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Small vibrations in a solid insulator in the presence of a self-consistent electric field with
the first strength moment at the equilibrium equal to zero and the second one different from
zero have been considered. A new variable, the second moment of electric field strength, was
introduced into the Euler equation, and a temporal equation for this variable was derived on the
basis of Maxwell equations in the hydrodynamic approximation. A wave equation was obtained,
and its solutions – two transverse and one longitudinal sound vibration branches – are found.
The transverse sound velocity is calculated; the results obtained correspond to those calculated
using the shear modulus to an accuracy of about 10%.
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Consider low-frequency long-wave sound vibrations
in an ionic crystal. Suppose that ions interact with
one another only by means of a self-consistent elec-
trostatic field [1]. This approach generalizes the con-
sideration of sound vibrations in metals [2], where a
self-consistent electromagnetic field was used only to
describe the interaction between oppositely charged
subsystems. For simplicity, let the system be uni-
form and isotropic. Its positive and negative compo-
nents will be described with the use of the common
local mass density ρ, pressure P , and mass velocity
v. Besides the indicated purely hydrodynamic quan-
tities, we need to describe a microscopic electric field
in the crystal, which is responsible for both the at-
traction of ions at large distances and their repulsion
at small ones. This field is a random variable, with
the first moment of the electric field strength E equal
to zero (we do not consider piezoelectrics), but the
second moment is different from zero after its aver-
aging over a physically small volume. The standard
Euler equation includes the Maxwell stress tensor [3],
which is quadratic in the electric field strength and,
in our approximation, is completely determined by
the tensor 〈ElEm〉. For the latter, we will derive a
temporal equation in the hydrodynamic approxima-
tion. It is known [4] that, in the case of a perfect
crystal free of defects like vacancies or excess intersti-
tial atoms (we consider only this case), the velocity of
medium points coincides with the time derivative of
their displacement, v = ∂u/∂t, where uα is the shear
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field (the deformation vector [4]) that characterizes
the motion of a point in this medium. Therefore, we
can describe the dynamics of the crystal in terms of
the mass velocity.

Let us write down the standard equations of classic
hydrodynamics for an insulator, neglecting all dissi-
pation effects, such as viscosity and heat conductivity
[3]. These are the continuity equation

∂tρ + divρv = 0 (1)

and the Euler equation

∂t (ρvi) + ∂kπik = 0, (2)

in which we introduced the notation ∂/∂xk = ∂k for
the derivative and

πik = ρvivk + Pδik − (〈EiEk〉 −
〈
E2

〉
δik/2

)
ε/(4π)

(3)

for the tensor of momentum flow. The dielectric
permittivity ε is taken to be constant. One can
see that Eq. (3) contains the Maxwell stress ten-
sor, which is completely determined by the second
moment 〈EiEk〉. The temporal equation for the in-
dicated moment can be obtained from the Maxwell
equation for the electric field as a random variable,

∂εE/∂t = c rotB − 4πσv, (4)

where σ is the electric charge density. For this pur-
pose, we multiply Eq. (4) by Ek taken at the same
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Sound Vibrations in Ionic Crystal

Transverse sound velocities for some alkali halides

Crystal ρ, g/cm3 G × 1010, dyne/cm2 uG
s × 105, cm/s W × 10−11, erg u⊥

s × 105, cm/s u⊥
s /uG

s

LiF 2.601 51.2 4.44 1.68 5.10 1.15
NaF 2.805 31.4 3.35 1.49 3.77 1.13
NaCl 2.165 15.2 2.65 1.27 2.95 1.11
NaBr 3.200 11.8 1.92 1.21 2.17 1.13
KCl 1.990 12.7 2.53 1.15 2.49 0.99
KBr 2.750 10.2 1.93 1.10 1.93 1.00
KI 3.130 7.0 1.50 1.04 1.59 1.06

RbCl 2.799 8.9 1.78 1.11 1.92 1.08
RbBr 3.351 7.5 1.50 1.06 1.60 1.07
RbI 3.554 6.1 1.31 1.01 1.38 1.05

space-time point and symmetrize the product with
respect to tensor indices. The equation for the sec-
ond moment of the magnetic induction was obtained
analogously in work [5] in the magnetohydrodynamic
approximation. We should take into account that the
equilibrium field E exists in a fixed coordinate system.
Therefore, according to the Galilean transformation
[3], B′ = B + [v,E]ε/c,

∂εEiEk/∂t = c roti (B + [v,E]ε/c) Ek +

+ c rotk (B + [v,E]ε/c) Ei − 4πσ (viEk + vkEi) . (5)

The thermal fluctuations of the field are also ne-
glected. After averaging over a small volume, the
last term turns out nonlinear, and it can be omitted.
For a substance that is not magnetoactive, the in-
ternal magnetic field is small in comparison with the
electric one; therefore, the correlations between the
electric and magnetic fields can be neglected. In view
of the isotropic character of the problem, we obtain

〈ElEm〉0 =
〈
E2

〉
0
δlm/3 = const. (6)

Therefore, from Eq. (5) and with the use of Eq. (6),
we obtain the linearized equation

∂ 〈EiEk〉 /∂t = (∂kvi + ∂ivk − 2∂lvlδik)
〈
E2

〉
0
/3. (7)

The tensor of momentum flow (2) includes the en-
tropy deviation. However, sound is an adiabatic
process. Therefore, after the linearization, we obtain

∂tvi+∂k

{
δikv2

sρ−(〈EiEk〉−〈ElEl〉 δik/2) ε/4π
}
/ρ0 =0.

(8)

Here, v2
s = (∂P/∂ρ)s, and ρ0 is the equilibrium value

of mass density. Using Eqs. (1) and (7), we can dif-
ferentiate Eq. (8) with respect to the time,

∂2
t vi−v2

s∂i∂kvk−∂k (∂ivk+∂kvi)
〈
E2

〉
0
ε/(12πρ0) = 0.

(9)

Hence, we obtained the wave equation (9) for sound
vibrations in an isotropic solid. It is convenient to
change to the Fourier components according to the
rule

v (x, t) = ∫ d3kdωv (k, ω) eikx−iωt/(2π)4. (10)

Substituting Eq. (10) into Eq. (9), we find the
dispersion equations for two transverse, ω2 =
=

〈
E2

〉
0
ε/(12πρ0)k2, and one longitudinal, ω2 =

=
(
v2

s +
〈
E2

〉
0
ε/(6πρ0)

)
k2, branches of sound vibra-

tions. Therefore, we can determine the velocities for
the transverse,

u⊥
s =

√
〈E2〉0 ε/(12πρ0), (11)

and longitudinal,

u‖
s =

√
v2

s + 〈E2〉0 ε/(6πρ0), (12)

sound waves. One can see from Eq. (12) that, in the
case

〈
E2

〉
0

= 0, we obtain the sound velocity in a
liquid [6]. As is known from elasticity theory, the
transverse sound velocity in a solid can be expressed
in terms of the shear modulus G [4],

uG
s =

√
G/ρ0. (13)
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Now, it is easy to see from expression (11) that the
introduced equilibrium field correlation can also be
expressed in terms of the shear modulus,

G =
〈
E2

〉
0
ε/(12π). (14)

This provides elastic properties in the system. It is
known [7] that the cohesion energy W in ionic crystals
is almost completely electrostatic by nature. This
means that its density can be used to estimate the
introduced correlation of the electric field,

Wn0 ≈ 〈
E2

〉
0
ε/(8π). (15)

Here, n0 is the concentration of ionic pairs, because
the cohesion energy in an ionic crystal is measured
just per ionic pair. Assumption (15) allows us to es-
timate the transverse sound velocity (Eq. (11)),

u⊥
s =

√
2W/(3M), (16)

where M = M+ +M− is the mass of an ionic pair. A
comparison of the numerical values for the transverse
sound velocity in a number of alkali halides calculated
according to formulas (13) and (16) demonstrates a
good agreement for them (see Table). The values
of density ρ and shear modulus G were taken from
work [8], and those of cohesion energy from work [7,
Table 20.5]. All the data were measured at the tem-
perature T = 298 K.

To summarize, proceeding from the hydrodynamic
model for the description of small vibrations in
an ionic crystal and making allowance for a self-
consistent electric field with the first moment equal
to zero and the second one different from zero, two
transverse and one longitudinal branches of sound vi-
brations are calculated. The values obtained for the

transverse sound vibrations correspond to those ob-
tained in the framework of elasticity theory to an ac-
curacy of about 10%.
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ЗВУКОВI КОЛИВАННЯ В IОННОМУ
КРИСТАЛI ПРИ ВРАХУВАННI КОРЕЛЯЦIЙ
ЕЛЕКТРИЧНОГО ПОЛЯ

Р е з ю м е

Розглянуто малi коливання в твердому дiелектрику в са-
моузгодженому електричному полi, яке має в рiвновазi рiв-
ний нулю перший момент i вiдмiнний вiд нуля другий мо-
мент напруженостi. У рiвняннi Ейлера запроваджено нову
змiнну – другий момент напруженостi електричного поля,
для якого отримано часове рiвняння на основi рiвнянь Ма-
ксвелла в гiдродинамiчному наближеннi. Отримано хвильо-
ве рiвняння та знайдено двi поперечнi та поздовжню звуковi
гiлки коливань. Обчислено значення швидкостi поперечно-
го звуку, якi вiдповiдають з точнiстю порядку 10 вiдсоткiв
знайденим за модулем зсуву значенням.
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