зон E_C і E_V біля поверхні Ge_{0,25}Si_{0,75}, зображеним на рис. 6. У вихідному зразку F амплітудне значення фото-ЕРС набуває максимального значення (крива 1 на рис. 8). Швидкість загасання фото-ЕРС у цьому зразку найбільш повільна (кінетика найбільш затягнута на цій кривій).

Рис. 6. Зонна схема гетероструктури Ge_{0,25}Si_{0,75}/c-Si (зразок F) із можливими процесами розділення фотозбудженого заряду. Вигин зон E_C і E_V біля поверхні Ge_{0,25}Si_{0,75} (зліва на рисунку) відповідає знаку фото-EPC, зареєстрованої при освітленні із $\lambda_p = 400$ нм. На гетеропереході Ge_{0,25}Si_{0,75}/Si вигин зон не враховується

Рис. 7. Кінетика фото-ЕРС в зразку F при збудженні імпульсами світла довжиною 1 мкс світлодіода з $\lambda_p = 400$ нм потужністю P = 1,2 (крива 1), 4,2 (2), 13,1 (3) та 23,2 (4) мВт. Вставка – пікове значення фото-ЕРС в момент виключення світла (Light off) в залежності від P

Таблиця 1. Результати апроксимації даних Fig. 7 біекспоненціальною спадаючою функцією

Потужність світлодіода, мВт	$ au_1$, MKC	$ au_2$, MKC
1,2 (крива 1) 4,2 (крива 2) 13,1 (крива 3) 23,2 (крива 4)	$4,0 \pm 0,1$ $3,9 \pm 0,1$ $3,6 \pm 0,1$ $3,7 \pm 0,1$	$21,2 \pm 0,3 \\ 21,5 \pm 0,3 \\ 20,7 \pm 0,3 \\ 21,0 \pm 0,3$

Рис. 8. Кінетика фото-ЕРС в досліджувальних зразках, при збудженні імпульсами світла довжиною 1 мкс світлодіода з $\lambda_p = 400$ нм: 1 – зразок F, 2 – F₁, 3 – F₂, 4 – F₂'

Рис. 9. Кінетика фото-ЕРС в досліджувальних зразках, при збудженні імпульсами світла довжиною 1 мкс світлодіода з $\lambda_p = 870$ нм. *1* – зразок F, *2* – F₁, *3* – F₂, *4* – F₂'

Таблиця 2. Результати апроксимації даних Fig. 8 біекспоненціальною спадаючою функцією

Зразок	$ au_1$, MKC	$ au_2$, MKC
$F\\F_1\\F_2\\F_2'$	$0,6 \pm 0,1$ $0,6 \pm 0,1$ $0,6 \pm 0,1$ $0,20 \pm 0,05$	$5,6\pm0,1$ - - -

Нанесення плівок poly-Si та a-Si (зразки F_1 та F_2 відповідно) призводить до суттєвого зменшення амплітуди сигналу фото-EPC (в 12 разів з плівкою poly-Si та в 19 разів для зразка з плівкою a-Si

порівняно з відповідним значенням для зразка F), що засвідчує порівняння кривих 3 і 2 із кривою 1 на рис. 8. Також суттєво прискорюється кінетика загасання сигналу фото-EPC.

Для зразка з насиченою киснем плівкою a-Si (зразок F'_2 , крива 4 на рис. 8) амплітудне значення сигналу фото-EPC збільшується більш ніж в 2 рази, порівняно з відповідним значенням в зразку, де плівка a-Si не насичена киснем (зразок F_2 , крива 3 на рис. 8). В той самий час кінетика спаду фото-EPC пришвидшується, порівняно з кінетикою в зразку F_2 .

Ділянки спаду сигналу фото-ЕРС на рис. 8 апроксимувалися сумою експоненціальних кривих. Виявилось, що для зразка F ділянка спаду добре апроксимується біекспоненціальним законом, а для зразків F₁, F₂, F'₂ – моноекспоненціальним. Результати такого обчислення сталих часу загасання τ_1 і τ_2 наведено в табл. 2.

При освітлені світлом із $\lambda_p = 870$ нм, часові залежності сигналу фото-ЕРС суттєво ускладнюються (криві 1–4 на рис. 9). Протягом дії світлого імпульсу в 1 мкс сигнал фото-ЕРС монотонно зростає за абсолютною величиною і набуває від'ємного пікового значення. Після вимкнення збуджуючого світла сигнал фото-ЕРС починає зменшуватись за абсолютним значенням до певного моменту часу, коли він змінює свій знак з негативного на позитивний. Після цього сигнал збільшується, сягаючи максимального позитивного значення, а потім починає монотонно зменшуватись до нуля.

При нанесенні плівок poly-Si (зразок F_1 , крива 2 на рис. 9) та а-Si (зразок F_2 , крива 3 на рис. 9) величина негативного пікового значення сигналу фото-ЕРС в момент освітлення зменшується відповідно в 5,5 та 10 разів, порівняно з вихідним зразком F (крива 1 на рис. 9). Насичення киснем плівки а-Si (зразок F'_2 , крива 4 на рис. 9) призводить до зростання пікового від'ємного значення сигналу фото-ЕРС (в 4,5 раза порівняно зі зразком F_2). Із порівняння даних рис. 8 та 9 видно, що нанесення плівок та обробка в атмосфері кисню впливає загалом подібним чином на негативну ділянку кривої релаксації фото-ЕРС при обох типах фотозбудження.

Навпаки, позитивна складова фото-ЕРС на рис. 9 демонструє дещо іншу тенденцію при нанесенні плівок poly-Si та a-Si (максимальне позитивне значення на кривих 2 і 3 для зразків F_1 та

 F_2 перевищує відповідне значення на кривій 1 для зразка F). При насиченні киснем плівки а-Si (зразок F'_2) спостерігається суттєве зростання величини фото-EPC на додатній ділянці кривої 4 на рис. 9 (в 6 разів порівняно зі зразком F_2).

Зрозуміло, що відмінність кривих релаксації фото-ЕРС, поданих на рис. 8 та 9, зумовлена різною глибиною проникнення світла із $\lambda_p = 400$ нм та 870 нм в зразки. Як зазначено вище, вона становить приблизно 20 нм та 15 мкм для $\lambda_p = 400$ нм та 870 нм відповідно.

Зонні схеми зразків F₁ та F₂, побудовані з використанням даних попередніх досліджень [21, 37, 38], подано на рис. 10 та 11. Подібно до зразка F (рис. 6), при $\lambda_p = 400$ нм збудження носіїв заряду, їх розділення із формуванням фото-ЕРС та рекомбінація, що визначає кінетику загасання фото-ЕРС, будуть переважно відбуватися на гетеропереході a-Si/Ge_{0.25}Si_{0.75} або poly-Si/Ge_{0.25}Si_{0.75}. Процеси такого фотозбудження зображено стрілками 1 та 1' на рис. 10 та 11. Як наслідок, домінуватиме негативна складова фото-ЕРС, позначена як $-U_{\rm PV1}$ на рис. 10 та 11. Зменшення амплітудного значення фото-ЕРС в момент вимкнення світла при нанесенні плівок poly-Si та a-Si можна пов'язати як зі зменшенням вигину зон біля поверхні Ge_{0,25}Si_{0,75} (рис. 6) при нанесенні плівок poly-Si та a-Si, так і з утворенням центрів швидкої рекомбінації носіїв заряду в шарах poly-Si та a-Si і на межах поділу poly-Si/Ge_{0,25}Si_{0,75} та а-Si/Ge_{0,25}Si_{0,75}. Для зразка F₁ останній ефект ілюструється на рис. 10, де стрілками 3 і 4 позначено процеси захоплення електронів на центри рекомбінації RC в шарі poly-Si та інтерфейсні стани IS, а стрілками 3' і 4' – процеси захоплення дірок на них.

Дані табл. 2 свідчать про незмінність швидкої складової загасання фото-ЕРС із τ_1 у зразках F, F₁ та F₂, яка суттєво зменшується при насиченні киснем плівки а-Si у зразку F'₂. Вихідний зразок F виявляє двокомпонентну кінетику (τ_1 і τ_2 у табл. 2), що може свідчити про існування центрів захоплення у шарі Ge_{0,25}Si_{0,75}. При цьому нанесені шари poly-Si та а-Si генерують додаткові центри рекомбінації у них та на межі поділу poly-Si/Ge_{0,25}Si_{0,75}, що й пришвидшує в цілому релаксацію фото-ЕРС.

Досить цікавим є одночасне збільшення амплітуди фото-ЕРС (крива 4 на рис. 8) та скорочення часу релаксації фото-ЕРС (τ_1 для зразка F'_2 у

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 5

Рис. 10. Зонна схема гетероструктури poly-Si/ $Ge_{0,25}Si_{0,75}/c$ -Si (зразок F₁). RC – центри рекомбінації в шарі poly-Si, IS – інтерфейсні стани на межі поділу poly-Si/ $Ge_{0,25}Si_{0,75}$

Рис. 11. Зонна схема гетероструктури a-Si/Ge $_{0,25}$ Si $_{0,75}$ /с-Si (зразок F2)

табл. 2). Дійсно, амплітуду фото-ЕРС у стаціонарному випадку можна подати у вигляді [39]

$$U_{\rm PV}(0) \sim \frac{e\tau GL}{\varepsilon \varepsilon_0},$$

де τ і G – час життя та темп генерації фотозбуджених носіїв заряду, L – довжина просторового розділення нерівноважних e^- і h^+ , ε_0 - електрична стала, а ε – діелектрична проникність. З цього виразу випливає, що зменшення τ (й відповідне зменшення τ_1 у табл. 2) повинно супроводжуватись гасінням амплітуди фото-ЕРС $U_{\rm PV}(0)$, що не спостерігається у зразку F₂'. Відпал в атмосфері кисню вочевидь збільшує величину GL.

419

При збудженні нерівноважних носіїв заряду світлом із $\lambda_p = 870$ нм, їх розділення та рекомбінація будуть відбуватися на обох гетеропереходах – poly-Si/Ge $_{0.25}$ Si $_{0.75}$ або a-Si/Ge $_{0.25}$ Si $_{0.75}$ та $Ge_{0,25}Si_{0,75}/c$ -Si (стрілки 1'' та 1''' на рис. 10 та 11). Це й зумовлює виникнення позитивної складової фото-ЕРС $+U_{\rm PV2}$, цілком подібно до розглянутої вище фото-ЕРС у зразку F (рис. 6). Зміну знака сигналу фото-ЕРС, яка спостерігається у цьому випадку, можна пояснити тим, що процеси рекомбінації нерівноважних носіїв у приповерхневих шарах зразків F, F₁ та F₂ відбуваються набагато швидше у порівнянні з процесами рекомбінації на гетеропереході Ge_{0,25}Si_{0,75}/с-Si. Окрім того, можна припустити, що при насиченні плівки a-Si киснем відбувається не тільки зменшення часу життя нерівноважних носіїв заряду в a-Si, a й часткове зміщення положення рівня Фермі в Ge_{0.25}Si_{0.75}, результатом якого є збільшення вигину зон та рознесення нерівноважних носіїв заряду (збільшення L у виразі для $U_{PV}(0)$) на гетеропереході Ge_{0.25}Si_{0.75}/с-Si. Як наслідок, починаючи з деякого моменту часу після вимикання світла, позитивна складова сигналу фото-ЕРС починає домінувати над негативною складовою сигналу, утворюючи результуючу позитивну фото-ЕРС (рис. 9).

4. Висновки

1. Виявлено, що при збудженні імпульсами світла з піковою довжиною хвилі 400 нм сигнал фото-ЕРС в гетероструктурах $Ge_{0,25}Si_{0,75}/c$ -Si, poly-Si/Ge_{0,25}Si_{0,75}/c-Si, a-Si/Ge_{0,25}Si_{0,75}/c-Si та а-Si(O)/Ge_{0,25}Si_{0,75}/c-Si монополярний і від'ємний, а при фотозбудженні на 870 нм – біполярний.

2. Нанесення тонких шарів a-Si та poly-Si на поверхню $Ge_{0,25}Si_{0,75}$ призводить до суттєвого зменшення величини та прискорення швидкості релаксації від'ємної складової сигналу фото-EPC і незначного збільшення величини додатної складової сигналу фото-EPC.

3. Насичення киснем шару а-Si в гетероструктурі а-Si/Ge_{0,25}Si_{0,75}/с-Si призводить до суттєвого зростання величини додатної складової сигналу фото-EPC. Такий ефект може бути використано для розробки ефективних сонячних елементів на основі гетероструктури а-Si/Ge_xSi_{1-x}/c-Si.

4. Запропоновано модельні уявлення, згідно з якими формування та релаксація додатної і від'ємної складових сигналу фото-ЕРС зумовлені просторовим розділенням та рекомбінацією нерівноважних носіїв заряду на гетеропереходах, утворюваних на границях шару $Ge_{0,25}Si_{0,75}$ з підкладкою Si та плівками a-Si і poly-Si. Суттєве зростання величини додатної складової сигналу фото-ЕРС в гетероструктурі a-Si/Ge_{0,25}Si_{0,75}/c-Si з насиченим киснем шаром a-Si в цілому можна пояснити збільшенням вигину зон в шарі $Ge_{0,25}Si_{0,75}$, що викликає більш ефективне рознесення фотогенерованих електронів і дірок в $Ge_{0,25}Si_{0,75}$.

- A. Schüppen. SiGe-HBTs for mobile communication. Solid-State Electron. 43, 1373 (1999).
- K. Washio. SiGe HBT and BiCMOS technologies for optical transmission and wireless communication systems. *IEEE Trans. Electron Devices* 50, 656 (2003).
- Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tada, N. Haneji. Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage siliconbased optical modulators. *Phys. E: Low-dimens. Syst. Nanostruct.* 43, 1433 (2011).
- A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, K. Nakajima, Y. Shiraki. Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure. *Appl. Phys. Lett.* 83, 1258 (2003).
- H. Ferhati, F. Djeffal. Role of non-uniform Ge concentration profile in enhancing the efficiency of thin-film SiGe/Si solar cells. *Optik* 158, 192 (2018).
- X. Zhao, D. Li, T. Zhang, B. Conrad, L. Wang, A. H. Soeriyadi, J. Han, M. Diaz, A. Lochtefeld, A. Gerger, I. Perez-Wurfl, A. Barnett. Short circuit current and efficiency improvement of SiGe solar cell in a GaAsP–SiGe dual junction solar cell on a Si substrate. *Sol. Energy Mater. Sol. Cells* 159, 86 (2017).
- A.A. Shklyaev, V.A. Volodin, M. Stoffel, H. Rinnert, M. Vergnat. Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting. J. Appl. Phys. 123, 015304 (2018).
- A.G. Aberle, S. Glunz, W. Warta. Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si–SiO₂ interface. J. Appl. Phys. 71, 4422 (1992).
- D. Diouf, J.P. Kleider, T. Desrues, P.-J. Ribeyron. Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. *Energy Procedia* 2, 59 (2010).
- R. Pandey, R. Chaujar. Rear contact SiGe solar cell with SiC passivated front surface for >90-percent external quantum efficiency and improved power conversion efficiency. *Solar Energy* 135, 242 (2016).
- Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, edited by W.G.J.H.M. van Sark, L. Korte, F. Roca (Springer, 2012) [ISBN: 978-3-642-22274-0].

- Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells, edited by W.R. Fahrner (Chemical Industry Press and Springer, 2013) [ISBN: 978-3-642-37038-0].
- S. Dauwe, J. Schmidt, R. Hezel. Very Low Surface Recombination Velocities on p- and n-Type Silicon Wafers Passivated with Hydrogenated Amorphous Silicon Films, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (PVSC) (Hyatt Regency, New Orleans, Louisiana, 2002).
- 14. T. Krajangsang, S. Inthisang, J. Sritharathikhun, A. Hongsingthong, A. Limmanee, S. Kittisontirak, P. Chinnavornrungsee, R. Phatthanakun, K. Sriprapha. An intrinsic amorphous silicon oxide and amorphous silicon stack passivation layer for crystalline silicon heterojunction solar cells. *Thin Solid Films* **628**, 107 (2017).
- R.A. Street. Hydrogenated Amorphous Silicon (Cambridge University Press, 2005) [ISBN: 9780521019347].
- Y. Yan, M. Page, T.H. Wang, M.M. Al-Jassim, H.M. Branz, Q. Wang. Atomic structure and electronic properties of c-Si–a-Si:H heterointerfaces, *Appl. Phys. Lett.* 88, 121925 (2006).
- M.Dürr, U.Höfer. Hydrogen diffusion on silicon surfaces. Prog. Surf. Sci. 88, 61 (2013).
- J.P. Seif, D. Menda, A. Descoeudres, L. Barraud, O. Özdemir, C. Ballif, S. De Wolf. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance. J. Appl. Phys. 120, 054501 (2016).
- U. Römer, R. Peibst, T. Ohrdes, B. Lim, J. Krügener, E. Bugiel, T. Wietler, R. Brendel. Recombination behavior and contact resistance of n⁺ and p⁺ poly-crystalline Si/mono-crystalline Si junctions. Sol. Energ. Mat. Sol. C. 131, 85 (2014).
- C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, B. Rech. Polycrystalline silicon thin-film solar cells: Status and perspectives. *Sol. Energy Mater. Sol. Cells* **119**, 112 (2013).
- R. Peibst, U. Römer, Y. Larionova, M. Rienäcker, A. Merkle, N. Folchert, S. Reiter, M. Turcu, B. Min, J. Krügener, D. Tetzlaff, E. Bugiel, T. Wietler, R. Brendel. Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? *Sol. Energy Mater. Sol. Cells* 158, 60 (2016).
- C.H. Seager, D.S. Ginley. Passivation of grain boundaries in polycrystalline silicon. Appl. Phys. Lett. 34, 337 (1979).
- A. Mimura, N. Konishi, K. Ono, J-I. Ohwada, Y. Hosokawa, Y-A. Ono, T. Suzuki, K. Miyata, H. Kawakami. High performance low-temperature poly-Si n-channel TFTs for LCD. *IEEE Trans. Electron Devices* 36, 351 (1989).
- 24. N. Sridhar, D.D.L. Chung, W.A. Anderson, J. Coleman. Polysilicon films of high photoresponse, obtained by vacuum annealing of aluminum capped hydrogenated amorphous silicon. J. Appl. Phys. 78, 7304 (1995).
- J.A. Peck, P. Zonooz, D. Curreli, G.A. Panici, B.E. Jurczyk, D.N. Ruzic. High deposition rate nanocrystalline and

amorphous silicon thin film production via surface wave plasma source. *Surf. Coat. Technol.* **325**, 370 (2017).

- S. Honda, T. Mates, B. Rezek, A. Fejfar, J. Kočka. Microscopic study of the H₂O vapor treatment of the silicon grain boundaries. J. Non-Cryst. Sol. **354**, 2310 (2008).
- 27. S.A. Hadi, P. Hashemi, A. Nayfeh, J.L. Hoyt. Thin film a-Si/c-Si_{1-x}Ge_x/c-Si heterojunction solar cells: Design and material quality requirements. *ECS Transactions* **41**, 3 (2011).
- E. Kadri, M. Krichen, A.B. Arab. Analytical method for the analysis of thin SiGe/Si solar cells with front surface field. *Opt. Quant. Electron.* 48, 305 (2016).
- E. Kadri, K. Dhahri, A. Zaafouri, M. Krichen, M. Rasheed, K. Khirouni, R. Barillé. Ac conductivity and dielectric behavior of thin films synthesized by molecular beam epitaxial method. J. Alloys Comp. 705, 708 (2017).
- A. Podolian, A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov. Enhanced photoresponse of Ge/Si nanostructures by combining amorphous silicon deposition and annealing. J. Appl. Phys. 124, 095703 (2018).
- M.Ya. Valakh, P.M. Lytvyn, A.S. Nikolenko, V.V. Strelchuk, Z.F. Krasilnik, D.N. Lobanov, A.V. Novikov. Gigantic uphill diffusion during self-assembled growth of Ge quantum dots on strained SiGe sublayers. *Appl. Phys. Lett.* 96, 141909 (2010).
- 32. A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat. Thin-film silicon solar cell technology, *Prog. Photovolt.: Res. Appl.* 12, 113 (2004).
- J. Humlicek, F. Lukes, E. Schmidt. Silicon-germanium alloys (Si_xGe_{1-x}). In: *Handbook of Optical Constants of Solids*, edited by E.D. Palik (Academic Press, 1998) [ISBN: 0-12-544422-2].
- L. Kronik, Y. Shapira. Surface photovoltage phenomena: Theory, experiment, and applications. *Surf. Sci. Rep.* 37, 1 (1999).
- C.G.V. de Walle, R.M. Martin. Theoretical calculations of heterojunction discontinuities in the Si/Ge system. *Phys. Rev. B* 34, 5621 (1986).
- O.V. Vakulenko, S.V. Kondratenko, A.S. Nikolenko, S.L. Golovinskiy, Yu.N. Kozyrev, M.Yu. Rubezhanska, A.I. Vodyanitsky. Photoconductivity spectra of Ge/Si heterostructures with Ge QDs. *Nanotechnology* 18, 185401 (2007).
- S. Tardon, R. Brüggemann. Characterization of the interface properties in a-Si:H/c-Si heterostructures by photoluminescence. J. Phys. D: Appl. Phys. 43, 115102 (2010).
- T.F. Schulze, L. Korte, E. Conrad, M. Schmidt, B. Rech. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 107, 023711 (2010).
- A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov. Photovoltage improvements in Cz–Si by lowenergy implantation of carbon ions, *Mater. Res. Express* 3, 055017 (2016).

Одержано 01.11.18

V. Shmid, A. Podolian, A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov, O. Kosulya

PHOTOELECTRIC PROPERTIES OF SiGe FILMS COVERED WITH AMORPHOUS-AND POLYCRYSTALLINE-SILICON LAYERS

Summary

The deposition of thin layers of amorphous (a-Si) or polycrystalline (poly-Si) silicon onto the $Ge_{0.25}Si_{0.75}$ film already covering the surface of a crystalline silicon (c-Si) wafer is found to significantly reduce the magnitude of the negative surface photovoltage (SPV) generated in the Ge_{0.25}Si_{0.75} film. At the same time, if the light penetration depth is sufficiently large, so that light penetrates into both the deposited layers and the near-surface region in the Si substrate, a positive SPV is observed within time intervals exceeding 10–20 μ s after the light pulse terminates. It is also found that the saturation of the a-Si layer in the a-Si/Ge_{0.25}Si_{0.75}/c-Si heterostructure results in a substantial (by a factor of six) growth of the positive component of the SPV signal. This effect can be used while developing efficient solar components on the basis of a-Si/Ge_xSi_{1-x}/c-Si heterostructures.