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PHASE TRANSITIONS AND BOSE-EINSTEIN

UDC 539

CONDENSATION IN ALPHA-NUCLEON MATTER

The equation of state and the phase diagram of an isospin-symmetric chemically equilibrated
mixture of o particles and nucleons (N ) are studied in the mean-field approzimation. We use
a Skyrme-like parametrization of mean-field potentials as functions of the partial densities of
particles. The parameters of these potentials are chosen by fitting the known properties of pure
N- and pure a-matters at zero temperature. The sensitivity of results to the choice of the aN
attraction strength is investigated. The phase diagram of the a — N mixture is studied with a
special attention paid to the liquid-gas phase transitions and the Bose—Einstein condensation
of a particles. We have found two first-order phase transitions, stable and metastable, which
differ significantly by the fractions of a’s. It is shown that the states with o condensate are
metastable.

Keywords: phase transitions, mean-field model, Bose-Einstein condensation, chemical equi-

librium.

1. Introduction

At subsaturation densities and low temperatures, the
nuclear matter has a tendency to the clusterization,
when small and big nucleon clusters are formed un-
der the conditions of thermal and chemical equilib-
rium. This state of excited nuclear matter is realized
in nuclear reactions at intermediate energies known as
the multifragmentation of nuclei [1, 2]. It is believed
that the clusterized nuclear matter is also formed in
outer regions of neutron-stars and in supernova ex-
plosions [3].

In our recent paper [4], we studied the equation
of state (EoS) of an idealized system composed en-
tirely of a-particles. Their interaction was described
by a Skyrme-like mean-field potential. We have found
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that such a system exhibits two interesting phenom-
ena, namely, the Bose—Einstein condensation (BEC)
and the liquid-gas phase transition (LGPT). Ear-
lier, the cold alpha matter was considered micro-
scopically, by using phenomenological v potentials
in Ref. [5].

However, by introducing such one-component sys-
tem, one disregards a possible dissociation of alphas
into lighter clusters and nucleons. The binary o — N
matter in chemical equilibrium with respect to the
reactions a <> 4N was considered in [6], by using
the virial approach. Due to the neglect of quantum
statistics and three-body forces, such approach may
be justified only at small baryon densities.

In this paper, we briefly discuss the results of our
recent article [7], where we studied the isospin-sym-
metric « — N matter under the conditions of chem-
ical equilibrium. The EoS of such matter was calcu-
lated in the mean-field approach, by using Skyrme-
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like mean-field potentials. In our study, we simulta-
neously take into account the LGPT and BEC effects.

2. Mean-Field Model
for Interacting a« — N Matter

Let us consider the iso-symmetric system (with equal
numbers of protons and neutrons) composed of nu-
cleons (N) and alpha-particles (o). A small differ-
ence between the proton and neutron masses and
the Coulomb interaction effects will be neglected. Our
consideration will be restricted to small temperatures
T < 30 MeV. In this case, the production of pions
and other mesons, as well as the excitation of bary-
onic resonances, become negligible. In addition, the
masses my ~ 938.9 MeV and m, ~ 3727.3 MeV are
much larger than the system temperature. Thus, a
non-relativistic approximation can be used in the low-
est order in T'/my.

In the grand canonical ensemble, the pressure
p (T, ) is a function of the temperature T and baryon
chemical potential . The latter is responsible for the
conservation of the baryon charge. The chemical po-
tentials of N and « satisfy the relations

Pa = 4pt, (1)

which correspond to the condition of chemical equi-
librium in the N —a mixture due to the reactions o <>
4N.

Let us denote, by ny and n,, the partial number
densities of N and «, respectively. The baryonic den-
sity ng (T, u) = ny + 4ng, entropy density s, and
energy density ¢ can be calculated from p (T, i), by
using the equations

ne o (2P (9
P \ow)y ar),

To characterize the relative abundances of o’s, we
introduce their mass concentration x = 4n,/np.

In our mean-field model, we consider multiparti-
cle interactions in the o — N matter, by introducing
a temperature-independent “excess part” of the pres-
sure Ap

p=pN(T,nn) + pi(T,na) + Ap(ny, na), (3)

HUN = Ky

e=Ts+pung—p. (2)

where the first and second terms on the right-hand
side (RHS) are, respectively, the pressure of the ideal
gas of nucleons and a’s. At known Ap, one can calcu-
late the chemical potentials of N and « as functions
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of T, nyn,ne. Solving further Egs. (1), we get all ther-
modynamic quantities at given T\, u.

Earlier, we suggested a similar scheme to describe
the particle interactions in one-component « [4] and
nucleon [8] matters. This corresponds, respectively,
to the limiting cases ny — 0 and n, — 0. In the case
of binary a— N mixture, we use a generalized Skyrme-
like parametrization [7] for the excess pressure

Ap(ny,n.) = —(ayn n?\, + 2ananN Ne + aani) +
+bN (nN +€na)’y+2~ (4)

Using Egs. (3) and (4) and applying the thermo-
dynamic relations, we get the expressions
pn = in(T,nn) —2(anny + anana) +

v+ 2

+ by (nn 4 Ena) ', 5
po| N(nN +Eng) (5)
to = ba(T 1) — 2(anany + aqna) +

v+ 2 1

A — a’Y+~
+7+1 NE(nn +Ena) (6)

Here, 11;(T,n;) is the chemical potential of the ideal
gas of ith particles with the density n; (i = N,«).
The second and third terms on RHS correspond to
the attractive and repulsive parts of mean-field poten-
tials for N ans «. Note that, in the region of BEC,
lto reaches its maximum possible value i, = mg,
and n, contains the contribution of Bose-condensed
a’s. In our calculations, we separate the states which
are (meta)stable with respect to fluctuations of par-
ticle densities!.

To choose the model parameters ay,by,7vy, we
fit the ground-state (GS) properties of the cold
(T = 0) iso-symmetric nuclear matter. This is the
state with zero pressure and minimal energy per
baryon. We assume the GS-values puny = 923 MeV,
ny = 0.15 fm~? [8] and choose v = 1/62. The pa-
rameters a,,& are estimated, by using the proper-
ties of a cold a matter. We fit the values of density
(nq = 0.036 fm™3) and binding energy per baryon
(E/B = —12 MeV) obtained in Ref. [5] for the GS of
this matter.

The cross-term coefficient ay, determines the at-
tractive part of the Na mean-field potential. It is

! For such states, the matrix ||Ou;/0n;|| is positive definite.
2 As shown in Refs. [7, 8], such v gives reasonable values of
nuclear compressibility.
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Fig. 1. Isotherm T = 2 MeV of @ — N matter on the (u,p) (a) and (nn,na) (b) planes. The stable, metastable, and unstable
parts of the isotherm are shown, respectively, by the solid, dashed, and dotted lines. The dots PT; and PT2 in (a) show the
positions of stable and metastable LGPT, respectively. The dash-dotted line in (b) is calculated for the ideal & — N gas. Lines
C1 D1 and Cy D2 correspond to the mixed—phase states of PT1 and PTg, respectively. The thin solid line represents the isotherm

T = 2 MeV from Ref. [6]

the only model parameter which is not fixed in
our approach. To constrain this coefficient, we con-
sider contours of the energy per baryon for the cold
a — N matter on the (np, x) plane. Our calculations
show [7] that the properties of GS of such matter
change drastically at some critical value an, = as =~
2.1 GeVfm?®. In the overcritical region ays > ax, the
model predicts nonzero fractions of « in the GS of
the a — N matter. In this case, the GS is stronger
bound as compared to the pure nucleon matter. Ap-
parently, this is in contradiction with phenomenolog-
ical properties of the nuclear matter. Therefore, we
consider only subcritical values of ay,. To probe the
sensitivity to this coefficient, we made calculations
for anye = 1 and 1.9 GeVim®. From the comparison
with results of Ref. [6], we found that the latter value
is more reasonable. Our “preferred” values of model
parameters are given in Table 1.

3. Phase Diagram of a — N Matter

By substituting (5) and (6) into (1) and solving
the resulting equations, we get the isotherms of the
a — N matter for different p. At low enough temper-
atures, one obtains, in general, several solutions for
the pressure at given T, u. Solutions with the largest
(smallest) pressure correspond to stable (unstable)
states. This is a typical situation for LGPT.
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Figure 1, a represents the isotherm 7T = 2 MeV
on the (i, p) plane. According to the Gibbs rule, the
intersection points of (meta)stable branches of the
pressure as functions of p correspond to phase tran-
sitions (PTs). As one can see from Fig. 1, a, there are
two PTs at T = 2 MeV. The first transition, PTy,
occurs at a smaller baryon chemical potential than
for PT5. The states on the dashed lines have smaller
pressure as compared to states with the same p on
the solid lines. Therefore, the second transition PT9
is metastable.

Figure 1, b shows the same isotherm T = 2 MeV,
but on the (ny,n,) plane. The shading represents
the region of BEC. The states between C; and D;
(Cy and D) are mixed-phase states for the stable
(metastable) PT. As compared to PT;, the concen-
trations of a are much larger for the mixed-phase
states of PT5. A strong suppression of « is predicted
at large nucleon densities. According to our calcula-
tion, BEC states are metastable (see the dashed line
in the shaded domain).

Table 1. Model parameters

~ an, b, Ga, ¢ AN,
GeV fm3 | GeV fm35 | GeV fm3 GeV fm3
1/6 1.17 1.48 3.83 2.006 1.9
743
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Fig. 2. Left panels: critical lines of stable (a) and metastable (¢) PT of the @« — N matter on the (i, T) plane. Right panels:
boundaries of the mixed phase for stable (b) and metastable (d) PT of the & — N mixture on the (np,T) plane. Full circles in (a)
and (b) show positions of the critical point. The dashed lines in (¢) and (d) represent boundaries of the BEC region. The open
square (circle) marks the end (triple) point of the metastable PT. The full squares and diamonds show, respectively, the GS

positions for the pure nucleon and pure alpha matters, respectively

Table 2. Characteristics of phase
transitions in a« — N matter

Stable PT Metastable PT
Tcp,|kcp,| nBCP, Tk, | LK, Trp,
MeV|MeV| fm—3 XP o IMev|Mev| X | Mev
14.7 [908.6/5.3 x 1072(6.9 x 1072 | 4.6 [925.7]0.46-0.86| 3.4

Analyzing the results at different T, we get the
phase diagram of the o — N matter. The stable and
metastable parts of this diagram are shown in the
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upper and low panels of Fig. 2. Characteristics of
PT; and PT, are shown in Table 2. Note that the
metastable PT disappears at the temperature Tk ~
~ 5 MeV which is much less than the critical temper-
ature Tcp ~ 15 MeV of the stable PT.

4. Conclusions

Our model describes both the phase transitions and
BEC of the @« — N matter. The results of this pa-
per may be used for studying the nuclear cluster pro-

duction in heavy-ion reactions, as well as in astro-
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physics. We think that the present formalism can be
also used for the binary mixtures of fermionic atoms
and bosonic molecules, like H + Hy or D + Ds.
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®A30BI IIEPETBOPEHHHA
TA KOHIEHCAIIIS BO3E-EMHIIITENHA
B AJTb®A-HYKJIOHHI MATEPII

Peszmowme

PiBusanus crany ta ¢dasosa Jiarpama i30CHiH-CHMETPUYHOL Xi-
MIYHO PIBHOBaXKHO!I CyMilli (v 9aCTHHOK Ta HykKJoHIB (IN) BuH-
BYAETbCs B HAOJIMXKEHHI cepenHboro mojsi. Mu 3acTocoBye-
Mo napamerpusaniio CkipMma JjIsT IOTEeHIiaIiB cepesHbOro mo-
a8 AK (YHKUIA napriajJbHUX TYCTHH 4YacTHHOK. llapamerpm
UX IIOTEHIiaJIiB 3HalIeH] sK pe3yJbTaT MiJArOHKU BiJOMUX
BiacTuBocTeil umcTol N- Ta YHUCTOl a-Marepil Ipu HYyIbO-
Biil Temuneparypi. BuBdena uyrsimBicTh pe3ysibrarTiB 10 BUOO-
py BenumumHu /N nputaranas. Pasosa agiarpama o — N cy-
Milr BHBYAETHCS 3 OCOOJIMBOIO yBarorm 10 IpoIEeciB (a3oBo-
ro epeTBOPEHHS pijuHa-ra3 Ta KoHjgeHcanil boze-Eitnmreitna
I -gacTUHOK. Mwu 3HaxomuMmo gBa (a30Bi IepeTBOpPEH-
Hsl, cTablIbHUI Ta MeTracTabLIbHUIM, sIKi 3HAYHO BiJpi3HsIIO-
ThCsI KOHIIEHTPAIIsSIMU -9acTUHOK. [lokazaHo, 1110 cranu 3 o-
KOH/IEHCATOM € MeTacTablJIbHUMU.
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