УДК 517:519.6

А.В. Гладкий, В.А. Богаенко

Моделирование переноса загрязнений в атмосфере с использованием параллельных вычислений

Рассмотрена задача моделирования переноса загрязнений в атмосфере на основе нестационарного уравнения конвективной диффузии в двух- и трехмерной постановке. Для вычислительной схемы, базирующейся на методах расщепления с использованием явных разностных схем бегущего счета, разработаны параллельные алгоритмы для графических процессоров и получены теоретические оценки времени их работы.

Modelling of pollution transfer in atmosphere has been considered on the base of unsteady convection-diffusion equation in two- and three-dimensional formulation. Parallel algorithms for graphical processors have been developed for computational scheme based on explicit finite-difference splitting methods. Theoretical estimations of algorithms execution time have been obtained.

Розглянуто задачу моделювання переносу забруднень в атмосфері на основі нестаціонарного рівняння конвективної дифузії у дво- та тривимірній постановці. Для обчислювальної схеми, що базується на методах розщеплення з використанням явних різницевих схем біжучої хвилі, розроблено паралельні алгоритми для графічних процесорів та отримано теоретичні оцінки часу їх роботи.

Введение. Математическое моделирование и вычислительный эксперимент становятся основными способами изучения процессов переноса загрязняющих веществ в экосистемах [1– 6]. Компьютерная реализация математических моделей, включающих многомерные уравнения конвективной диффузии, основана на применении нетривиальных вычислительных алгоритмов и требует использования высокопроизводительных вычислительных средств, в частности, многопроцессорных кластерных систем и систем с графическими процессорами.

Постановка задачи

Целью статьи – построение параллельных алгоритмов расщепления для решения задач переноса загрязнений в атмосфере с использованием метеорологических данных или модели потенциального течения перемещения воздушных масс. Вычислительная схема решения многомерных задач основана на методах расщепления [7, 8] с использованием явных разностных схем бегущего счета, что позволяет существенно снизить сложность дискретных алгоритмов и применять технологию параллельных вычислений для их реализации на ЭВМ.

Кроме того, разработаны параллельные алгоритмы для графических процессоров (*GPU*), получены теоретические оценки времени их работы, позволяющие выбирать оптимальную с учетом быстродействия схему организации вычислений. Отметим, что большинство параллельных (в том числе для *GPU*) алгоритмов разработаны для неявных схем расщепления [9–14], а существующие параллельные алгоритмы для явных схем разработаны преимущественно для систем с распределенной памятью [15].

Математическая модель переноса и трансформации примесей

Для моделирования нестационарного процесса конвективно-диффузионного распространения вредных веществ в атмосфере, производственных помещениях, на промплощадках и других объектах будем использовать уравнение миграции примеси [1, 2, 6, 8]

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} + \sigma C =$$

$$= \frac{\partial}{\partial x} (\mu_1 \frac{\partial C}{\partial x}) + \frac{\partial}{\partial y} (\mu_2 \frac{\partial C}{\partial y}) + \frac{\partial}{\partial z} (\mu_3 \frac{\partial C}{\partial z}) +$$
(1)
$$+ f(x, y, z, t), (x, y, z) \in G, t \in (0, T],$$

где $\mathbf{x} = (x, y, z)$ – декартовы координаты, C(x, y, z, t) – концентрация примеси, $(u(\mathbf{x}), v(\mathbf{x}), w(\mathbf{x}))$ – компоненты вектора скорости воздушных масс $\mathbf{V} = (u, v, w), \ \mu = (\mu_1, \mu_2, \mu_3) - коэф$ $фициенты турбулентной диффузии, <math>\sigma$ – коэффициент трансформации примеси, f(x, y, z, t) – функция, характеризующая распределение источников загрязнения, G – область с цилиндрической поверхностью ∂G , состоящей из боковой поверхности Γ , нижнего основания Γ_0 (при z = 0) и верхнего основания Γ_H (при z = H).

Компоненты вектора скорости воздушного потока V = (u, v, w) удовлетворяют уравнению неразрывности (условию несжимаемости среды)

div
$$\mathbf{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
. (2)

В случае постоянно действующих точечных источников загрязнения или залповых аэрозольных выбросов в атмосферу в моменты времени t_i , $i = \overline{1, N}$ правую часть уравнений (1), (3) целесообразно представить в виде

$$f(x, y, z) = \sum_{i=1}^{N} Q_i \,\delta(x - x_i) \delta(y - y_i) \delta(z - z_i),$$

$$f(x, y, z, t) =$$

$$= \sum_{i=1}^{N} Q_i \,\delta(x - x_i) \delta(y - y_i) \delta(z - z_i) \delta(t - t_i)$$

соответственно, где Q_i – интенсивность выброса вредного вещества от *i*-го источника; $\delta(\cdot)$ – дельта-функция Дирака; $(x_i, y_i, z_i), i = \overline{1, N}$ – координаты точечных источников примеси.

Уравнение (1) следует дополнить начальным и граничными условиями [1, 8].

При исследовании переноса и рассеивания загрязнений в промышленных зонах с учетом влияния рельефа местности возникает необходимость расчета компонентов вектора скорости перемещения воздушных масс. Простейшая модель для описания поля скоростей есть модель потенциального течения, тогда V = grad p, где p = p(x, y, z) – потенциал скорости. В результате, с учетом уравнения (2), для p получаем уравнение Лапласа

$$\Delta p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = 0.$$
 (3)

Для однозначного решения уравнения (3) задаются следующие граничные условия. На твердых стенках производная потенциала по направлению единичной внешней нормали *n* равняется нулю, поэтому $\partial p / \partial n = 0$. На границе попадания воздушного потока значение нормальной компоненты его скорости V_n известно, поэтому $\partial p / \partial n = V_n$. На участке вытекания воздуха задают значение потенциала скорости $p = p_3$.

Двухшаговая схема расщепления для расчета потенциального течения

Следуя идее установления [16], для решения (3) в области $\overline{G} = G \bigcup \Gamma = \{0 \le x \le l_1, 0 \le y \le l_2, 0 \le z \le l_3\}$ рассмотрим схему расщепления для неоднородного нестационарного уравнения

$$\frac{\partial p}{\partial t} + Ap = f(x, y, z), \ Ap = -\Delta p \tag{4}$$

с граничным условием первого рода и произвольным начальным условием. Представим оператор A в виде $A = A_1 + A_2$, $A_i = -0.5\Delta$, i = 1,2. Тогда, в результате последовательного решения двух вспомогательных задач

$$\frac{\partial p_1}{\partial t} + A_1 p_1 = 0.5f, \ p_1(x, y, z, t) = p(x, y, z, t), \quad (5)$$

$$\frac{\partial p_2}{\partial t} + A_2 p_2 = 0.5f, p_2(x, y, z, t) = p_1(x, y, z, \hat{t}), \quad (6)$$

получаем решение уравнения (4) в момент времени $\hat{t} = t + \tau$ с погрешностью $O(\tau^2)$ [17].

Для численного исследования нестационарных уравнений (5), (6) в области \overline{G} введем пространственную равномерную сетку ($x_i = ih_1, y_j =$ $= jh_2, z_k = kh_3$). Во внутренних узлах (x_i, y_j, z_k) в момент времени $t = t_n = \tau n$ уравнениям (5), (6) поставим в соответствие неявную разностную схему

$$\varphi_t - 0.5 \left(\varphi_{x\bar{x}}^{n+1} + \varphi_{y\bar{y}}^{n+1} + \varphi_{z\bar{z}}^{n+1} \right) = 0.5 f , \qquad (7)$$

где ϕ – сеточная функция, и используются общепринятые обозначения теории разностных схем [8, 16]. На первом шаге явную схему бегущего счета

$$\varphi_{t} - \frac{1}{2} \left(\frac{1}{h_{1}} \left(\varphi_{x}^{n} - \varphi_{\bar{x}}^{n+1} \right) + \frac{1}{h_{2}} \left(\varphi_{y}^{n} - \varphi_{\bar{y}}^{n+1} \right) + \frac{1}{h_{3}} \left(\varphi_{z}^{n} - \varphi_{\bar{z}}^{n+1} \right) \right) = 0,5f$$
(8)

можно получить, заменяя в уравнении (7) операторы $\varphi_x^{n+1}, \varphi_y^{n+1}, \varphi_z^{n+1}$ их соответствующими в предыдущий момент времени $t = t_n$. На втором шаге разностную схему получим, заменяя в (7) операторы $\varphi_{\overline{x}}^{n+1}, \varphi_{\overline{y}}^{n+1}, \varphi_{\overline{z}}^{n+1}$ выражениями $\varphi_{\overline{x}}^{n}, \varphi_{\overline{y}}^{n}, \varphi_{\overline{z}}^{n}$:

$$\varphi_{t} - \frac{1}{2} \left(\frac{1}{h_{1}} \left(\varphi_{x}^{n+1} - \varphi_{\bar{x}}^{n} \right) + \frac{1}{h_{2}} \left(\varphi_{y}^{n+1} - \varphi_{\bar{y}}^{n} \right) + \frac{1}{h_{3}} \left(\varphi_{z}^{n+1} - \varphi_{\bar{z}}^{n} \right) = 0,5 f.$$
(9)

При этом решение уравнения (8) при $t = t_{n+1} -$ стартовое для разностного уравнения (9).

Расщепляя интервал τ между точками t_n и t_{n+1} на две равные части с промежуточной точкой $t_{n+1/2}$, двухшаговую схему можно записать в виде

$$\frac{1}{\tau} \left(\varphi^{n+1/2} - \varphi^n \right) = \frac{1}{2} \left(\frac{1}{h_1} \left(\varphi^n_x - \varphi^{n+1/2}_{\overline{x}} \right) + \frac{1}{h_2} \left(\varphi^n_y - \varphi^{n+1/2}_{\overline{y}} \right) + \frac{1}{h_3} \left(\varphi^n_z - \varphi^{n+1/2}_{\overline{z}} \right) \right) + 0.5f,$$

$$\frac{1}{\tau} \left(\varphi^{n+1} - \varphi^{n+1/2}_{\overline{y}} \right) = \frac{1}{2} \left(\frac{1}{h_1} \left(\varphi^{n+1}_x - \varphi^{n+1/2}_{\overline{x}} \right) + \frac{1}{h_2} \left(\varphi^{n+1}_y - \varphi^{n+1/2}_{\overline{y}} \right) + \frac{1}{h_3} \left(\varphi^{n+1}_z - \varphi^{n+1/2}_{\overline{z}} \right) \right) + 0.5f.$$
(10)

В совокупности они составляют разностную схему бегущего счета, аппроксимирующую исходную дифференциальную задачу с погрешностью $O(|h|^2 + \tau^2 + \tau^2 / |h|^2)$. Поэтому точность получаемых результатов зависит от соотношения шагов сетки.

Двухшаговая схема расщепления для задачи конвекции–диффузии

Эту схему рассмотрим в области $\overline{G} = G \bigcup \Gamma = \{0 \le x \le l_1, 0 \le y \le l_2\}$ на примере двумерного уравнения конвективной диффузии

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + \sigma C =$$

$$= \mu \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right) + f(x, y)$$
(12)

с начальным условием и однородным граничным условием первого рода. Представим компоненты вектора скорости воздушного потока u = u(x, y) и v = v(x, y) в виде u = $= u^+ + u^-$, $v = v^+ + v^-$, где $u^+ = 0.5(u + |u|) \ge 0$, $u^- = 0.5(u - |u|) \le 0$, $v^+ = 0.5(v + |v|) \ge 0$, $v^- =$ $= 0.5(v - |v|) \le 0$.

Пусть τ – временной интервал между точками t_n и t_{n+1} . Аналогично предыдущему, схема расщепления на дифференциальном уровне принимает вид

$$\begin{aligned} \frac{\partial C_1}{\partial t} + A_1 C_1 &= 0,5f, \ C_1^n = C^n = C(x, y, t_n), \\ \frac{\partial C_2}{\partial t} + A_2 C_2 &= 0,5f, \ C_2^n = C_1^{n+1}, \ C^{n+1} = C_2^{n+1}, \end{aligned}$$

$$\begin{aligned} \text{где} \ A_1 C &= \left(u^+ \frac{\partial C}{\partial x} + v^+ \frac{\partial C}{\partial y}\right) + \frac{\sigma}{2}C - \frac{\mu}{2}\Delta C, \ A_2 C = \\ &= \left(u^- \frac{\partial C}{\partial x} + v^- \frac{\partial C}{\partial y}\right) + \frac{\sigma}{2}C - \frac{\mu}{2}\Delta C. \end{aligned}$$

Дифференциальные операторы $A_i, i = \overline{1-2}$ во внутренних узлах $(x_i, y_i) \in \omega_h$ двумерной сетки $\overline{\omega}_h = \omega_h \bigcup \gamma_h = \{(x, y) : x = x_i = ih_1, i = \overline{0, N_1};$ $y = y_j = jh_2, j = \overline{0, N_2}; h_\alpha = l_\alpha / N_\alpha, \alpha = 1, 2\}$ ап-

проксимируем, используя для этого конвективные слагаемые схемы с направленными разностями [8]. В результате явную разностную схему расщепления бегущего счета для решения уравнения (12) можно получить в следующем виде

$$\varphi_{t} + u^{+}\varphi_{\bar{x}}^{n+1} + v^{+}\varphi_{\bar{y}}^{n+1} + \frac{\sigma}{2}\varphi^{n+1} - \frac{\mu}{2}\left((1 - R_{1}^{+})\frac{1}{h_{1}}\left(\varphi_{x}^{n} - \varphi_{\bar{x}}^{n+1}\right) + (13) + (1 - R_{2}^{+})\frac{1}{h_{2}}\left(\varphi_{y}^{n} - \varphi_{\bar{y}}^{n+1}\right)\right) = \frac{1}{2}f^{n}.$$

УСиМ, 2014, № 6

$$\varphi_{t} + u^{-}\varphi_{x}^{n+1} + v^{-}\varphi_{y}^{n+1} + \frac{\sigma}{2}\varphi^{n+1} - \frac{\mu}{2}\left((1+R_{1}^{-})\frac{1}{h}\left(\varphi_{x}^{n+1} - \varphi_{\bar{x}}^{n}\right) + (14)\right)$$

$$+ (1 + R_2^{-}) \frac{1}{h_2} \left(\varphi_y^{n+1} - \varphi_{\overline{y}}^n \right) = \frac{1}{2} f^n$$

где $R_1^+ = h_1 \frac{u^+}{\mu}, R_2^+ = h_2 \frac{v^+}{\mu}, \quad R_1^- = h_1 \frac{u^-}{\mu}, \quad R_2^- =$

 $=h_2 \frac{v}{\mu}$. При этом решение уравнения (13) в

момент времени $t = t_{n+1}$ – стартовое для уравнения (14).

Введя обозначения

$$\begin{split} L_{1} \varphi^{n+1} &= u^{+} \varphi^{n+1}_{\overline{x}} + v^{+} \varphi^{n+1}_{\overline{y}} + \frac{\sigma}{2} \varphi^{n+1} - \\ &- \frac{\mu}{2} \bigg((1 - R_{1}^{+}) \frac{1}{h_{1}} \big(\varphi^{n}_{x} - \varphi^{n+1}_{\overline{x}} \big) + \\ &+ (1 - R_{2}^{+}) \frac{1}{h_{2}} \big(\varphi^{n}_{y} - \varphi^{n+1}_{\overline{y}} \big) \bigg), \\ L_{2} \varphi^{n+1} &= u^{-} \varphi^{n+1}_{x} + v^{-} \varphi^{n+1}_{y} + \frac{\sigma}{2} \varphi^{n+1} - \\ &- \frac{\mu}{2} \bigg((1 + R_{1}^{-}) \frac{1}{h_{1}} \big(\varphi^{n+1}_{x} - \varphi^{n}_{\overline{x}} \big) + \\ &+ (1 + R_{2}^{-}) \frac{1}{h_{2}} \Big(\varphi^{n+1}_{y} - \varphi^{n}_{\overline{y}} \big) \bigg), \end{split}$$

для реализации явной двухшаговой схемы фрасщепления (13), (14) можно воспользоваться следующим алгоритмом [17]:

 $\overset{1}{\varphi}_{t}^{n} + L_{1} \overset{1}{\varphi}_{t}^{n+1} - \frac{1}{2} f^{n} = 0, \ \overset{1}{\varphi}_{t}^{n} = \varphi^{n} = \varphi(x, y, t_{n}), \ (15)$ $\overset{2}{\varphi}_{t}^{n} + L_{2} \overset{2}{\varphi}_{t}^{n+1} - \frac{1}{2} f^{n} = 0, \ \overset{2}{\varphi}_{t}^{n} = \overset{1}{\varphi}_{t}^{n+1}, \ \varphi^{n+1} = \overset{2}{\varphi}_{t}^{n+1}. \ (16)$

Параллельные алгоритмы

Разностные схемы содержат естественный параллелизм, который может быть использован при их реализации на *GPU*. Суть подхода состоит в том, что к схемам бегущего счета (10), (11) и (15), (16), алгоритмически представимым в виде двух вложенных циклов в кото-

рых для каждого узла сетки последовательно проводятся вычисления, возможно применение процедуры скашивания (*loop skewing*) [18]. После этого вычисления, проводимые во внутреннем цикле, становятся независимыми.

Разностные схемы бегущего счета позволяют рассчитывать решение в узлах сетки рекуррентно через известные значения сеточной функции в соседних узлах. При варьировании размеров элементов геометрической декомпозиции алгоритмические свойства не изменяются. Отмеченные свойства положены в основу параллельных алгоритмов для систем с общей памятью, в частности *GPU*. К недостаткам таких параллельных алгоритмов можно отнести неполное задействование вычислительных ресурсов.

Алгоритм решения двумерных задач для графических процессоров. Графические процессоры (*GPU*) – высокопродуктивные параллельные вычислительные системы, имеющие ряд архитектурных особенностей, которые необходимо учитывать при разработке параллельных алгоритмов.

В рамках GPU блоки программного кода, именуемые GPU-ядрами (kernel), исполняются в массово-многопоточной среде, где каждый поток - код, исполняемый последовательно и обрабатывающий элементы данных согласно своему номеру. Количество потоков, исполняющих GPU-kernel, обычно превышает количество потоков, которое GPU может исполнить параллельно. Это приводит к невозможности проводить глобальную синхронизацию их исполнения и к необходимости декомпозиции алгоритма на фрагменты, которые возможно выполнить параллельно без этой операции. При этом, однако, потоки могут организовываться в группы, в рамках которых реализована операция барьерной синхронизации.

При распараллеливании рассматриваемых вычислительных схем на *GPU* также возникает необходимость учета специфики организации памяти современных графических процессоров – разделения ее на сравнительно медленную глобальную и существенно более быструю локальную, для эффективного использования которой необходима совместная работа групп потоков.

Без ограничения общности рассмотрим алгоритм для разностной схемы (15), распараллеливающий один ее шаг и применяемый как к двух-, так и к четырехшаговым схемам.

1. Множество внутренних узлов $(x_i, y_j) \in \omega_h$ двумерной сетки $\overline{\omega}_h$ разбивается на квадратные, кроме, возможно, граничных, блоки фиксированного размера $L \times L$, где $L \ge 1$ – целое.

2. Пусть $M = \max(N_1 - 1, N_2 - 1), N = \min(N_1 - 1, N_2 - 1)$ N_2-1), тогда на каждом из |N/L| + |M/L| - 1шагов (|x| – операция округления вещественного числа х до меньшего целого) выполняются независимые вычисления по схеме (15) в от единицы до |N/L| блоках узлов сетки. При $N_2 \ge N_1$ координаты узлов блоков лежат в диапазоне от (iL + 1, (j - i)L + 1) до ((i + 1)L,(i-i+1)L) включительно, где i = 0,..., N/L ++ | M / L | -2 – номер шага, i = 0, ..., | N / L | -1 – номер блока. В случае когда $N_1 > N_2$, координаты узлов блоков будут лежать в диапазоне от ((j-i)L+1, iL+1) до ((j-i+1)L, (i+1)L). Вычисления проводятся, если блок находится в пределах сетки, чем объясняется разное количество обрабатываемых блоков в зависимости от номера шага. На каждом шаге управляющая программа, выполняемая на центральном процессоре, задает входные параметры и запускает на GPU соответствующее ядро (kernel).

3. *GPU-kernel*, отвечающий за исполнение одного шага вычислений в п. 2, обрабатывает данные построчно: каждый поток отвечает за одну строку узлов в пределах блока. Потоки, обрабатывающие строки в одном блоке, объединяются в группу для ускорения вычислений путем использования локальной памяти. Перед началом вычислений все необходимые данные, используя возможности по объединению запросов к памяти, параллельно загружаются в локальную память, а затем – в глобальную.

4. При вычислениях в пределах каждой группы потоков используется схема, аналогичная п. 2. Проводится j = 0,...,2L - 2 шагов, на каждом из которых поток i = 0,...,L-1 обрабатывает узел (i, j - i) блока размера $L \times L$, после чего проводится операция барьерной синхронизации.

Оценим время работы предложенного алгоритма (здесь и в дальнейшем без учета процедур инициализации и сбора результатов).

Время, затраченное L-потоками на обработку блока размера $L \times L$, можно оценить как $T_1(L) = (5L+16)t_g + (2L-1)(13t_l + t_c + t_b)$, (17) где t_g и t_l – время исполнения всеми потоками операций чтения или записи в глобальную и локальную память соответственно, t_c – время обработки данных в одном узле сетки, t_b – время исполнения операции барьерной синхронизации.

В случае когда локальная память не используется, оценка (17) принимает вид

 $T_{1g}(L) = (2L-1)(13t_g + t_c + t_b).$

Пусть *GPU* позволяет параллельно исполнять *bL* потоков, где *b* – известное положительное целое. Тогда общее время работы можно оценить как

$$T(N,M,L) = \left(2\sum_{i=1}^{\lfloor N/L \rfloor} \left(\left\lfloor \frac{i}{b} \right\rfloor + 1\right) + \left(\left\lfloor \frac{M}{L} \right\rfloor - \left\lfloor \frac{N}{L} \right\rfloor + 1\right) \left(\left\lfloor \frac{N/L}{b} \right\rfloor + 1\right)\right) T_1(L).$$
(18)

Оценка (18) упрощается

$$T(N,L) = (2\lfloor N/L \rfloor - 1)((5L + 16)t_g + (2L - 1)(t_c + t_b))$$
(19)

при следующих допущениях: время доступа к локальной памяти существенно меньше времени доступа к глобальной, и тогда значением t_l можно пренебречь; *GPU* исполняет все созданные потоки одновременно, т.е. $b > \lfloor N/L \rfloor$; M = N.

Функция T(N,L) при L = [1,...,N] имеет один максимум, а ее минимум достигается при

L=1 или L=N. Локальный минимум при N>13 будет достигаться в точке L=N и равняться $(5N+4)t_g + (2N-1)(t_c + t_b)$. Так как значение L ограничено количеством вычислительных ресурсов видеокарты, а условие N>13 всегда выполняется для задач, требующих распараллеливания, наилучшей стратегией выбора L будет его максимально возможное увеличение.

Алгоритмы решения трехмерных задач на GPU. В случае таких задач в сеточной области

$$\overline{\omega}_{h} = \omega_{h} \bigcup \gamma_{h} = \left\{ (: x_{i} = ih_{1}, i = \overline{0, N}_{1}; y_{j} = jh_{2}, \\ j = \overline{0, N}_{2}; z_{j} = kh_{3}, k = \overline{0, N}_{3}; h_{\alpha} = l_{\alpha} / N_{\alpha} \right\}$$

предлагается два алгоритма организации вычислений:

• разностная схема рассматривается как три вложенных цикла, внутренние два из которых могут быть распараллелены, используя алгоритмы для двумерных задач (алгоритм 1);

• разностная схема рассматривается как три вложенных цикла, к двум из которых применяется операция скашивания (алгоритм 2).

Пусть $K = \max(N_1 - 1, N_2 - 1, N_3 - 1), N =$ = $\min(N_1 - 1, N_2 - 1, N_3 - 1),$

$$M = \begin{cases} N_1 - 1, (N_2 \ge N_1 \ge N_3) \lor (N_3 \ge N_1 \ge N_2), \\ N_2 - 1, (N_1 \ge N_2 \ge N_3) \lor (N_3 \ge N_2 \ge N_1), \\ N_3 - 1, (N_1 \ge N_3 \ge N_2) \lor (N_2 \ge N_3 \ge N_1). \end{cases}$$

Тогда, в *первом* случае, алгоритм для двумерных задач модифицируется следующим образом:

• для трехмерной сетки размера $N \times M \times K$, единицей вычислений в п. 2 алгоритма решения двумерных задач будут блоки размера $L \times L \times K$;

• вычисления в п. 4 проводятся последовательно для слоев размера $L \times L$ трехмерного блока узлов сетки размера $L \times L \times K$ с локальными координатами узлов от (0, 0, k) до (L-1, L-1, k), k = 0, ..., K-1.

Время, затраченное L-потоками на обработку блока размера $L \times L$ в рамках блока размера $L \times L \times K$, в этом случае можно оценить как

$$T_{21}(L) = (15L + 48)t_g + (2L - 1)(14t_l + t_c + t_b),$$

а общее время работы (если *GPU* позволяет параллельно исполнять *bL* потоков) как

$$T_{22}(N, M, K, L) = K \left(2 \sum_{i=1}^{\lfloor N/L \rfloor} \left(\left\lfloor \frac{i}{b} \right\rfloor + 1 \right) + \left(\left\lfloor \frac{M}{L} \right\rfloor - \left\lfloor \frac{N}{L} \right\rfloor + 1 \right) \left(\left\lfloor \frac{N/L}{b} \right\rfloor + 1 \right) \right) T_{21}(L).$$
(20)

Если *GPU* способен исполнить все созданные потоки одновременно, а M = N = K, оценка (20) приобретает вид $T_{22}(N,L) = N(2\lfloor N/L \rfloor - -1)T_{21}(L)$.

Во втором случае, алгоритм, по аналогии с двумерным, принимает следующий вид:

1. Множество внутренних узлов $(x_i, y_j z_k) \in \omega_h$ разбивается на кубические (кроме, возможно, граничных) блоки фиксированного размера $L \times L \times L$.

2. На каждом из $\lfloor N/L \rfloor + \lfloor M/L \rfloor + \lfloor K/L \rfloor - -2$ шагов выполняются независимые вычисления от единицы до $\lfloor N/L \rfloor \lfloor M/L \rfloor$ блоках. При $N_1 \ge N_2 \ge N_3$ координаты узлов блоков будут находиться в диапазоне от (iL+1, jL+1, (k-i-j)L+1) до ((i+1)L, (j+1)L, (k-i-j+1)L) включительно, где $k = 0, ..., \lfloor N/L \rfloor + \lfloor M/L \rfloor + + \lfloor K/L \rfloor - 3$ – номер шага п. 2, (i, j), $i = 0, ..., \lfloor N/L \rfloor - 1$, $j = 0, ..., \lfloor M/L \rfloor - 1$ – номер блока. Вычисления проводятся только если блок находится в пределах сетки. Для других случаев п. 2 алгоритма может быть легко модифицирован.

3. Для обработки каждого блока запускается группа из L^2 потоков.

4. При вычислениях в пределах каждой группы потоков используется схема, аналогичная п. 2. На каждом шаге k = 0,...,3L - 3, поток (i, j), i = 0,...,L-1, j = 0,...,L-1 обрабатывает узел (i, j, (k-i-j)) блока размера $L \times L \times L$, после чего проводится операция барьерной синхронизации.

Время, затраченное L^2 -потоками на обработку блока размера $L \times L \times L$, можно оценить как

$$T_{31}(L) = (5L+16)t_g + (3L-1)(13t_l + t_c + t_b),$$

а общее время работы, если GPU позволяет параллельно исполнять bL^2 потоков, как:

$$T_{32}(N,M,K,L) = \left(\left(2 \sum_{i=1}^{\lfloor N/L \rfloor} \left(\left\lfloor \frac{i(i+1)/2}{b} \right\rfloor + 1 \right) + 2 \sum_{i=1}^{\lfloor M/L \rfloor \lfloor \lfloor N/L \rfloor + \lfloor N/L \rfloor \lfloor \lfloor N/L \rfloor + \lfloor N/L \rfloor \lfloor \lfloor N/L \rfloor + 1 \rfloor / 2} \right\rfloor + 1 \right) + 2 \sum_{i=1}^{\lfloor N/L \rfloor} \left(\left\lfloor \frac{i(M/L \rfloor + \lfloor N/L \rfloor \lfloor \lfloor N/L \rfloor + \lfloor N/L \rfloor (\lfloor N/L \rfloor + 1)/2) + (1-i)/2}{b} \right\rfloor + 1 \right) + 2 \left(\left\lfloor \frac{K}{L} \right\rfloor - \left\lfloor \frac{M}{L} \right\rfloor - 1 \right) \left(\left\lfloor \frac{\lfloor M/L \rfloor N/L \rfloor}{b} \right\rfloor + 1 \right) \right) T_{31}(L).$$

$$(21)$$

Если *GPU* способен исполнить все созданные потоки одновременно, а N = M = K, оценка (21) принимает вид $T_{32}(N,L) = (3\lfloor N/L \rfloor - 1)T_{31}(L)$.

Тестирование быстродействия параллельных алгоритмов для двумерных задач

Алгоритмы тестировались на задачах разного размера на кластере СКІТ-4 Института кибернетики им. В.М. Глушкова НАНУ (12 узлов с 4 *Intel Xeon E5-2600* и 3 *NVidia Tesla M2075* на каждом; *CentOS* 5.9, *Cuda toolkit* 4.2, *Open-MPI* 1.6.5).

При решении двумерного уравнения конвекции–диффузии с использованием одного *GPU* для задачи размера (3600×1800) максимальное ускорение составило 9,6. Рассчитанная средняя погрешность оценивания времени обработки одного блока по формуле (17) составила ~12 процентов. Время обработки оценивалось используя информацию о количестве вычислительных ресурсов видеокарты *NVidia Tesla* M2075, а максимальный размер блока ограничивался объемом локальной памяти.

В соответствии с теоретическими оценками, полученное время работы незначительно зависит от размера обрабатываемой сетки и линейно зависит от размера блока. Считая, что на вспомогательные операции при запуске каждого ядра (*kernel*) тратится фиксированное время $t_{kc} = 0,5$ мс, построены линейные зависимости для алгоритма с и без использования локальной памяти в виде $t_1(L) = 0,1855L + 0,1032$ мс и $t_1(L) = 0,1664L + 0,5408$ мс соответственно. На основе этих зависимостей получены значения коэффициентов, входящих в формулу (17), и оценки времени обработки одного блока согласно этой формуле. Полученные результаты показывают, что использование локальной памяти приводит к увеличению ускорения при уменьшении размера блока. Это может быть объяснено меньшим количеством объединенных операций доступа к памяти при больших размерах блока, что не учитывается в оценках (17), (18) и приводит к увеличению погрешности оценивания.

Минимальное время работы получено для алгоритма с использованием локальной памяти при L = 16, а для алгоритма без ее использования – при L = 32. В оптимальной ситуации второй алгоритм на шесть процентов быстрее первого.

Тестирование быстродействия параллельных алгоритмов для трехмерных задач

Алгоритмы с распараллеливанием одного цикла (алгоритм 1) и двух циклов (алгоритм 2) были реализованы и тестировались для уравнения Пуассона и уравнения конвекции–диффузии. Размер блока во всех случаях был равен восьми и все алгоритмы реализованы по схемам, использующим локальную память *GPU*.

Максимальное ускорение, в сравнении с вычислениями на центральном процессоре *CPU*, полученное при решении алгоритмом 1 трехмерных задач, ниже, чем в случае двумерных: 4,72 для уравнения конвекции–диффузии и 4,39 для уравнения Пуассона, тогда как при использовании алгоритма 2 – 28,53 для уравнения Пуассона и 30,66 – для уравнения конвекции– диффузии. Отметим, что увеличение ускорения при решении более сложной задачи.

В случае алгоритма 2 существенный вклад в общее время вычислений вносит операция учета краевых условий. Эта операция была реализована как *GPU-kernel*, каждый поток которого обрабатывает один узел сетки путем получения значения маркера из массива-маски краевых условий и внесения изменений в массив значений искомой функции. Такая операция есть плохо распараллеливаемой на *GPU* в силу того, что количество операций с памятью существенно превышает количество арифметических операций. Были рассчитаны оценки времени работы (согласно схемам расщепления) по формулам (20), (21) и относительные погрешности оценивания, которые, в целом, находятся в приемлемом диапазоне ~15 процентов. Факторы, влияющие на точность оценок, могут быть выявлены при анализе времени работы *GPUkernel* на отдельных шагах алгоритмов.

Время обработки одного слоя размера $L \times L$ в рамках блока размера $L \times L \times K$ на шагах п. 2 алгоритма 1 для различных задач приведено на рис. 1.

Рис. 1. Время исполнения шагов п. 2 алгоритма 1

В рамках описанных процедур оценки времени работы алгоритмов время обработки одного слоя размера $L \times L$ принято постоянным, исходя из допущения о постоянности времени доступа к глобальной памяти. Однако, как следует из рис. 1, это время не есть постоянным. Временные вариации увеличиваются при решении уравнения конвенции–диффузии, требующего большего количества операций обращения к глобальной памяти в сравнении с решением уравнения Пуассона.

Время исполнения шагов п. 2 алгоритма 2 для задачи размера 320×320×240 при решении уравнения Пуассона приведено на рис. 2.

На рис. 2 наблюдаются участки, соответствующие слагаемым формулы (21): с квадратичным (шаги 1–30 и 81–110), линейным ростом количества обрабатываемых блоков (шаги 31–40 и 71–80), а также неизменным их количеством (шаги 41–70). Однако различные факторы, в частности кэширование, приводят к неточному оцениванию согласно формуле. Кроме того, результаты экспериментов показали, что время обработки одного блока, в соответствии с исходными допущениями, не зависит от размера сетки.

Рис. 2. Время исполнения шагов п. 2 алгоритма 2

Заключение. В работе для разностных схем расщепления с явной организацией вычислений применительно к дву- и трехмерным задачам моделирования распространения загрязнений в атмосфере разработаны параллельные алгоритмы для графических процессоров. Получены теоретические оценки времени работы алгоритмов, позволяющие выбирать оптимальную с помощью быстродействия схему организации вычислений. Результаты тестирования показали высокую эффективность алгоритмов для *GPU*: ускорение для двумерных задач составило ~10, а для трехмерных – ~30.

- 1. *Марчук Г.И.* Математическое моделирование в проблеме окружающей среды. – М.: Наука, 1982. – 320 с.
- 2. *Численное* моделирование распространения загрязнения в окружающей среде / М.З. Згуровский, В.В. Скопецкий, В.К. Хрущ и др. – К.: Наук. думка, 1997. – 368 с.
- Аргучинцев В.К., Аргучинцева А.В. Модели и методы для решения задач охраны атмосферы, гидросферы и подстилающей поверхности. – Иркутск: ИГУ, 2001. – 114 с.
- Алоян А.Е., Пененко В.В., Козодеров В.В. Математическое моделирование в проблеме окружающей среды // Современные проблемы вычислительной математики и математического моделирования. – 2005. – Т. 2. – С. 279–351.
- 5. Алоян А.Е. Моделирование динамики и кинетики газовых примесей и аэрозолей в атмосфере. М.: Наука, 2008. 415 с.

- 6. Основи математичного моделювання в екології / А.В. Гладкий, І.В. Сергієнко, В.В. Скопецький та ін. – К.: НТУУ «КПІ», 2009. – 240 с.
- 7. *Марчук Г.И.* Методы расщепления. М.: Наука, 1988. 264 с.
- Самарский А.А., Вабищевич П.Н. Численные методы решения задач конвекции–диффузии. – М.: Эдиториал УРСС, 2004. – 248 с.
- Zhang Y., Cohen J., Owens J. Fast tridiagonal solvers on the GPU // PPoPP '10 Proc. of the 15th ACM SIGPLAN Symp. on Principles and Practice of Parallel Program., Bangalor, Ind., Jan. 9–14 2010. – P. 127– 136.
- Davidson A., Zhang Y., Owens J. An auto-tuned method for solving large tridiagonal systems on the GPU // Proc. of the 25th IEEE Intern. Parallel and Distributed Processing Symp., May 2011. – P. 956–965,
- Goddeke D., Strzodka R. Cyclic reduction tridiagonal solvers on GPUs applied to mixed precision multigrid // IEEE Trans. Parallel Dist. Syst. - 2010. - 21. -P. 22-32.
- GPGPU-based ADE-FDTD method for fast electromagnetic field simulation and its estimation / Y. Inoue, M. Unno, S. Aono et al. // Microwave Conf. Proc. (APMC), 2011 Asia-Pacific. – P. 733–736.
- Автоматично налагоджуваний паралельний алгоритм чисельного розв'язання багатовимірної задачі

моделювання навколишнього середовища / П.А. Іваненко, А.Ю. Дорошенко, Л.М. Суслова та ін. // Пробл. програм. – 2010. – № 2–3. – С. 202–208.

- Черниш Р.І., Тирчак Ю.М., Іваненко П.А. Побудова паралельного алгоритму чисельного розв'язання багатовимірної задачі моделювання навколишнього середовища // Там же. – 2009. – № 1. – С. 85–91
- Скопецкий В.В., Богаенко В.А. Моделирование прямых и обратных задач распространения загрязнений в воздушной среде с помощью кластерной системы СКИТ // УСиМ. 2007. № 5. С. 86–92.
- 16. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1987. 588 с.
- 17. Гладкий А.В. Об исследовании алгоритмов расщепления в задачах конвекции–диффузии // Кибернетика и системный анализ. – 2014. – № 4. – С. 76–88.
- David F. Bacon, Susan L. Graham, Oliver J. Sharp. Compiler transformations for high-performance computing // ACM Comp. Surveys (CSUR), Dec. 1994. – 26, Issue 4, – P. 345–420.

Поступила 29.09.2014 Тел. для справок: +38 044 526-4167, 067 134-7585, 425-6472 (Киев) *E-mail: gladky@ukr.net, sevab@ukr.net* © А.В. Гладкий, В.А. Богаенко, 2014