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tions ,based on the methods of a chaos theory.

Keywords: air basin of the industrial city, the ecological state of the, time series of concentrations, pollu-
tants, analysis and prediction methods of the theory of chaos

1. Introduction

Problem of studying the dynamics of chaotic dynamical systems arises in many areas of
science and technology. We are talking about a class of problems of identifying and estimat-
ing the parameters of interaction between the sources of complex (chaotic) oscillations of the
time series of experimentally observed values. Such problems arise in environmental scienc-
es, geophysics, chemistry, biology, medicine, neuroscience, engineering, etc. Problem of an
analysis and forecasting the impact of anthropogenic pressure on the state of atmosphere in an
industrial city and development of the consistent, adequate schemes for modeling the proper-
ties of the concentration fields of air pollutions is one of the most important and fundamental
problems of modern environmental sciences, in particular, applied ecology and urban ecology
[1-18]. Most of the models currently used to assess a state (as well as, the forecast) of an air
pollution are presently by the deterministic models or simplified ones, based on a simple sta-
tistical regressions. The success of these models, however, is limited by their inability to de-
scribe the nonlinear characteristics of the pollutant concentration behaviour and lack of under-
standing of the involved physical and chemical processes. Although the use of methods of a
chaos theory establishes certain fundamental limitation on the long-term predictions, howev-
er, as has been shown in a series of our papers (see, for example, [1-11]), these methods can
be successfully applied to a short-or medium-term forecasting. As example, let us remind
about quantitatively correct description of the temporary changes in the concentration of ni-
trogen dioxide (NO2) and sulfur dioxide (SO2) in several industrial cities (Odessa, Triste, Al-
lepo and cities of the Gdansk region) with discovery of the low-dimensional chaos. Some
elements of this technique have been successfully applied to several tasks of prediction of the
other nature system ecological state [6-11]. The main purpose of this paper is formally to pre-
sent theoretical basis of a new general formalism for an analysis and forecasting an impact of
anthropogenic factors on the atmosphere of an industrial city and develop a new compact
general scheme for modeling temporal fluctuations of the air pollution concentration field
temporal fluctuations ,based on the methods of a chaos theory.

2. New general formalism for analysis of and forecasting an impact of anthropogenic
factors on the atmosphere of an industrial city
Preliminary we start from the first key task on testing a chaos in the time series of air
pollutants [1-11]. As usually, let us consider scalar measurements s(n)=s(to+ nAt) =s(n),
where ty is a start time, At is time step, and n is number of the measurements. In a general
case, s(n) is any time series (f.e. atmospheric pollutants concentration). As processes resulting
in a chaotic behaviour are fundamentally multivariate, one needs to reconstruct phase space
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using as well as possible information contained in s(n). Such reconstruction results in set of d-
dimensional vectors y(n) replacing scalar measurements. The main idea is that direct use of
lagged variables s(n+t), where t is some integer to be defined, results in a coordinate system
where a structure of orbits in phase space can be captured. Using a collection of time lags to
create a vector in d dimensions, y(n)=[s(n),s(n + 1),s(n + 21),..,s(n +(d—1)7)], the required co-
ordinates are provided. In a nonlinear system, s(n + jt) are some unknown nonlinear combina-
tion of the actual physical variables. The dimension d is the embedding dimension, de.

The choice of proper time lag is important for the subsequent reconstruction of phase
space. If t is chosen too small, then the coordinates s(n + jt), s(n+(j +1)t) are so close to
each other in numerical value that they cannot be distinguished from each other. If t is too
large, then s(n+jt), s(n+(j+1)t) are completely independent of each other in a statistical
sense. If T is too small or too large, then the correlation dimension of attractor can be under-or
overestimated.

One needs to choose some intermediate position between above cases. First approach is
to compute the linear autocorrelation function C.(6) and to look for that time lag where C_(3)
first passes through 0. This gives a good hint of choice for t at that s(n+jt) and s(n+(j +1)1)
are linearly independent. It’s better to use approach with a nonlinear concept of independ-
ence, e.g. an average mutual information. The mutual information | of two measurements a;
and by is symmetric and non-negative, and equals to 0 if only the systems are independent.
The average mutual information between any value a; from system A and by from B is the av-
erage over all possible measurements of Iag(a;, by). Usually it is necessary to choose that t
where the first minimum of I(t) occurs.

The goal of the embedding dimension determination is to reconstruct a Euclidean space
R? large enough so that the set of points da can be unfolded without ambiguity. The embed-
ding dimension, dg, must be greater, or at least equal, than a dimension of attractor, da, I.e.
de > da. In other words, we can choose a fortiori large dimension dg, e.g. 10 or 15, since the
previous analysis provides us prospects that the dynamics of our system is probably chaotic.
The correlation integral analysis is one of the widely used techniques to investigate the signa-
tures of chaos in a time series. The analysis uses the correlation integral, C(r), to distinguish
between chaotic and stochastic systems.

According to [4], it is computed the correlation integral C(r). If the time series is charac-
terized by an attractor, then the correlation integral C(r) is related to the radius r as

d = lim/29¢(0) (1)
—o logr

where d is correlation exponent. If the correlation exponent attains saturation with an increase
in the embedding dimension, then the system is generally considered to exhibit chaotic dy-
namics. The saturation value of correlation exponent is defined as the correlation dimension
(d;) of the attractor (see details in refs. [3,4]).

Another method for determining de comes from asking the basic question addressed in
the embedding theorem: when has one eliminated false crossing of the orbit with itself which
arose by virtue of having projected the attractor into a too low dimensional space? In other
words, when points in dimension d are neighbours of one other? By examining this question
in dimension one, then dimension two, etc. until there are no incorrect or false neighbours re-
maining, one should be able to establish, from geometrical consideration alone, a value for the
necessary embedding dimension. Such an approach was described by Kennel et al. [16,17]. In
dimension d each vector y(k) has a nearest neighbour y"“(k) with nearness in the sense of
some distance function. The Euclidean distance in dimension d between y(k) and y"V(k) we
call Ry(k):
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R2(k) =[s(k) — s" (K)]* +[s(k + 1) —s™ (k + )] + @)
ot [s(k +t(d =1)) —s"™ (k + t(d —))T°.
R4(k) is presumably small when one has a lot a data, and for a dataset with N measurements,
this distance is of order 1/NY®. In dimension d + 1 this nearest-neighbour distance is changed
due to the (d + 1)st coordinates s(k + dt) and s""(k + dt) to

RZ,(k) = RZ(k) +[s(k +dt) —s" (k + d1)]*. (3)
We can define some threshold size Rt to decide when neighbours are false. Then if
NN
[s(k +dt)—s (k+dr)|>RT, (@)
Rq (k)

(the nearest neighbours at time point k are declared false). Kennel et al. [16] showed that for
values in the range 10 < Ry <50 the number of false neighbours identified by this criterion is
constant. In practice, the percentage of false nearest neighbours is determined for each dimen-
sion d. A value at which the percentage is almost equal to zero can be considered as the em-
bedding dimension.

As usually, the predictability can be estimated by the Kolmogorov entropy, which is pro-
portional to a sum of positive Lyapunov exponents. The spectrum of the Lyapunov exponents
is one of dynamical invariants for non-linear system with chaotic behaviour. The limited pre-
dictability of the chaos is quantified by the local and global Lyapunov exponents, which can
be determined from measurements. The Lyapunov exponents are related to the eigenvalues of
the linearized dynamics across the attractor. Negative values show stable behaviour while
positive values show local unstable behaviour.

For chaotic systems, being both stable and unstable, Lyapunov exponents indicate the
complexity of the dynamics. The largest positive value determines some average prediction
limit. Since the Lyapunov exponents are defined as asymptotic average rates, they are inde-
pendent of the initial conditions, and hence the choice of trajectory, and they do comprise an
invariant measure of the attractor. An estimate of this measure is a sum of the positive Lya-
punov exponents. The estimate of the attractor dimension is provided by the conjecture d, and
the Lyapunov exponents are taken in descending order. The dimension d. gives values close
to the dimension estimates discussed earlier and is preferable when estimating high dimen-
sions. To compute the Lyapunov exponents, we use a method with linear fitted map, although
maps with higher order polynomials can be used too [18-23].

3. Conclusions

Summing up above said and results of Refs. [1-3], it is useful to summarize the key
points of the investigating system for a chaos availability and wording the forecast model
(evolution) of the system. The above methods are just part of a large set of approaches (see
our versions in [1-11]), which is used in the identification and analysis of chaotic regimes in
the time series. Generally speaking, the short technique of processing any time series of the
air pollutants can be formulated as follows:
a) check for the presence of a chaotic regime (the Gottwald-Melbourne’s test; the method of
correlation dimension);
b) reducing the phase space (choice of the time delay, the definition of the embedding space
by methods of correlation dimension algorithm and false nearest neighbor points);
c¢) determination of the dynamic invariants of a chaotic system (global Lyapunov exponents);
d) forecasting evolution of the dynamical system.
Algorithm for calculating the characteristics of the chaotic time series and use it to forecast
the non-linear method is presented in Figure 1. The most important stage of this technique are
the first two points, as the accuracy of the recovery will depend on the dimension of the at-
tractor chaotic classification system and forecast its evolution. Therefore it is preferable not to
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use any one method, and several compare results. There is another very important aspect re-
lated to the invariants of the system. The fact is that if the aggregate and dynamic topological
invariants (see details in [1-3]), the two systems are identical, then we can say that the evolu-
tion of these systems are also subject to the same laws. Further, if one of these systems is
known differential equation (or system of equations) describing its dynamics, it can be as-
sumed that an analogous equation (or system) and the other describes the evolution of the sys-
tem.

| L Preliminary conclusion about the presence of chaos |
s

| 1. The Gottwald-Melbourne test: K — 1 - chaos |
s

| 2. The Fourier expansion irregular change - chaos |
s

| I1. The phase space |
5

3. Computation of the time delay t using the autocorrelation

function or the mutual information

\

4. Determining embedding dimension de by the method of
the correlation dimension or algorithm of the false nearest
neighbor points
5
| I11. Forecasting |

\

5. Computation of the global Lyapunov dimension A; deter-
mination of the Kaplan-York dimension
d, and average limits of predictability Pra
5
6. Determining the number of nearest
neighboring points NN for the best
forecast results
\
| 7. Application of a nonlinear prediction method |
Figure 1 — General compact algorithm for computation of the characteristics of the air pollu-
tant chaotic time series and application of the non-linear prediction method to it
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AHaJi3 i NPOrHO3 AaHTPONOreHHOI0 BIUIMBY HA MOBITPsIHMIA GaceliH MPOMMCJI0BOr0 MicTa Ha OCHOBi MeTOliB Teopil
xaocy: Hosa 3araiabna cxema. I'mymxos O.B.

3 memoro po3eumxy meopemuyHUX OCHO8 3A2ANbHO0 ANApamy AHANi3y ma NPOSHO3Y 6NAUBY AHMPONO2EHHO20 HABAHMA-
JICEHHs HA CMAH ammocgepu NPoOMUCI08020 MICMA i pO3poOKU HOBOT cxeMu MOOeNI08aHHs 81ACMUBOCHIEl NONI8 KOHYeHM-
payiti 3a6pyoHI0I04UX NOGIMPAHULL bacelin pevosUH HA OCHOBI Memooi6 meopii Xaocy, 6UKOHAHO AHANI3 MeCMi HA HAABHICHb
xaocy 6 cucmemi (nogimpanull daceiin nNPOMUCIO8020 Micma) i UKIAOEHO YOOCKOHANEHY MEMOOUK) GIOHOBNEHHS (PaA308020
npocmopy.

Knrwowuoei cnosa: nogimpanuil bacetin npomMuciogo2o micma, exKoJI0IYHULL CMAH, 4acosi pAaou KOHYeHmpayiil, 3a6pyonioyi
PeYoBUHU, AHANI3 | NPOSHO3, MemOOU meopii xaocy

AHa/IM3 ¥ NPOTHO3 AHTPONOreHHOr0 BO3/elicTBUSA HA BO3AyUIHbI 0acceiiH NPOMBIILICHHOr0 FOPOJa HA OCHOBE METO-
0B Teopun xaoca: Hosasi o6mas cxema. I'mymkos A.B.

H31001cenbl meopemuyeckue 0CHOBbL 00ujeco annapama anaiu3a u NPOSHO3a GIUAHUA AHMPONOLEHHOU HASPY3KU HA COCMO-
AHUE amMochepbl npoMbLUIEHHO20 20poda, [Ipedcmasnena KOMNAKMHAA 00Was cXeMa MOOETUPOBAHUS BDEMEHHBIX (IYK-
myayuil noneti KOHYeHMpayull 3azpAHAIOWUX 8030YUIHBILL baccellt geuwecms Ha OCHO8e Meno008 Mmeopul Xaoca.
Knroueswie cnosa: 6030yuinblil 6acceiin NPOMbIUIEHHO20 20pO0d, IKOLOSUYECKOe COCMOsAHUE, 6peMeHHble PAObl KOHYeHmpa-
Yuil, 3a2pAsHAIOWUE 8eWjeCEd, AHANU3 U NPOZHO3, MEMOObl MEOPUU XA0CA
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