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In the present review paper, we show that a successful description of the
irreversible evolution of macroscopic variables during the martensitic
transformations caused by hysteresis is possible with using a special type
of differential equations with the temperature-dependent coefficient de-
pending only on the main hysteresis loop shape. These equations make it
possible to predict the macroscopic volume fraction evolution for an arbi-
trary temperature change process including the partial subloops. For this
aim, one should know only the information about the temperature behav-
iour for transformation paths representing the main hysteresis loop. The
present model is practically applied and experimentally confirmed for
martensitic transformation in CuZnAl alloy.

¥V mamiit orssmoBili cTaTTi MOKAa3aHO, IO YCIINTHUNA ONMNC HE3BOPOTHHOI €BO-
JIOIil MAaKPOCKOIIIYHMX 3MiHHMX, 3YMOBJIEHOI ricTepesuw B IIPOIleCi MapTeH-
CUTHUX II€EPEeTBOPEHb, € MOJYKJIHBUM IIPM BUKOPHCTAHHI Au(EpeHIiiHuX pi-
BHAHBb CHEIiAJBHOrO THUNOY 3 TeMIlepaTypo3aje:KHuUMU KoedilieHTamu, IO
BU3HAYAIOTHCA BUKJIOUYHO (hOPMOIO OCHOBHOI meTii ricrepesu. Ili piBuanHA
IaloTh MOMKJIMBICTH IlepenbavaTH eBOJIIOIiI0 MAKPOCKOIIIUHOI YacTKMU MapTe-
HCUTY HOJISI JOBiJILHOTO IIPOIlECY 3MiHU TeMIIepaTypu, BKJOUYAIUYM YaCTKOBI
meTJi MapTeHCUTHOTO mepeTBopeHHsA. I[asa 1mboro morpibHO 3HATHM Jwuirile ii
TeMIepPaTypPHy 3ajJeKHIiCTh AJIsS OCHOBHOI IeTJi ricrepesu. 3asHAaUeHUIA MO-
IeJib MTPAaKTUYHO 3aCTOCOBAHO Ta €KCIePUMMEHTAJbHO MepeBipeHO AJiA BUIIa-
IKY MapTeHCUTHOTO IIepeTBopeHHs y cromi CuZnAl.

B ngamHO 0030pHOI CTaThe MMOKAa3aHO, UTO YCIEIIHOe OMMCAaHue HeoOpaTu-
MOM SBOJIIOIMN MAKPOCKOIINYECKUX IIePEeMEHHBIX, OOYCJIOBJIEHHON THCTepe-
3MCOM B IIPOIlECCE MAPTEHCUTHBIX IPEBPAINEeHNN, BOZMOMKHO HYTEM MCIIOJb-
30BaHUA IU(PPepeHInalbHBIX YPABHEHUHN CIENHaJbLHOTO THUIIA C TeMIepa-
TYPHO3aBUCHUMBIMHU KO3(p(PUIeHTaMN, KOTOPLIE OIPENEIAITCS HCKJIIOUMN-
TEJIbHO (POPMOI OCHOBHOIM METJIM THUCTEepPe3nca. ITU yPABHEHUS AT BO3-
MOXKHOCTb IIPEACKA3bIBATH 9BOJIIOIMUI0 MAaKPOCKOIMYECKOH (Qparimuy Map-
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TEHCHUTa [IJis MPOM3BOJILHOTO IIPOIlecca M3MEHEHUS TeMIIepaTypPhbl, BKJIOUYAS
YacTUUYHBIE TETJN MAapTeHCUTHOTO WpeBpaileHus. [asa sToro HeoOX0oamMO
3HATDH JIUIIL €€ MOBeJeHNe Ha OCHOBHOI IIeTJie TUCTepe3uca. ¥ KasaHHAA MO-
eJIb IPAaKTUYEeCKU MPUMeHeHa U H9KCIEePUMEHTAJIbHO IIPOBEpPeHAa AJId caydas
MAapTEHCUTHOrO mpespaieHus B cmiaase CuZnAl.

Key words: shape-memory alloys, martensitic transformation, hysteresis,
thermoelastic equilibrium.
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1. INTRODUCTION

Many unusual thermo-mechanical properties of shape-memory alloys
are directly connected with martensitic type phase transitions in
these systems. Because the martensitic transformations, as a rule,
are the first order transitions, a special attention should be at-
tracted to a hysteretic behaviour of shape-memory alloys. The most
important characteristics of the temperature- or stress-induced
martensitic transformation have been studied in detail in [1-5]. It
has been shown that due to thermomechanical hysteresis in solids
undergoing martensitic type of structure transformations the mac-
roscopic strain and volume fraction of martensite are not a single-
valued function of stress and temperature, but they become func-
tions of the process of their change. Therefore, the shape-memory
alloys should be considered as systems having infinite number of
state equations that represent the inelastic strain and volume frac-
tion of martensite as functions of the external stress and tempera-
ture, correspondingly.

Some of the phenomenological approaches describing main thermo-
mechanical properties of shape-memory alloys (SMA) connected with
hysteresis were recently developed in [6—10, 14]. In particular, a
special type of differential equations (DE) describing evolution of
the inelastic macroscopic strain and volume fraction of martensite
as functions of the temperature has been proposed in our recent pa-
pers [11, 12, 19, 20]. Simplest applications of these equations to a
strain evolution during the multiple temperature cycling in a small
temperature interval have been also discussed [21, 22].

During the last time, the models that are similar, but not identi-
cal, to that studied in [11-12] were analysed in [15—18].

These and some other problems associated with the irreversible
processes caused by hysteresis will be discussed in the present pa-
per. The main aim is to consider a possible application of these
equations to the temperature-induced MT and to discuss new inter-
pretation of DE method based on the transition probability concept.
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2. SOME GENERAL ASPECTS

At the macroscopic level, the martensitic transformation process
can be represented by corresponding macroscopic variables. The in-
vestigation of their evolution gives the necessary information on
the general peculiarities of martensitic transformation kinetics in
solids under the external thermodynamical forces applied. As well
known for the martensitic type phase transitions, the temperature
and mechanical stress are the main external forces that can essen-
tially influence the transformation process. In particular, direct as
well as reverse transformation process can be induced in the mate-
rial due to the corresponding temperature or stress change. The
macroscopic state variables such as martensite volume fraction and
macroscopic strain represent quantitatively the transformation re-
sult. As follows from different experimental studies, all these state
variables are usually very complex multi-valued functions of the
external driving forces. Strictly speaking, the state variables cannot
be more considered as functions of current values of the stress or
temperature, but instead, they become functions of the external
driving forces change. Such behaviour is caused by the thermo-
mechanical hysteresis of the materials undergoing first order diffu-
sionless martensitic phase transition.

In particular, the volume fraction of martensitic phase can be
considered as the most representative macroscopic state variable for
the temperature-induced martensitic transformation occurring
without any external stress applied. As follows from different stud-
ies, the transformation process can be represented by the main hys-
teresis loop describing martensite volume fraction change during
the direct and reverse martensitic transformation on cooling and
heating, respectively. Besides of the global transformation cycle, a
set of subloops representing partially direct and reverse transfor-
mation processes are usually observed, as indicated in Fig. 1. A
definite return point, where the cooling process is replaced by heat-
ing or vice versa, characterizes each partial subloop.

It should be also noted that each point inside the main loop
represents one of the possible stationary two-phase states of the
system. All these are the metastable ones, because no volume frac-
tion change is usually observed if one stops the cooling or heating
process at this point for any time. This also denotes that thermal
fluctuations do not play any significant role in MT. As a result,
transitions from one metastable state to another one are only possi-
ble on driving the system with any external thermodynamical force,
such as a temperature or stress. Therefore, all the transformation
paths in Fig. 1 represent continuous sequences of metastable states
that the system can run on driving by the temperature change process.
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Fig. 1. A scheme of the typical martensite volume fraction hysteresis be-
haviour during the complete and partial martensitic transformation.

Definite efforts have been made by several authors to find the
corresponding constitutive methods to describe the main peculiari-
ties of MT-kinetics. In particular, Cory and McNichols [6] have de-
veloped the approximation scheme of MT based on an infinite set of
state equations representing evidently families of partial transfor-
mation trajectories. Likhachev and Koval [11, 12, 19, 20] have pro-
posed a special type differential equation describing evolution of
the inelastic strain and volume fraction of martensite during the
partial temperature-induced MT. Recently, Ivshin and Pence [17,
18] considered the differential model that is similar, but not identi-
cal, to that studied in [11, 12]. The main distinguishes and similar-
ity of these different models will be briefly discussed in the next
sections of this report.

3. DIFFERENTIAL REPRESENTATION OF THE PARTIAL
MARTENSITIC TRANSFORMATION SUBLOOPS

As follows from the results represented in Fig. 1, the temperature
induced macroscopic volume fraction y = ¥(7T) of martensitic phase
can be characterized by two branches of a global hysteresis loop
v =2(T) and y = z,(T) corresponding to cooling and heating proc-
esses, respectively. Additionally, a family of minor subloops repre-
senting partial martensitic transformation processes are also shown
here. Therefore, the martensite volume fraction is always a definite
function of the temperature change that can take the multiple val-
ues inside of the main hysteresis loop.

To describe the irreversible evolution of macroscopic variables
caused by hysteresis including the minor subloops, the one possible
way based on the differential equation method (DEM) has been pro-
posed in our works [11, 12]. Such a possibility follows immediately



HYSTERESIS PHENOMENA IN MARTENSITIC TRANSFORMATION 27

from the assumption that only a single path from each minor family
in Fig. 1 can pass through a given point with coordinates (y, T) in-
side of the main hysteresis loop. Therefore, only a single value of
the first derivative dy/dT for the cooling or heating family of paths
may correspond to each point in the (y, T) plane. Mathematically,
this denotes that dy/dT must be a single-valued function of y and T
both for the cooling and heating processes. Accordingly, each ther-
modynamical path belonging to the cooling or heating family must
satisfy the following type of differential equations:

dy/dT = 8. (x, T), (1)

where S, (yx,T) are single-valued functions of (y, T) associated with
the heating and cooling processes that are signed as (%), respec-
tively. It has also been found [12] that S,(y,T) can be expressed as
a linear function of y

S, (6 T) = o (T + BT (2)

with the temperature dependent coefficient o, (7) and B,(T) de-
pending only on the main hysteresis loop shape represented by
z,(T) functions:

dz, 1 dz, =z
- » B(D)=F——~—

o, (T) =+ .
: dT z, -z dT z, -z

(3)

Therefore, the differential equations for the basic heating and cool-
ing path family are as follow:

dz, [ 1 — 2
dy/dT = +—= —|. 4
1/ dT[Z+_2j (4)

These equations make it possible to predict the volume fraction
evolution for any temperature change process. For this aim, in ac-
cordance with Eq. (4), one should know only the information about
the temperature behaviour of z (T)-paths representing the main
hysteresis loop.

These equations can be also represented in the time-evolutionary
form. Because of the time derivative of y(T) is § = T(dy/dT) and
using Egs. (1), (2), one can easily obtain the following equations:

dy/dT = o, (T)x +B.(T) - ()

These ones can be considered as kinetic equations describing ather-
mal type of martensitic transformation kinetics.
The experimental evidence of the linearity rules found in [12]
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from the investigation of shape-memory effect in Ni—Ti alloy is

shown in Figs. 2 and 3.

Figures 4 and 5 exhibit good quantitative agreement between the
measured and calculated partial trajectories has been recently found
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Fig. 2. Experimental data representing the main hysteresis loop 2z, (7T) and
heating family of partial transformation paths &' (T) for the NiyTiy

shape-memory alloy.
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Fig. 4. Comparison of the hysteresis loop obtained experimentally (solid
line) and those determined from the model (dashed line).
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Fig. 5. Comparison between the slope of the actual heating partial cycling
branches (solid line) and the slope determined from the model (dashed
line). These two figures correspond to the 3 and 6 partial cycles in Fig. 2.
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Fig. 6. High order subloops showing hysteretic behaviour of CuZnAl alloy
during the multiple partial cycling.

in [24]. Examples of high order partial subloops are shown in Fig. 6.

4. RELATIONSHIPS BETWEEN DIFFERENTIAL EQUATION
METHOD AND OTHER HYSTERESIS MODELS

Cory and McNichols in their original work [6] have developed the
phenomenological scheme of MT thermomechanics including as
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stress and temperature hysteresis effects as well the evident ana-
lytic expression of the partial transformation trajectories. Although
these authors have not used any differential representation of their
equations for partial transformation trajectories, nevertheless, one
can easily reduce these equations to the same differential form as
Egs. (1) and (2) in the preceding section (see Ref. [23]).

Consider for simplicity the temperature-induced MT without exter-
nal stress applied, when the volume fraction y(7T) can be chosen as a
unique representative macroscopic state variable displaying transfor-
mation process. According to CM-approach the differences between the
current value of y(T) and z, (T)-paths representing main hysteresis
loop can be satisfactory expressed in the following exponential form:

x(T) - 2,(T) = a.exp{FT / 1} . (6)

Here, 1 is the characteristic constant of the material that (following
to CM) can be chosen from the best fit to experiment; (+) denote the
heating or cooling process, correspondingly; the different values of
a.-constants determine a set of possible partial trajectories for heat-
ing and cooling processes.

Taking T-derivative of these equations,

dy/dT —dz, /dT = ¥t 'a, exp{FT/t}, (7

and replacing the exponential term by its expression following from
Eq. (6), we easily find the differential equation for the partial tra-
jectories in the framework of CM-approximation:

dy/dT = al™(T)y + B (T) (8)
with temperature-dependent coefficients o (T) and B (T) equal to:
aMT) =51, BM(T)=dz,/dT ¥1 'z, . 9)

Therefore, CM-approach is really reduced to a same type of differ-
ential equation that follows from DEM. Moreover, the expressions of
a’™(T) and B™(T) found in framework of DEM will approach to
a™(T) and BSM(T) values following from CM-approximation in the
case when the temperature hysteresis value t, becomes very small.
This result follows immediately from Taylor’s expansion of the evi-
dent relations between z, and z_ functions, as 1, — 0:

2,(T)=2(T T1,) ~ 2.(T) T 1, (dz./dT). (10)

So, one can conclude that
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TABLE 1. Comparison of different models in respect to basic items of DEM.

Model Item (1) Item (II) Item (III) Item (IV)
C-M Y Y N Y
L-K Y Y Y Y
I-P Y Y N Y
o (T) - Fv,'» BX(T) > dz. /dT F1,'z, - (11)

Therefore, CM-approach can be considered as a small hysteresis
limit of DEM. In particular, material constant t can be chosen equal
to a temperature hysteresis value 1,.

Other differential model that is similar but not identical to the
discussed above has been considered in [17, 18].

It should be also noted that the constitutive DEM equations could
be easily derived from the general items presented below.

Basic points of DEM:

(i) uniqueness of thermodynamical trajectory dy/dT =S, (x,T);
(ii) self-consistency requirement S,(z,,T)=dz, /dT;

(iii) return point boundary conditions S,(z.,T)=0;

(iv) linearity rule S,(x,T) = o, (T)x +B. (T)-

In respect to these points, the comparison of three models:
(CM)—Cory & McNichols (1985), (LK)—Likhachev & Koval (1988,
1992), (IP)—Ivshyn & Pence (1992) is represented in the Table 1.

It is also interesting that LK-model can be reduced to both others
in two different limits:

(CM) < small hysteresis limit « (LK) — wide hysteresis limit — (IP)

5. TRANSITION PROBABILITY CONCEPT IN MARTENSITIC
TRANSFORMATION KINETICS

To understand better the nature of differential equation method, a
very important physical interpretation based on the master kinetic
equation concept will be considered in this section. As follows from
this well known in physics general concept, the transformation kinetic
equations describing reactions between two phases a <> m (austenite <>
<> martensite) can be represented in the following general form:

Xm — _Wm—ﬂlxm + Wa—>mxa , (12)
Xa — _Wa—ﬂnxa + Wm—)axm . (13)

These equations represent the temporal evolution of the martensitic
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(m) or austenitic (a) phase fraction due to the local m —»>a and
a — m microscopic transformation processes with the corresponding
transition probabilities: W™”* and W*”™. Here, y, and y,6 denote
the rates of y,, and y, changes, respectively. The considered kinetic
equations satisfy automatically the following conservation rule:

Xm + A, = const. (14)

Naturally, this time-independent constant must be equal 1 because,
at the initial stage of transformation process, the system must con-
tain the austenitic phase only, and y, =0, ¥, = 1. Due to the rule
Ym + e = 1, one can use one from the master equations only to de-
scribe the transformation kinetics. Representing for example aus-
tenitic fraction as y, = 1 — y,, and substituting it into the first mas-
ter equation, one can easily obtain the evolutionary kinetic equation
for the fraction of martensitic phase:

Xy =Wy, + W™ (15)

Comparing this equation with Eq. (5) that found in framework of
DEM, one could easily observe that these are similar each to other.
Therefore, the corresponding kinetic coefficients following from the
differential equation method as well as from the master equations
must be equal too. That is, one can immediately find the following rela-
tions:

To,(T) = -W"* —W*™, TB.(T) = W*". (16)

By using the results represented by Eq. (16), the evident expres-
sions for the transition probabilities can be found as follows:

J_rT'[—dZ*j( % ] (17a)
dT )\ z, —z_

.(d 1-2z

i % |, (17b)
dT )\ z, —z_

It is important that both W™™* and W*“”™ are always positively de-

fined functions because all the terms included into the brackets are

positive. It is especially important in order to their interpretation,
as the transition probabilities were physically correct.

Wa—)m

Wmea _

I+

6. CONCLUSIONS

The most important conclusions following from the present study of
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the athermal type of MT-kinetics seem can be formulated as follows.

Each point inside the main loop represents one of the possible sta-
tionary two-phase states of the system. All these are the metastable
ones, because no macroscopic changes are usually observed if one stops
the cooling or heating process at any stage of transformation for any
time. This also denotes that thermal fluctuations do not play any sig-
nificant role in MT. As a result, transitions from one metastable state
to another one are only possible on driving the system with any exter-
nal thermodynamical force, such as a temperature or stress.

Successful description of the irreversible evolution of macro-
scopic variables caused by hysteresis is possible by using a special
type of differential equations with the temperature dependent coef-
ficient depending only on the main hysteresis loop shape. These
equations make it possible to predict the macroscopic volume frac-
tion evolution for an arbitrary temperature change process includ-
ing the partial subloops. For this aim, one should know only the in-
formation about the temperature behaviour for transformation
paths representing the main hysteresis loop.

Cory and McNichols in their original works have developed the
phenomenological scheme of MT thermomechanics including as
stress and temperature hysteresis effects as well as evident analytic
expression of the partial transformation trajectories. Although
these authors have not used any differential representation of their
equations for partial transformation trajectories, nevertheless, one
can easily reduce these equations to the same differential form that
has been found in DEM. In particular, CM-approach can be consid-
ered as a small hysteresis limit of DEM.

To understand better the nature of differential equation method, a
very important physical interpretation based on the master kinetic
equation concept has been considered in this study. It is important that
the earlier proposed DEM equations can be easily derived from this
well known in physics general concept if only to apply it to the marten-
sitic type transformation reactions: a <> m (austenite <> martensite).

By using the results found in framework of DEM, the evident
expressions for the transition probabilities satisfying all the neces-
sary physical conditions can be found as well.
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