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The theoretical basis’s of a new general formalism for an analysis and forecasting an  impact of anthro-
pogenic factors  on the atmosphere of an industrial city are presented. It is developed a new compact gen-
eral scheme  for modeling temporal fluctuations of the air pollution concentration field temporal fluctua-
tions ,based  on the  methods of a chaos theory. 
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1. Introduction 

     Problem of studying the dynamics of chaotic dynamical systems arises in many areas of 
science and technology. We are talking about a class of problems of identifying and estimat-
ing the parameters of interaction between the sources of complex (chaotic) oscillations of the 
time series of experimentally observed values. Such problems arise in environmental scienc-
es, geophysics, chemistry,  biology, medicine, neuroscience, engineering, etc. Problem of an 
analysis and forecasting the impact of anthropogenic pressure on the state of atmosphere in an 
industrial city and development of the consistent, adequate schemes for modeling the proper-
ties of the concentration fields of  air pollutions is one of the most important and fundamental 
problems of modern environmental sciences, in particular, applied ecology and urban ecology 
[1-18]. Most of the models currently used to assess a state (as well as, the forecast) of an air 
pollution are presently by the deterministic models or simplified ones, based on a simple sta-
tistical regressions. The success of these models, however, is limited by their inability to de-
scribe the nonlinear characteristics of the pollutant concentration behaviour and lack of under-
standing of the involved physical and chemical processes.  Although the use of methods of a 
chaos theory establishes certain fundamental limitation on the long-term predictions, howev-
er, as has been shown in a series of our papers (see, for example, [1-11]), these methods can 
be successfully applied to a short-or medium-term forecasting. As example, let us remind 
about quantitatively correct description of the temporary changes in the concentration of ni-
trogen dioxide (NO2) and sulfur dioxide (SO2) in several industrial cities (Odessa, Triste, Al-
lepo and cities of the Gdansk region) with discovery of  the  low-dimensional chaos. Some 
elements of this technique have been successfully applied to several tasks of prediction of the 
other nature system ecological state [6-11]. The main purpose of this paper is formally to pre-
sent theoretical basis of a new general formalism for an analysis and forecasting an  impact of 
anthropogenic factors  on the atmosphere of an industrial city and develop a new compact 
general scheme  for modeling temporal fluctuations of the air pollution concentration field 
temporal fluctuations ,based  on the  methods of a chaos theory. 

 
2. New general formalism for analysis of and forecasting an impact of anthropogenic 

factors on the atmosphere of an industrial city 
     Preliminary we start from the first key task on testing a chaos in the time series of air 
pollutants [1-11]. As usually, let us consider scalar measurements s(n)=s(t0+ n∆t) = s(n), 
where t0 is a start time, ∆t is time step, and n is number of the measurements. In a general 
case, s(n) is any time series (f.e. atmospheric pollutants concentration). As processes resulting 
in a chaotic behaviour are fundamentally multivariate, one needs to reconstruct phase space 
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using as well as possible information contained in s(n). Such reconstruction results in set of d-
dimensional vectors y(n) replacing scalar measurements. The main idea is that direct use of 
lagged variables s(n+τ), where τ is some integer to be defined, results in a coordinate system 
where a structure of orbits in phase space can be captured. Using a collection of time lags to 
create a vector in d dimensions, y(n)=[s(n),s(n + τ),s(n + 2τ),..,s(n +(d−1)τ)], the required co-
ordinates are provided. In a nonlinear system, s(n + jτ) are some unknown nonlinear combina-
tion of the actual physical variables. The dimension d is the embedding dimension, dE. 
     The choice of proper time lag  is important for the subsequent reconstruction of phase 
space.  If  τ is chosen too small, then the coordinates s(n + jτ),  s(n +(j +1)τ)  are so close to 
each other in numerical  value that they cannot be distinguished from each other. If τ is too 
large, then s(n+jτ),  s(n+(j+1)τ) are  completely independent of each other in a statistical 
sense. If τ is too small or too large, then the correlation dimension of attractor can be under-or 
overestimated.  
  One needs to choose some intermediate position between above cases. First approach is 
to compute the linear autocorrelation function CL(δ) and to look for that time lag where CL(δ) 
first passes through 0. This gives a good hint of choice for τ at that s(n+jτ) and s(n+(j +1)τ) 
are linearly independent.   It’s better to use approach with a nonlinear concept of independ-
ence, e.g. an average mutual information. The mutual information I of two measurements ai 
and bk is symmetric and non-negative, and equals to 0 if only the systems are independent. 
The average mutual information between any value ai from system A and bk from B is the av-
erage over all possible measurements of IAB(ai, bk). Usually it is necessary to choose that τ 
where the first minimum of I(τ) occurs. 
     The goal of the embedding dimension determination is to reconstruct a Euclidean space 
Rd large enough so that the set of points dA can be unfolded without ambiguity. The embed-
ding dimension, dE, must be greater, or at least equal, than a dimension of attractor, dA, i.e. 
dE > dA. In other words, we can choose a fortiori large dimension dE, e.g. 10 or 15, since the 
previous analysis provides us prospects that the dynamics of our system is probably chaotic. 
The correlation integral analysis is one of the widely used techniques to investigate the signa-
tures of chaos in a time series. The analysis uses the correlation integral, C(r), to distinguish 
between chaotic and stochastic systems.  
 According to [4], it is computed the correlation integral C(r).  If the time series is charac-
terized by an attractor, then the correlation integral C(r) is related to the radius r as  
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where d is correlation exponent. If the correlation exponent attains saturation with an increase 
in the embedding dimension, then the system is generally considered to exhibit chaotic dy-
namics. The saturation value of correlation exponent is defined as the correlation dimension 
(d2) of the attractor (see details in refs. [3,4]). 
     Another method for determining dE comes from asking the basic question addressed in 
the embedding theorem: when has one eliminated false crossing of the orbit with itself which 
arose by virtue of having projected the attractor into a too low dimensional space? In other 
words, when points in dimension d are neighbours of one other? By examining this question 
in dimension one, then dimension two, etc. until there are no incorrect or false neighbours re-
maining, one should be able to establish, from geometrical consideration alone, a value for the 
necessary embedding dimension. Such an approach was described by Kennel et al. [16,17]. In 
dimension d each vector y(k) has a nearest neighbour yNN(k) with nearness in the sense of 
some distance function. The Euclidean distance in dimension d between y(k) and yNN(k) we 
call Rd(k): 
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Rd(k) is presumably small when one has a lot a data, and for a dataset with N measurements, 
this distance is of order 1/N1/d. In dimension d + 1 this nearest-neighbour distance is changed 
due to the (d + 1)st coordinates s(k + dτ) and sNN(k + dτ) to 
                                              222
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We can define some threshold size RT to decide when neighbours are false. Then if 
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(the nearest neighbours at time point k are declared false). Kennel et al. [16] showed that for 
values in the range 10 ≤ RT ≤ 50 the number of false neighbours identified by this criterion is 
constant. In practice, the percentage of false nearest neighbours is determined for each dimen-
sion d. A value at which the percentage is almost equal to zero can be considered as the em-
bedding dimension. 
 As usually, the predictability can be estimated by the Kolmogorov entropy, which is pro-
portional to a sum of positive Lyapunov exponents. The spectrum of the Lyapunov exponents 
is one of dynamical invariants for non-linear system with chaotic behaviour. The limited pre-
dictability of the chaos is quantified by the local and global Lyapunov exponents, which can 
be determined from measurements. The Lyapunov exponents are related to the eigenvalues of 
the linearized dynamics across the attractor. Negative values show stable behaviour while 
positive values show local unstable behaviour.  
  For chaotic systems, being both stable and unstable, Lyapunov exponents indicate the 
complexity of the dynamics. The largest positive value determines some average prediction 
limit. Since the Lyapunov exponents are defined as asymptotic average rates, they are inde-
pendent of the initial conditions, and hence the choice of trajectory, and they do comprise an 
invariant measure of the attractor. An estimate of this measure is a sum of the positive Lya-
punov exponents. The estimate of the attractor dimension is provided by the conjecture dL and 
the Lyapunov exponents are taken in descending order. The dimension dL gives values close 
to the dimension estimates discussed earlier and is preferable when estimating high dimen-
sions. To compute the Lyapunov exponents, we use a method with linear fitted map,  although 
maps with higher order polynomials can be used too [18-23]. 

 
3. Conclusions 

Summing up above said and results of Refs. [1-3], it is useful to summarize the key 
points of the investigating system for a chaos availability and wording the forecast model 
(evolution) of the system. The above methods are just part of a large set of approaches (see 
our versions in [1-11]), which is used in the identification and analysis of chaotic regimes in 
the time series. Generally speaking, the short technique of processing any time series of the 
air pollutants can be formulated as follows:  
a) check for the presence of a chaotic regime (the  Gottwald-Melbourne’s test; the method of 
correlation dimension);  
b) reducing the phase space (choice of the time delay, the definition of the embedding space 
by methods of correlation dimension algorithm and false nearest neighbor points);  
c) determination of the dynamic invariants of a chaotic system (global Lyapunov exponents);  
d) forecasting evolution of the dynamical system. 
Algorithm for calculating the characteristics of the chaotic time series and use it to forecast 
the non-linear method is presented in Figure 1. The most important stage of this technique are 
the first two points, as the accuracy of the recovery will depend on the dimension of the at-
tractor chaotic classification system and forecast its evolution. Therefore it is preferable not to 
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use any one method, and several compare results. There is another very important aspect re-
lated to the invariants of the system. The fact is that if the aggregate and dynamic topological 
invariants (see details in [1-3]), the two systems are identical, then we can say that the evolu-
tion of these systems are also subject to the same laws. Further, if one of these systems is 
known differential equation (or system of equations) describing its dynamics, it can be as-
sumed that an analogous equation (or system) and the other describes the evolution of the sys-
tem. 

I. Preliminary conclusion about the presence of chaos 
↓ 

1. The Gottwald-Melbourne test: K → 1 - chaos 
↓ 

2. The Fourier expansion irregular change - chaos 
↓ 

II. The phase space 
↓ 

3. Computation of the time delay τ using the autocorrelation 
function or the mutual information 

↓ 
4. Determining embedding dimension dE by the method of 
the correlation dimension or algorithm of the false nearest 

neighbor points 
↓ 

III. Forecasting 
↓ 

5. Computation of the global Lyapunov dimension λα; deter-
mination of the Kaplan-York dimension 

dL and average limits of predictability Prmax 
↓ 

6. Determining the number of nearest 
neighboring points NN for the best 

forecast results 
↓ 

7. Application of a nonlinear prediction method 
Figure 1 – General compact algorithm for computation of the characteristics of the air pollu-

tant chaotic time series and application of the non-linear prediction method to it 
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Аналіз і прогноз антропогенного впливу на повітряний басейн промислового міста на основі методів теорії 
хаосу: Нова загальна схема. Глушков О.В. 
З метою розвитку теоретичних основ загального апарату аналізу та прогнозу впливу антропогенного наванта-
ження на стан атмосфери промислового міста і розробки нової схеми моделювання властивостей полів концент-
рацій забруднюючих повітряний басейн речовин на основі методів теорії хаосу, виконано аналіз тестів на наявність 
хаосу в системі (повітряний басейн промислового міста) і викладено удосконалену методику відновлення фазового 
простору. 
Ключові слова: повітряний басейн промислового міста, екологічний стан, часові ряди концентрацій, забруднюючі 
речовини, аналіз і прогноз, методи теорії хаосу 
 
Анализ и прогноз антропогенного воздействия на воздушный бассейн промышленного города на основе мето-
дов теории хаоса: Новая общая схема. Глушков А.В. 
Изложены теоретические основы общего аппарата анализа и прогноза  влияния антропогенной нагрузки на состо-
яние атмосферы промышленного города, Представлена компактная общая схема моделирования временных флук-
туаций полей концентраций загрязняющих  воздушный бассейн веществ на основе методов теории хаоса. 
Ключевые слова: воздушный бассейн промышленного города, экологическое состояние, временные ряды концентра-
ций, загрязняющие вещества, анализ и прогноз, методы теории хаоса 
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