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POMERON-POMERON SCATTERINGUDC 539

The central exclusive diffractive (CED) production of meson resonances potentially is a factory
producing new particles, in particular, a glueball. The produced resonances lie on trajectories
with vacuum quantum numbers, essentially on the pomeron trajectory. A tower of resonance
recurrences, the production cross-section, and the resonances widths are predicted. A new fea-
ture is the form of a non-linear pomeron trajectory, producing resonances (glueballs) with in-
creasing widths. At LHC energies, in the nearly forward direction, the 𝑡-channel both in elastic,
single, or double diffraction dissociations, as well as in CED, is dominated by the pomeron
exchange (the role of secondary trajectories is negligible, however a small contribution from
the odderon may be present).
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1. Introduction
The central exclusive diffractive (CED) produc-
tion continues attracting attention of both theo-
rists and experimentalists (see, e.g., [1] and refer-
ences therein). Interest in this subject is triggered by
LHC’s high energies, where even the subenergies at
an equal partition is sufficient to neglect the contribu-
tion from secondary Regge trajectories. Consequent-
ly, CED can be considered as a gluon factory to pro-
duce exotic particles such as glueballs.

Below, we will study CED shown in Fig. 1 with
topology 4. Its knowledge is essential in studies with
diffractive excited protons, topologies 5 and 6.

In the single-diffraction dissociation or single dis-
sociation (SD), one of the incoming protons dissoci-
ates (topology 2 in Fig. 1), in double-diffraction dis-
sociation or double dissociation (DD), both protons
dissociate (topology 3), and, in central dissociation
(CD) or double-Pomeron exchange (DPE), none of
the protons dissociates (topology 4). These processes
are tabulated below as
SD 𝑝𝑝 → 𝑋𝑝

or 𝑝𝑝 → 𝑝𝑌

DD 𝑝𝑝 → 𝑋𝑌

CD (DPE) 𝑝𝑝 → 𝑝𝑋𝑝,
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where 𝑋 and 𝑌 represent diffractive dissociated
protons.

2. Pomeron/Glueball Trajectory

Regge trajectories 𝛼(𝑠) connect the scattering region,
𝑠 < 0, with that of particle spectroscopy, 𝑠 > 0. In
this way, they realize the crossing symmetry and an-
ticipate the duality, i.e., the dynamics of two kine-
matically disconnected regions is intimately related:
the trajectory at 𝑠 < 0 should “know” its behavior in
the cross channel and vice versa. Most of the familiar
meson and baryon trajectories follow the above regu-
larity: with their parameters fitted in the scattering
region, they fit the masses and spins of relevant reso-
nances, see, e.g., [2]. The behavior of trajectories both
in the scattering and particle regions is close to lin-
ear, which is an approximation to reality. Resonances
on real and linear trajectories imply unrealistic in-
finitely narrow resonances. Analyticity and unitarity
also require that the trajectories be non-linear com-
plex functions [3,4]. Constraints on the threshold and
asymptotic behaviors of Regge trajectories were de-
rived from dual amplitudes with Mandelstam ana-
lyticity [4]. Accordingly, near the threshold (see also
[5–7])

ℑ𝑚𝛼(𝑠)𝑠→𝑠0 ∼ (𝑠− 𝑠0)
𝛼(𝑠0)+1/2, (1)
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while the trajectories are constrained asymptotically
by [4]⃒⃒⃒⃒
𝛼(𝑠)√
𝑠 ln 𝑠

⃒⃒⃒⃒
𝑠→∞

≤ const. (2)

The above asymptotic constrain can be still low-
ered to a logarithm by imposing (see [8] and ear-
lier references) the wide-angle power behavior for the
amplitude.

The above constrains are restrictive, but still leave
much room for the model building. In Refs. [9, 10],
the imaginary part of the trajectories (resonances’
widths) was recovered from the nearly linear real part
of the trajectory by means of dispersion relations and
fits to the data.

While the parameters of meson and baryon tra-
jectories can be determined both from the scatter-
ing data and from the particle spectra, this is not
true for the pomeron (and odderon) trajectory, known
from fits to scattering data only (negative values of
its argument). An obvious task is to extrapolate the
pomeron trajectory from negative to positive values
to predict glueball states at 𝐽 = 2, 4, ... was not
solved. Given the nearly linear form of the pomeron
trajectory, known from the fits to the (exponential)
diffraction cone, little room is left for variations in the
region of particles (𝑠 > 0.) The non-observability of
any glueball state in the expected values of spins and
masses may have two explanations: 1. glueballs ap-
pear as hybrid states mixed with quarks, which makes
their identification difficult; 2. their production cross-
section is low and their widths is large. To resolve
these problems, one needs a reliable model to pre-
dict cross-sections and decay widths of the expected
glueballs, in which the pomeron trajectory plays a
crucial role.

Models for the pomeron/glueball trajectories were
proposed and discussed in quite a number of pa-
pers [11–14]. They range from simple phenomeno-
logical (also linear) models to quite sophisticated
ones, involving QCD, lattice calculations, extra di-
mensions, etc. The basic problem of the production
cross-sections and the decay widths of produced glue-
balls in the cited papers remains open. Close to the
spirit of the present approach are papers [12–14],
where the pomeron/glueball trajectory, including the
threshold singularities is manifestly non-linear, and
the real part terminates.

Fig. 1. Regge-pole factorization

Fig. 2. Pomeron-pomeron total cross-section in CED calcu-
lated in Ref. [1]

We continue the lines of researches initiated in
Refs. [1, 15] in which an analytic pomeron trajectory
was used to calculate the pomeron-pomeron cross-
section in the central exclusive production measur-
able in the proton-proton scattering, e.g., at the
LHC. The basic idea in that approach is the use of a
non-linear complex Regge trajectory for the pomeron
satisfying the requirements of the analytic 𝑆-matrix
theory and fitting the data. Fits imply high-energy
elastic proton-proton scattering data. For the scat-
tering amplitude, the simple and efficient Donnachie–
Landshoff model [16] was used. The essential differ-
ence with respect to many similar studies lies in
the non-linear behavior of the trajectories. They af-
fect crucially the predicted properties of the res-
onances. Our previous papers [1, 15] contain more
than that: the fitted trajectories are used to cal-
culate pomeron-pomeron scattering cross-sections in
the central exclusive diffraction at the LHC. Figure 2
shows the result of those calculations.
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Papers [1, 15] contain detailed analyses and fits
of both the pomeron and non-leading (also com-
plex!) Regge trajectories, the emphases being on the
pomeron/gluon one. In the present study, we revise
the basic object, namely the model of a pomeron tra-
jectory, postponing other details (secondary reggeons,
CED, etc.) to a forthcoming study.

2.1. Scattering amplitude,
cross-sections, resonances

In Ref. [1], the contribution of resonances to the
pomeron-pomeron (PP) cross-section was calculated
from the imaginary part of the amplitude with the
use of the optical theorem:

𝜎𝑃𝑃
𝑡 (𝑀2) = ℑ𝑚 𝐴(𝑀2, 𝑡 = 0) =

= 𝑎
∑︁

𝑖=𝑓,𝑃

∑︁
𝐽

[𝑓𝑖(0)]
𝐽+2 ℑ𝑚 𝛼𝑖(𝑀

2)

(𝐽 −ℜ𝑒 𝛼𝑖(𝑀2))2 + (ℑ𝑚 𝛼𝑖(𝑀2))2
.

(3)

In this section, we concentrate on the pomeron. In
this case, Eq. (3) reduces to

𝜎𝑃𝑃
𝑡 (𝑀2)=𝑎

∑︁
𝐽

𝑘𝐽+2 ℑ𝑚 𝛼(𝑀2)

(𝐽 −ℜ𝑒 𝛼(𝑀2))2 + (ℑ𝑚 𝛼(𝑀2))2
,

(4)

where 𝑘 = 𝑓𝑖(0), and, for simplicity, we set 𝑘 = 1.
We start by comparing the resulting glueball spec-

tra in two ways: first, we plot the real and imaginary
parts of the trajectory (Chew–Frautchi plot) and cal-
culate the resonances’ widths by using the relation
(see, e.g., Eq. (18) in [15])

Γ(𝑠 = 𝑀2) =
2ℑ𝑚𝛼(𝑠)

|𝛼′(𝑠)|
, (5)

where 𝛼′(𝑠) = 𝑑ℜ𝑒𝛼(
√
𝑠)/𝑑

√
𝑠.

2.2. Analytic Regge trajectories

In the previous studies [1, 15, 18], the following two
types of trajectories were considered:

𝛼(𝑠) = 𝛼0 + 𝛼1𝑠+ 𝛼2(
√
𝑠0 − 𝑠−

√
𝑠0), (6)

and

𝛼(𝑠) = 𝛼0 + 𝛼2(
√
𝑠0 − 𝑠−

√
𝑠0) + 𝛼3(

√
𝑠1 − 𝑠−

√
𝑠1),

(7)

In trajectory Eq. (7), the second, heavy threshold
was introduced to mimic the nearly linear rise of the
trajectory for 𝑠 < 𝑠1, avoiding an indefinite rise as in
Eq. (6), thus securing the asymptotic square-root up-
per bound (2). As realized in Refs. [1, 15], these tra-
jectories result in “narrowing” the resonances (here,
a glueball) whose widths decrease, as their masses
increase. Below, we show that this deficiency is reme-
died in a trajectory that satisfies the constraint of
the analytic 𝑆-matrix theory, namely, the threshold
behavior and asymptotic boundedness, and produces
fading resonances (glueballs), whose widths are rising
with mass.

The trajectory is:

𝛼(𝑠) =
𝑎+ 𝑏𝑠

1 + 𝑐(
√
𝑠0 − 𝑠−√

𝑠0)
, (8)

where 𝑠0 = 4𝑚2
𝜋, and 𝑎, 𝑏, 𝑐 are adjustable param-

eters, to be fitted to scattering (𝑠 < 0) data with
the obvious constraints: 𝛼(0) ≈ 1.08 and 𝛼′(0) ≈ 0.3.
Trajectory Eq. (8) has square-root asymptotic behav-
ior, in accord with the requirements of the analytic
𝑆-matrix theory.

With the parameters fitted in the scattering region,
we continue trajectory Eq. (8) to positive values of
𝑠. When approaching the branch cut at 𝑠 = 𝑠0, one
has to choose the right Riemann sheet, For the 𝑠 > 𝑠0
trajectory Eq. (8) may be rewritten as

𝛼(𝑠) =
𝑎+ 𝑏𝑠

1− 𝑐(𝑖
√
𝑠− 𝑠0 +

√
𝑠0)

(9)

with the sign “minus” in front of 𝑐, according to the
definition of the physical sheet.

For 𝑠 ≫ 𝑠0, |𝛼(𝑠)| → 𝑏
𝑐

√︀
|𝑠|. For 𝑠 > 𝑠0 (on the

upper edge of the cut), ℑ𝑚𝛼 > 0.
The intercept is 𝛼(0) = 𝑎, and the slope at 𝑠 = 0 is

𝛼′(0) = 𝑏+
𝑎𝑐

2
√
𝑠0

. (10)

To anticipate subsequent fits and discussions, we
note that the presence of the light threshold 𝑠0 = 4𝑚2

𝜋

(required by unitarity and the observed “break” in the
data) results in the increasing, compared with the
“standard” value of ≈ 0.25 GeV−2, intercept.

2.3. Simple Regge-pole fits
to high-energy elastic scattering data

High-energy elastic proton-proton and proton-anti-
proton scatterings, including ISR and LHC energies,
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were successfully fitted with non-linear pomeron tra-
jectories Eqs. (6) and (7) in a number of papers, see
[17] and references therein. Here, we are interested in
the parametrization of the pomeron (and odderon)
trajectories, dominating the LHC energy region, and
concentrate on the LHC data, where the secondary
trajectories can be completely ignored in the near for-
ward direction.

At lower energies (e.g., at the ISR), the diffrac-
tion cone shows the almost perfect exponential be-
havior corresponding to a linear pomeron trajectory
in a wide span of 0 < −𝑡 < 1.3 GeV2, which is vio-
lated only by the “break” near 𝑡 ≈ −0.1 GeV2. At the
LCH, it is almost immediately followed by another
structure, namely, by the dip at 𝑡 ≈ −0.6 GeV2. The
dynamics of the dip (diffraction minimum) has been
treated fully and successfully [18]. However, those de-
tails are irrelevant to the behavior of the pomeron tra-
jectory in the resonance (positive 𝑠) region and the
expected glueballs there, that depend largely on the
imaginary part of the trajectory and basically on the
threshold singularity in Eq. (8).

In Fig. 3, we show a fit to the low-|𝑡| elastic proton-
proton differential cross-section data [19] at 13 TeV
with a simple model:

𝐴𝑃 (𝑠, 𝑡) = 𝑎𝑃 𝑒
𝑏𝑃 𝑡𝑒−𝑖𝜋𝛼𝑃 (𝑡)/2(𝑠/𝑠0𝑃 )

𝛼𝑃 (𝑡), (11)

where 𝛼𝑃 (𝑡) is given by Eq. (8) (changing the variable
𝑠 to the variable 𝑡).

We used the norm

𝑑𝜎

𝑑𝑡
=

𝜋

𝑠2
|𝐴𝑃 (𝑠, 𝑡)|2. (12)

Figure 4 shows the normalized form of the differ-
ential cross-section (used by TOTEM [19]) illustrat-
ing the low-|𝑡| “break” phenomenon [17] related to
the non-linear square-root term in the pomeron tra-
jectory. However, it should be also noted that the
“break” may be resulted from the two-pion thresh-
old both in the trajectory and the non-exponential
residue, as discussed in [17].

2.4. Extrapolating the pomeron
trajectory to the resonance region, 𝑠 > 0

Fitting to the measured 𝑝𝑝 scattering data, the val-
ues of the pomeron trajectory parameters became
known. Changing back the variable 𝑡 to the variable
𝑠 (crossing symmetry), we can extrapolate now the

Fig. 3. Fitted 𝑝𝑝 differential cross-section at 13 TeV using
amplitude Eq. (11) and trajectory Eq. (8)

Fig. 4. Normalized form of the fitted 𝑝𝑝 differential cross-
section at 13 TeV using amplitude Eq. (11) and trajectory
Eq. (8)

Fig. 5. Real part of the pomeron trajectory Eq. (8) as a
function of 𝑠
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Fig. 6. Imaginary part of the pomeron trajectory Eq. (8) as
a function of 𝑠

Fig. 7. Resonance width Eq. (5) calculated with trajectory
Eq. (8)

Fig. 8. Pomeron-pomeron total cross-section Eq. (4) (set-
ting 𝑎 = 1 and 𝐽 ∈ (2, 4, 6, 8, 10, 12)) calculated with trajec-
tory Eq. (8) showing also the ratios of neighboring resonances’
widths

pomeron trajectory to the resonance region, 𝑠 > 0.
Figures 5 and 6 show, respectively, the real and imagi-
nary parts of the trajectories (during the calculations,
the trajectory parameter values are taken from the fit
shown in Fig. 3). Figure 5 shows the glueball spectra
lying on the pomeron trajectory. Such glueballs have
even integer spins (𝐽 ≡ Re𝛼𝑃 (𝑠) = 2, 4, 6, ...) and
mass square 𝑀2 = 𝑠.

In Figs. 8 and 7, we can see, respectively, the res-
onance width and the pomeron-pomeron total cross
section.

3. Summary

Using a simple pomeron pole model fit to the 13-TeV
pp low-|𝑡| differential cross-section data, we have ex-
trapolated the pomeron trajectory from negative to
positive values to predict glueball states at 𝐽 = 2, 4,
6, 8, 10, and 12. We have predicted also the cross-
sections and decay widths of the expected glueballs.
Applying the pomeron trajectory Eq. (8), we have
obtained such resonances (glueballs) whose widths in-
crease with their masses.
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ПОМЕРОН-ПОМЕРОННЕ РОЗСIЮВАННЯ

Р е з ю м е

Центральне ексклюзивне дифракцiйне (ЦЕД) народження
мезонних резонансiв потенцiйно може бути фабрикою но-
вих частинок, зокрема глюболiв. Отриманi резонанси ляга-
ють на траєкторiї з вакуумними квантовими числами, пе-
реважно на траєкторiю померона. Отримано ширини резо-
нансiв та їхнiй поперечний перерiз. Новою особливiстю є
використання нелiнiйної траєкторiї для померона, що про-
дукує резонанси (глюболи) зi зростаючою шириною. При
енергiях ВАК, у майже прямому напрямку в 𝑡-каналi як при
пружних – одинарної чи подвiйної дифракцiйної дисоцiацiї,
так i в ЦЕД домiнує обмiн померонами (вплив вторинних
траєкторiй нехтовний, хоча можливе врахування невелико-
го внеску оддерона).
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