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In the present review paper, we show that a successful description of the 
irreversible evolution of macroscopic variables during the martensitic 
transformations caused by hysteresis is possible with using a special type 
of differential equations with the temperature-dependent coefficient de-
pending only on the main hysteresis loop shape. These equations make it 
possible to predict the macroscopic volume fraction evolution for an arbi-
trary temperature change process including the partial subloops. For this 
aim, one should know only the information about the temperature behav-
iour for transformation paths representing the main hysteresis loop. The 
present model is practically applied and experimentally confirmed for 
martensitic transformation in CuZnAl alloy. 

У даній оглядовій статті показано, що успішний опис незворотньої ево-
люції макроскопічних змінних, зумовленої гістерези в процесі мартен-
ситних перетворень, є можливим при використанні диференційних рі-
внянь спеціяльного типу з температурозалежними коефіцієнтами, що 
визначаються виключно формою основної петлі гістерези. Ці рівняння 
дають можливість передбачати еволюцію макроскопічної частки марте-
нситу для довільного процесу зміни температури, включаючи часткові 
петлі мартенситного перетворення. Для цього потрібно знати лише її 
температурну залежність для основної петлі гістерези. Зазначений мо-
дель практично застосовано та експериментально перевірено для випа-
дку мартенситного перетворення у стопі CuZnAl. 

В данной обзорной статье показано, что успешное описание необрати-
мой эволюции макроскопических переменных, обусловленной гистере-
зисом в процессе мартенситных превращений, возможно путём исполь-
зования дифференциальных уравнений специального типа с темпера-
турнозависимыми коэффициентами, которые определяются исключи-
тельно формой основной петли гистерезиса. Эти уравнения дают воз-
можность предсказывать эволюцию макроскопической фракции мар-
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тенсита для произвольного процесса изменения температуры, включая 
частичные петли мартенситного превращения. Для этого необходимо 
знать лишь её поведение на основной петле гистерезиса. Указанная мо-
дель практически применена и экспериментально проверена для случая 
мартенситного превращения в сплаве CuZnAl. 
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1. INTRODUCTION 

Many unusual thermo-mechanical properties of shape-memory alloys 
are directly connected with martensitic type phase transitions in 
these systems. Because the martensitic transformations, as a rule, 
are the first order transitions, a special attention should be at-
tracted to a hysteretic behaviour of shape-memory alloys. The most 
important characteristics of the temperature- or stress-induced 
martensitic transformation have been studied in detail in [1–5]. It 
has been shown that due to thermomechanical hysteresis in solids 
undergoing martensitic type of structure transformations the mac-
roscopic strain and volume fraction of martensite are not a single-
valued function of stress and temperature, but they become func-
tions of the process of their change. Therefore, the shape-memory 
alloys should be considered as systems having infinite number of 
state equations that represent the inelastic strain and volume frac-
tion of martensite as functions of the external stress and tempera-
ture, correspondingly. 
 Some of the phenomenological approaches describing main thermo-
mechanical properties of shape-memory alloys (SMA) connected with 
hysteresis were recently developed in [6–10, 14]. In particular, a 
special type of differential equations (DE) describing evolution of 
the inelastic macroscopic strain and volume fraction of martensite 
as functions of the temperature has been proposed in our recent pa-
pers [11, 12, 19, 20]. Simplest applications of these equations to a 
strain evolution during the multiple temperature cycling in a small 
temperature interval have been also discussed [21, 22]. 
 During the last time, the models that are similar, but not identi-
cal, to that studied in [11–12] were analysed in [15–18]. 
 These and some other problems associated with the irreversible 
processes caused by hysteresis will be discussed in the present pa-
per. The main aim is to consider a possible application of these 
equations to the temperature-induced MT and to discuss new inter-
pretation of DE method based on the transition probability concept. 
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2. SOME GENERAL ASPECTS 

At the macroscopic level, the martensitic transformation process 
can be represented by corresponding macroscopic variables. The in-
vestigation of their evolution gives the necessary information on 
the general peculiarities of martensitic transformation kinetics in 
solids under the external thermodynamical forces applied. As well 
known for the martensitic type phase transitions, the temperature 
and mechanical stress are the main external forces that can essen-
tially influence the transformation process. In particular, direct as 
well as reverse transformation process can be induced in the mate-
rial due to the corresponding temperature or stress change. The 
macroscopic state variables such as martensite volume fraction and 
macroscopic strain represent quantitatively the transformation re-
sult. As follows from different experimental studies, all these state 
variables are usually very complex multi-valued functions of the 
external driving forces. Strictly speaking, the state variables cannot 
be more considered as functions of current values of the stress or 
temperature, but instead, they become functions of the external 
driving forces change. Such behaviour is caused by the thermo-
mechanical hysteresis of the materials undergoing first order diffu-
sionless martensitic phase transition. 
 In particular, the volume fraction of martensitic phase can be 
considered as the most representative macroscopic state variable for 
the temperature-induced martensitic transformation occurring 
without any external stress applied. As follows from different stud-
ies, the transformation process can be represented by the main hys-
teresis loop describing martensite volume fraction change during 
the direct and reverse martensitic transformation on cooling and 
heating, respectively. Besides of the global transformation cycle, a 
set of subloops representing partially direct and reverse transfor-
mation processes are usually observed, as indicated in Fig. 1. A 
definite return point, where the cooling process is replaced by heat-
ing or vice versa, characterizes each partial subloop. 
 It should be also noted that each point inside the main loop 
represents one of the possible stationary two-phase states of the 
system. All these are the metastable ones, because no volume frac-
tion change is usually observed if one stops the cooling or heating 
process at this point for any time. This also denotes that thermal 
fluctuations do not play any significant role in MT. As a result, 
transitions from one metastable state to another one are only possi-
ble on driving the system with any external thermodynamical force, 
such as a temperature or stress. Therefore, all the transformation 

paths in Fig. 1 represent continuous sequences of metastable states 

that the system can run on driving by the temperature change process. 
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 Definite efforts have been made by several authors to find the 
corresponding constitutive methods to describe the main peculiari-
ties of MT-kinetics. In particular, Cory and McNichols [6] have de-
veloped the approximation scheme of MT based on an infinite set of 
state equations representing evidently families of partial transfor-
mation trajectories. Likhachev and Koval [11, 12, 19, 20] have pro-
posed a special type differential equation describing evolution of 
the inelastic strain and volume fraction of martensite during the 
partial temperature-induced MT. Recently, Ivshin and Pence [17, 
18] considered the differential model that is similar, but not identi-
cal, to that studied in [11, 12]. The main distinguishes and similar-
ity of these different models will be briefly discussed in the next 
sections of this report. 

3. DIFFERENTIAL REPRESENTATION OF THE PARTIAL 
MARTENSITIC TRANSFORMATION SUBLOOPS 

As follows from the results represented in Fig. 1, the temperature 
induced macroscopic volume fraction   (T) of martensitic phase 
can be characterized by two branches of a global hysteresis loop 
  z(T) and   z(T) corresponding to cooling and heating proc-
esses, respectively. Additionally, a family of minor subloops repre-
senting partial martensitic transformation processes are also shown 
here. Therefore, the martensite volume fraction is always a definite 
function of the temperature change that can take the multiple val-
ues inside of the main hysteresis loop. 
 To describe the irreversible evolution of macroscopic variables 
caused by hysteresis including the minor subloops, the one possible 
way based on the differential equation method (DEM) has been pro-
posed in our works [11, 12]. Such a possibility follows immediately 

  
a b 

Fig. 1. A scheme of the typical martensite volume fraction hysteresis be-
haviour during the complete and partial martensitic transformation. 
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from the assumption that only a single path from each minor family 
in Fig. 1 can pass through a given point with coordinates (, T) in-
side of the main hysteresis loop. Therefore, only a single value of 
the first derivative d/dT for the cooling or heating family of paths 
may correspond to each point in the (, T) plane. Mathematically, 
this denotes that d/dT must be a single-valued function of  and T 
both for the cooling and heating processes. Accordingly, each ther-
modynamical path belonging to the cooling or heating family must 
satisfy the following type of differential equations: 

 ( , )d dT S T   , (1) 

where 

( , )S T  are single-valued functions of (, T) associated with 

the heating and cooling processes that are signed as (), respec-
tively. It has also been found [12] that 


( , )S T  can be expressed as 

a linear function of  

 ( , ) ( ) ( )S T T T
  
       (2) 

with the temperature dependent coefficient ( )T


  and ( )T


  de-
pending only on the main hysteresis loop shape represented by 

( )z T


 functions: 

 
1

( )
dz

T
dT z z




 

  


, ( )
dz z

T
dT z z




 

 


. (3) 

Therefore, the differential equations for the basic heating and cool-
ing path family are as follow: 

 
zdz

d dT
dT z z



 

  
    

 
. (4) 

 These equations make it possible to predict the volume fraction 
evolution for any temperature change process. For this aim, in ac-
cordance with Eq. (4), one should know only the information about 
the temperature behaviour of ( )z T


-paths representing the main 

hysteresis loop. 
 These equations can be also represented in the time-evolutionary 
form. Because of the time derivative of (T) is ( )T d dT    and 
using Eqs. (1), (2), one can easily obtain the following equations: 

 ( ) ( )d dT T T
 

      . (5) 

These ones can be considered as kinetic equations describing ather-
mal type of martensitic transformation kinetics. 
 The experimental evidence of the linearity rules found in [12] 
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from the investigation of shape-memory effect in Ni–Ti alloy is 
shown in Figs. 2 and 3. 
 Figures 4 and 5 exhibit good quantitative agreement between the 
measured and calculated partial trajectories has been recently found 

 

Fig. 2. Experimental data representing the main hysteresis loop ( )z T


 and 

heating family of partial transformation paths ( )
i T


  for the Ni51Ti49 

shape-memory alloy. 

 

Fig. 3. The linearity rules between d/dT and  found for several tem-

peratures (T1, T2, T3, T4, and T5) indicated in Fig. 2. 

 

Fig. 4. Comparison of the hysteresis loop obtained experimentally (solid 

line) and those determined from the model (dashed line). 
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in [24]. Examples of high order partial subloops are shown in Fig. 6. 

4. RELATIONSHIPS BETWEEN DIFFERENTIAL EQUATION 
METHOD AND OTHER HYSTERESIS MODELS 

Cory and McNichols in their original work [6] have developed the 
phenomenological scheme of MT thermomechanics including as 

 

Fig. 5. Comparison between the slope of the actual heating partial cycling 
branches (solid line) and the slope determined from the model (dashed 
line). These two figures correspond to the 3 and 6 partial cycles in Fig. 2. 

 
a b 

Fig. 6. High order subloops showing hysteretic behaviour of CuZnAl alloy 
during the multiple partial cycling. 
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stress and temperature hysteresis effects as well the evident ana-
lytic expression of the partial transformation trajectories. Although 
these authors have not used any differential representation of their 
equations for partial transformation trajectories, nevertheless, one 
can easily reduce these equations to the same differential form as 
Eqs. (1) and (2) in the preceding section (see Ref. [23]). 
 Consider for simplicity the temperature-induced MT without exter-
nal stress applied, when the volume fraction (T) can be chosen as a 

unique representative macroscopic state variable displaying transfor-
mation process. According to CM-approach the differences between the 

current value of (T) and ( )z T
-paths representing main hysteresis 

loop can be satisfactory expressed in the following exponential form: 

  ( ) ( ) exp /T z T a T
 

    . (6) 

Here,  is the characteristic constant of the material that (following 
to CM) can be chosen from the best fit to experiment; () denote the 
heating or cooling process, correspondingly; the different values of 
a-constants determine a set of possible partial trajectories for heat-
ing and cooling processes. 
 Taking T-derivative of these equations, 

  1
expd dT dz dT a T

      , (7) 

and replacing the exponential term by its expression following from 
Eq. (6), we easily find the differential equation for the partial tra-
jectories in the framework of CM-approximation: 

 ( ) ( )
CM CMd dT T T
 

       (8) 

with temperature-dependent coefficients ( )
CM T


  and ( )
CM T


  equal to: 

 1
( )

CM T 


   , 1

( )
CM T dz dT z

  
   . (9) 

 Therefore, CM-approach is really reduced to a same type of differ-
ential equation that follows from DEM. Moreover, the expressions of 

( )
CM T


  and ( )
CM T


  found in framework of DEM will approach to 
( )

CM T


  and ( )
CM T


  values following from CM-approximation in the 
case when the temperature hysteresis value h becomes very small. 
This result follows immediately from Taylor’s expansion of the evi-
dent relations between z and z functions, as h  0: 

  h h
( ) ( ) ( )z T z T z T dz dT


    . (10) 

So, one can conclude that 
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 1

h
( )

LK T 


   , 1

h
( )

LK T dz dT z

 
   . (11) 

 Therefore, CM-approach can be considered as a small hysteresis 
limit of DEM. In particular, material constant  can be chosen equal 
to a temperature hysteresis value h. 
 Other differential model that is similar but not identical to the 
discussed above has been considered in [17, 18]. 
 It should be also noted that the constitutive DEM equations could 
be easily derived from the general items presented below. 
Basic points of DEM: 
(i) uniqueness of thermodynamical trajectory ( , )d dT S T   ; 
(ii) self-consistency requirement 

  
( , ) /S z T dz dT ; 

(iii) return point boundary conditions 


( , ) 0S z T ; 
(iv) linearity rule      

     ( , )S T T T . 
 In respect to these points, the comparison of three models: 
(CM)—Cory  McNichols (1985), (LK)—Likhachev  Koval (1988, 
1992), (IP)—Ivshyn  Pence (1992) is represented in the Table 1. 
 It is also interesting that LK-model can be reduced to both others 
in two different limits: 
(CM)  small hysteresis limit  (LK)  wide hysteresis limit  (IP) 

5. TRANSITION PROBABILITY CONCEPT IN MARTENSITIC 
TRANSFORMATION KINETICS 

 To understand better the nature of differential equation method, a 

very important physical interpretation based on the master kinetic 

equation concept will be considered in this section. As follows from 

this well known in physics general concept, the transformation kinetic 

equations describing reactions between two phases a  m (austenite  

 martensite) can be represented in the following general form: 

 
      m a a m

m m aW W , (12) 

 
      a m m a

a a mW W . (13) 

These equations represent the temporal evolution of the martensitic 

TABLE 1. Comparison of different models in respect to basic items of DEM. 

Model Item (I) Item (II) Item (III) Item (IV) 

C–M Y Y N Y 

L–K Y Y Y Y 

I–P Y Y N Y 
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(m) or austenitic (a) phase fraction due to the local m  a and 
a  m microscopic transformation processes with the corresponding 
transition probabilities: 

m aW  and 
a mW . Here, 

m
 and 

a
 denote 

the rates of m and a changes, respectively. The considered kinetic 
equations satisfy automatically the following conservation rule: 

     const
m a

. (14) 

Naturally, this time-independent constant must be equal 1 because, 
at the initial stage of transformation process, the system must con-
tain the austenitic phase only, and m  0, a  1. Due to the rule 
m  a  1, one can use one from the master equations only to de-
scribe the transformation kinetics. Representing for example aus-
tenitic fraction as a  1  m and substituting it into the first mas-
ter equation, one can easily obtain the evolutionary kinetic equation 
for the fraction of martensitic phase: 

 
     m a a m

m mW W . (15) 

Comparing this equation with Eq. (5) that found in framework of 

DEM, one could easily observe that these are similar each to other. 

Therefore, the corresponding kinetic coefficients following from the 

differential equation method as well as from the master equations 

must be equal too. That is, one can immediately find the following rela-
tions: 

 ( )
m a a mT T W W 


    , ( )

a mT T W 


  . (16) 

By using the results represented by Eq. (16), the evident expres-
sions for the transition probabilities can be found as follows: 

 
a m dz z

W T
dT z z

 

 

  
     

   
, (17a) 

 
1m a dz z

W T
dT z z

 

 

  
     

   
. (17b) 

It is important that both 
m aW  and 

a mW  are always positively de-
fined functions because all the terms included into the brackets are 
positive. It is especially important in order to their interpretation, 
as the transition probabilities were physically correct. 

6. CONCLUSIONS 

The most important conclusions following from the present study of 
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the athermal type of MT-kinetics seem can be formulated as follows. 
 Each point inside the main loop represents one of the possible sta-
tionary two-phase states of the system. All these are the metastable 

ones, because no macroscopic changes are usually observed if one stops 

the cooling or heating process at any stage of transformation for any 

time. This also denotes that thermal fluctuations do not play any sig-
nificant role in MT. As a result, transitions from one metastable state 

to another one are only possible on driving the system with any exter-
nal thermodynamical force, such as a temperature or stress. 
 Successful description of the irreversible evolution of macro-
scopic variables caused by hysteresis is possible by using a special 
type of differential equations with the temperature dependent coef-
ficient depending only on the main hysteresis loop shape. These 
equations make it possible to predict the macroscopic volume frac-
tion evolution for an arbitrary temperature change process includ-
ing the partial subloops. For this aim, one should know only the in-
formation about the temperature behaviour for transformation 
paths representing the main hysteresis loop. 
 Cory and McNichols in their original works have developed the 
phenomenological scheme of MT thermomechanics including as 
stress and temperature hysteresis effects as well as evident analytic 
expression of the partial transformation trajectories. Although 
these authors have not used any differential representation of their 
equations for partial transformation trajectories, nevertheless, one 
can easily reduce these equations to the same differential form that 
has been found in DEM. In particular, CM-approach can be consid-
ered as a small hysteresis limit of DEM. 
 To understand better the nature of differential equation method, a 

very important physical interpretation based on the master kinetic 

equation concept has been considered in this study. It is important that 

the earlier proposed DEM equations can be easily derived from this 

well known in physics general concept if only to apply it to the marten-
sitic type transformation reactions: a  m (austenite  martensite). 
 By using the results found in framework of DEM, the evident 
expressions for the transition probabilities satisfying all the neces-
sary physical conditions can be found as well. 
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