
SOFT MATTER

32 ISSN 2071-0186. Ukr. J. Phys. 2013. Vol. 58, No. 1

O.I. GERASYMOV,1 A.G. ZAGORODNY,2 M.M. SOMOV1

1Odessa State Environmental University
(1, Lvivs’ka Str., Odessa 65016, Ukraine; e-mail: ogerasymov@mail.ru)

2Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine)
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The structural ordering, which is observed in granular materials and some other soft-matter
objects (e.g., dusty plasma) on the meso- and macroscales, has been studied using geometrical
methods (Voronoi diagrams) and by analyzing the structural order parameters. The phase dia-
grams for the translational and orientational order parameters testify to the native anisotropic
character of granular materials. The model of lattice gas entropy has been used to describe
the vertical density distribution in granular materials in a gravitational field. The obtained
theoretical results agree well with experimental data and reproduce them in the nearest vicinity
of the states with maximum packing.
K e yw o r d s: granular systems, local structure, structural transformations, order parameter,
phase diagrams, anistropic phase, configurational entropy

1. Introduction

Granular materials (GMs) are conglomerations of a
large number of discrete particles, granules, with the
spread of their sizes extending from a few microm-
eters to several meters. Granules interact with one
another mainly owing to particle-to-particle contacts.
In most cases, those contact interactions are non-
linear. A characteristic feature of GMs consists in
that the contact interactions between granules are,
generally speaking, dissipative. Therefore, such sys-
tems are non-equilibrium even at rest, actually be-
ing in metastable states. The role of main energy
scale in GMs is played by their energy in an exter-
nal (gravitational) field, which together with bound-
ary conditions ultimately govern the GM shape. If
the energy supply from the environment is ceased,
the kinetic energy of granules vanishes almost in-
stantly. Hence, GMs are not true thermodynamic
systems.

Under specially created conditions, GMs are dis-
sipative discrete micromechanical dynamic systems.
They demonstrate properties that are both typical of
aggregates of condensed matter states (such as gases,
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liquids, and solids) and basically different from them.
Such a multicomponent behavior of GMs makes the
task of describing their properties in the framework
of a consistent theory very difficult. Despite a few
successful models, the problem remains far from its
ultimate solution [1–4].

As a consequence, the industrial technologies of
GM treatment – more precisely, their theoretical sub-
stantiations – are mainly based till now on the sum-
marizing of empirical data concerning their behav-
ior under various external conditions. For instance,
let us consider such a well-known and illustrative
property of GMs as their compaction, which consists
in a reduction of the volume occupied by the sys-
tem after its treatment in an external field of me-
chanical perturbations. It is evident that the under-
standing of the physical nature of only this prop-
erty would already allow the efficiency of GM ap-
plications in industry to be improved substantially
and a considerable progress in the theory develop-
ment to be made. It should be noticed that the
researches of some other soft matter objects (GMs
represent one of their kinds) – e.g., dusty plasma,
which essentially differs from the GMs described
above by the character of the particle-to-particle in-
teraction – allowed the existence of structural order-
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ing isomorphic to that observed in GMs to be estab-
lished.

The local structure of a condensed substance sub-
stantially governs its behavior at the macro-scale
level. In particular, it affects the structure formation,
phase transformations, and dynamics in the material.
As a rule, the kinetics of structural transformations
effectively develops on the so-called mesoscale, where
the processes of formation or destruction of defects,
domains of another phase, and so on start. There-
fore, the structure parametrization on the mesoscale
(in the sense defined above) is an essential element
on the way to simulate the structure and the dynam-
ics of condensed matter objects. In the case of GMs,
we have a unique opportunity to observe structural
modifications that takes place under the influence of
external perturbations and do it with an almost naked
eye. The simulation of the structure and the transi-
tions between various structure types demands that
a multiscale analysis be applied.

In experiments with magnetic fluids that are sub-
jected to the action of an external magnetic field and
a vibrational shaking field [6], a structurization with
a symmetry of the hexagonal type was observed in
droplets. In work [7], the analogous ordered struc-
tures, which consisted of water droplets levitating
over the heated-up surface of water at a tempera-
ture close to the boiling one, were registered. Similar
features revealed in the structure formation at the
mesoscale level in the systems, which are so differ-
ent by their physical nature, can be induced by the
action of isomorphic mechanisms (e.g., the excluded
volume effect) under definite conditions. Below, we
shall analyze some analytical methods of structure
parametrization and the results of their application
to two-dimensional (2D) GMs and dusty plasma.

2. Structure of 2D Granular Materials
and Dusty Plasma

The researches of 2D meso- and macroscaled soft-
matter objects – granules, dust particles, hard disks,
water and magnetic fluid droplets – allowed the pres-
ence of such states in their structure to be estab-
lished, which are, from the viewpoint of the char-
acter of particle distributions in them, either typical
of or different from regular aggregate states (gases,
liquids, and solids). Transitions between the states
with different, by symmetry, characters of local or-
dering occur following various scenarios depending
on the initial state (more exactly, on the initial
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Fig. 1. Structures observed in a two-dimensional system of
hard disks perturbed externally by shaking it in the horizontal
direction (digitized, arbitrary selected stroboscopic photos of
the system): the initial disordered state (left panel) and a state
with the hexagonal symmetry (right panel)
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Fig. 2. Structures observed in 2D dusty plasma (according to
the results of work [5]): the initial disordered state (left panel)
and a structure with dominating domains of the hexagonal
symmetry (right panel)

compaction in the case of GMs), the dimensional-
ity, and the intensity of dissipative losses (or their
absence).

In the course of experimental researches, a mi-
cromechanical system consisting of hard disks located
in a horizontal plane was perturbed by shaking it in
this plane. The disk diameter was 17 mm, and a
rectangular cuvette containing the disks had linear
dimensions of 16.5×20 cm2. The initial disk distribu-
tion over the cuvette had a stochastic character. Af-
ter the energy supply from the outside was ceased, the
system stopped, and the disks were photographed. In
Fig. 1, the data obtained as was described above are
exhibited. The figure evidently demonstrates the for-
mation of clusters with a hexagonal symmetry in the
arrangement of granules.

It is interesting to note that the formation of
a similar structure was observed in systems that
are basically different from GMs, in particular, in
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Fig. 3. Voronoi cells for structures observed in a 2D system
of hard disks perturbed externally by shaking it in the hor-
izontal direction: the initial disordered state (left panel) and
diagrams corresponding to a structure with the hexagonal sym-
metry (right panel)

200 250 300 350 400 450

100

120

140

160

180

200

220

240

260

280

250 300 350 400 450

120

140

160

180

200

220

240

260

280

Fig. 4. Voronoi cells for structures observed in 2D dusty
plasma (according to the results of work [5]): the initial dis-
ordered state (left panel) and a structure with dominating do-
mains of the hexagonal symmetry (right panel)

dusty plasma. In Fig. 2, the analogous structures,
which were experimentally observed while studying
the structure formation in a system consisting of par-
ticles in dusty plasma, are depicted.

The formation of local structures belonging to vari-
ous types, as well as their evolution on the meso- and
macroscales, is convenient to be analyzed using the
Voronoi method. The construction of Voronoi cells
consists in determining such a space around the par-
ticle center, which includes all the points that are the
closest to this center [8]. Figures 3 and 4 exhibit
Voronoi cells that correspond to the distinguished
types of structures in 2D GMs and dusty plasma,
which were shown in Figs. 1 and 2.

The analysis of data presented in Figs. 1 to 4 tes-
tifies that the structure formation in those systems,
which are different by their physical nature, has cer-
tain similar features at the mesoscale level. For in-
stance, the formation of a short-range order in the
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Fig. 5. Function g(r) for granular materials (upper panel) and
dusty plasma (lower panel). The insets illustrate the Voronoi
cells for the corresponding structures

a b
Fig. 6. Types of local structure observed in 2D systems of
hard disks

local structure is observed in both cases, with the
creation of more symmetric structures corresponding
to a higher symmetry of Voronoi cells. In the cases
of crystallization of particles (impurities) in dusty
plasma and particles (granules) in a granular system,
the Voronoi diagrams mainly demonstrate the hexag-
onal symmetry on the mesoscale with quantitatively
different perimetric parameters.

The structurization can be described illustratively
by calculating the function g(r) [9]. For the consid-
ered systems, the results of calculation of this func-
tion are shown in Fig. 5. The analysis of the data
exhibited in this figure testifies that the density dis-
tributions in the examined systems correspond to the
formation of shell structures in both of them.

For instance, let us consider a 2D packing of hard
disks on a plane (points in Fig. 6 denote the posi-
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tions of disk centers). Let us select a particle and
postulate that it completely fills the first conditional
shell. The group of the nearest neighbor particles
around it creates the second structural shell. Fig-
ure 6 demonstrates states which are observed in a
system of two-dimensional disks on the mesoscale.
If the ordered structure around the central particle
looks like that shown in Fig. 6,a, there are six neigh-
bor particles in the nearest vicinity of the central
one, which can be interpreted as the second shell.
In the next, third shell, there are 12 particles. In
the framework of this shell approach, the structure in
Fig. 6,a can be classed as (1; 6; 12), where the num-
bers indicate the filling degrees for the corresponding
shells. Note that the considered structure was crystal-
ordered. Accordingly, the structure shown in Fig. 6,b
should be classed, as (1; 7; 13). In such a man-
ner, structural changes of the ordering-disordering
type, as well as transitions between ordered states
with different symmetries in a particle arrangement,
can also be described in the framework of the shell
model and in terms of occupation number fluctua-
tions, which are inherent to it. In this approach,
the completely filled shells are associated with the
most symmetrized states. In the framework of the
shell model, the corresponding phase diagram can be
plotted in terms of the order parameter ϕ. The lat-
ter can be calculated, e.g., using the shell occupation
numbers as ϕ = nid−ni

nid+ni
, where nid is the number of

particles in the shell when the system is in the sym-
metrized state, and ni the actual number of particles
in the shell.

Quantitative changes in the area distribution of
Voronoi cells, which take place owing to the struc-
tural modifications on the mesoscale, can also be de-
scribed also with the help of the trial function N(s),
which looks like

N(s) =
ba

Γ(a)
sa−1 exp(−bs), (1)

where s = SV /Sh is the normalized area of a Voronoi
cell, SV the area of a Voronoi cell for a specific particle
in the observed state, and Sh the area of a Voronoi cell
in the case of a system with the hexagonal ordering.

The parametrization of the observation data with
the use of function (1) is reduced to the determination
of corresponding values for the parameters a and b.
The behavior of the distribution function (1) for sys-
tems with different packed fractions is shown in Fig. 7.
From the result depicted in this figure, it follows that
the growth of the packed fraction η is accompanied by
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Fig. 7. Characteristic distribution function N(s) for 2D gran-
ular materials with various packed fractions
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Fig. 8. Dependence of the N(s)-distribution dispersion on the
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a reduction in the dispersion of the corresponding dis-
tribution (1). Figure 8 demonstrates the distribution
dispersion D as a function of the packed fraction η.

It is typical that the features of the characteristic
function described above are common for the vicini-
ties of those states, from which a transition to the
ordered state takes place, irrespective of the essential
difference between the physical nature of the systems
under consideration.

3. Model of Lattice Gas Entropy for the
Description of Granular Material Densities

A perturbation of the granular system gives rise to
its compaction, i.e. to a reduction of the volume oc-
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Fig. 9. Dependence of the parameter γ calculated by formula
(7) on the packing parameter. Symbols exhibit the experimen-
tal data [13]

cupied by the system [10]. From this viewpoint, the
issue arises concerning the theoretical substantiation
and the parametrization of this phenomenon. We use
the quasistatistical approach to the description of the
GM density. On this way, let us write down the ex-
pression for the free energy functional for a system in
the so-called “inherent” states [11] in the form

F (ρ) = E(ρ)− β−1S(ρ), (2)

where the energy of the system in a gravitational field
is given by the expression

E(ρ) = mg

∫
(V )

zρ(r)dr, (3)

z is the vertical coordinate, β = 1
kBT is the energy

scale, and ρ is the system density. For S(ρ), we use
the known relation for the lattice gas entropy [12],

S(ρ) = −
∫

(V )

dr

{
ρ

ρ0
ln

ρ

ρ0
+

(
1− ρ

ρ0

)
ln

(
1− ρ

ρ0

)}
,

(4)

where ρ0 is the maximum density of the system.
The calculation of the variational derivative δF (ρ)

δρ
allows the equilibrium density profile to be obtained
in the form of a distribution similar to the Fermi
function,

ρ(r) =
ρ0

1 + ceΓz
, Γ = mgρ0β, (5)

where c is a constant, which can be determined by
comparing the theoretical results with experimental

data. It is the formula of type (4) that was used
in work [13] for the parametrization of the results
of experimental measurements of the vertical density
profile in GMs.

Let us consider our system in a vicinity of the
ordered (symmetrized) state. Then the deviation
from this state (see Fig. 6,a) can be interpreted as
a destruction (“melting”) of the symmetrized (“crys-
talline”) state (see Fig. 6,b). Note that, for the quan-
titative determination of crystal order destruction in
solids (melting), the so-called Lindemann parameter
is used as a rule [14]. It is calculated as a root-mean-
square deviation of a separate particle from its equi-
librium position,

γ =

√⟨
(r − ⟨ri⟩)2

⟩
/L, (6)

where ri is the distance between neighbor particles in
the observed state, r the distance between neighbor
particles in the symmetrized state, and L the lattice
constant. In terms of the model under investigation,
the expression for the parameter γ reads

γ =
ρ0c

Γ2
A(ρ),

A(ρ) = ρ
ln2 1

c

(
ρ0

ρ − 1
)

cρ0
− 1

c
ln2

1

c

(
ρ0
ρ

− 1

)
−

−2

[
ln c ln

ρ0
ρ

+ Li2

(
ρ0
ρ

)]
−

−ρ0c

[
ρ
ln c

ρ0
− ln

ρ0
ρ

+

ρ0

ρ − 1
ρ0

ρ

ln

(
ρ0
ρ

− 1

)]2

, (7)

where Li2(x) is the dilogarithmic function [15].
Figure 9 illustrates the dependence of γ on the

packing parameter η calculated by formula (7). As
follows from the exhibited data, the experimentally
obtained dependence of the parameter γ on the den-
sity, first, qualitatively corresponds to the predictions
of the proposed analytical model and, second, demon-
strates that the compaction profile of GM in the grav-
itational field does not obey the Boltzmann distribu-
tion. The variation of the limiting density ρ0 within
the physically reasonable range (in particular, up to
the really accessible values of packing parameter) re-
sults in a better agreement between the experimen-
tal data and the data obtained in the framework of
the theoretical model. The really accessible magni-
tudes of packing parameter in a vertical system of
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hard spheres reach a value of 0.78. When approach-
ing the initial conditions to this limit, we make nar-
rower the packing interval, in which the scenarios of
structure formation develop. Actually, this circum-
stance restricts the kinetic degrees of freedom for the
motion of particles (granules) and enhances the role
of relative configurations and entropic effects corre-
sponding to them. A comparative analysis between
theoretical and experimental data testifies that they
almost completely coincide in the closest vicinity of
the maximum packing in the system (see Fig. 9).

4. Translational and Orientational Order
Parameters. GM Anisotropy

Of separate interest in studying the structure of GMs
is their organization on the global, i.e. macro-, scale.
For instance, in work [16], the structural analysis was
carried out with the help of a discrete set of points
{Gi} ≡ {rα} (here, α = 0, 1, 2, ...) representing the
coordinates rα of centers of particles (granules) that
surround the central particle. The latter, in turn,
is located at the origin of the selected coordinate
system. In this approach, the geometrical structure
{Gα} can be determined by comparing it with an al-
ternative set of points {Γα}. The set {Γα} should
be determined in advance and represents an example
of perfectly ordered structures (face-centered cubic,
hexagonal close-packed, and so on). Information con-
cerning {Γα} can be obtained in the literature sources
dealing with the local structure of selected objects.
Note that, for instance, in the case of typical liquids,
the choice of {Γα} is very restricted, because infor-
mation on their local structure is not complete. As
to GMs, their structure can be observed rather easily
even with a naked eye.

In the framework of the proposed approach, any
part of the system can be quantitatively described as
a deviation from the selected “perfectly” ordered de-
termined set {Γα}. In other words, we may consider
any local structure as an excited state of the previ-
ously selected “perfectly” ordered object. Variations
in the local structure can be formally described by
introducing the corresponding local order parameter
and plotting the phase diagrams for it.

Returning back to the vector set {rα}, which de-
termines the configuration of particles in the group,
let us confine its size by the quantity r0. The role
of r0 can be played, e.g., by the radii of coordination
spheres. Formally, the set {rα} is already a parame-
ter that describes the structural ordering. It strongly
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Fig. 10. Order parameters (8) and (9) for granular materials
obtained by numerically processing the data depicted in Fig. 1

fluctuates for gases. For crystals, on the contrary, it
does not almost change. As a rule, the fluctuations
of {rα}, which arise owing to external perturbations
in the case of GMs, are supposed to be small enough
(of course, here, the matter concerns the orders of
smallness different in comparison, e.g., with molec-
ular ones). Moreover, the fluctuations are a conse-
quence of variations in both the lengths of vectors be-
longing to the set {rα} and the angles between them.

The orientational and translational order parame-
ters differ from each other. In particular, the orien-
tational order parameter can be defined as follows:

gn =
1

Nn

Nn∑
1

exp (iNnφn) . (8)

Here, Nn is the number of particles in the n-th
shell, and φn is the angle between the radius-vector
of a particle in the selected shell and the radius-
vector describing the position of the central particle,
around which this shell is constructed. On the other
hand, the translational order parameter can be writ-
ten down in the form

u2
2 =

1

N

∑
i

[⟨
|ri|2

⟩
− ⟨|ri|⟩2

]
, (9)

where N is the number of particles in the shell,
⟨
|ri|2

⟩
is the average value of squared distance between the
central particle and the i-th particle in the shell, and
⟨|ri|⟩2 is the square of the average distance between
the central particle and the i-th particle in the shell,
for which the measurement is carried out. The classi-
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Fig. 11. Order parameters (8) and (9) for dusty plasma ob-
tained by numerically processing the data depicted in Fig. 2

fication of types of local ordering in terms of param-
eters (8) and (9) was carried out in work [16].

In Figs. 10 and 11, the results of calculations by
formulas (8) and (9) for the order parameters in GMs
and dusty plasma, respectively, are depicted.

Summarizing the results obtained, we arrive at
a conclusion that both examined systems are in
anisotropic states with the orientational order param-
eters different from zero. It is the anisotropic char-
acter of those systems and their states that compli-
cates their description in the framework of a consis-
tent theoretical approach. Note that the search for
an anisotropic phase in liquids required rather labor-
consuming investigations [17]. In the cases of gran-
ular systems and crystallized dusty plasma, we deal
with the systems that are already in the anisotropic
state under natural conditions. The latter circum-
stance allows the prospects of their application to the
problems concerning the transfer of mechanical exci-
tations, waves, and energy to be forecasted.

5. Conclusions

Our study of local structures in GMs and dusty
plasma at the mesoscale level using the analytical
methods allowing the structure parametrization have
shown that the processes of structure formation in
soft-matter objects different by their nature reveal
certain common features. Namely, the emergence of
both short- and long-range orderings is observed in all
cases. Since the formation of symmetric structures
in packings is accompanied by a symmetrization of
corresponding Voronoi cells, the study of structural

variations can be carried out with the use of model
characteristic functions.

To describe the behavior of the vertical density
profile in GMs in a gravitational field, an illustra-
tive combined model of lattice gas entropy is pro-
posed. The phase diagram is plotted in terms of a
parameter of the Lindemann type used in the the-
ory of crystal melting and system compaction. The
data obtained testify to the adequacy of applying
the basic principles of the entropy model to study-
ing the nature of structural transformations in GMs,
especially in the case of densely packed systems.
Note also that the applied entropy model reproduces
the non-Boltzmann character for the density pro-
file of GMs in a gravitational field in a trivial way.
The presence of a criterion, which is expressed in
terms of the compaction parameter, for the transition
into a crystal-ordered state, from which transitions
into other states different by symmetry take place,
is shown.

By analyzing the behavior of the translational and
orientational order parameters, it is shown that the
granular materials, dusty plasma, and some other
soft-matter objects are the examples of systems which
are naturally in anisotropic states.
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ЩОДО АНАЛIЗУ СТРУКТУРИ ГРАНУЛЬОВАНИХ
МАТЕРIАЛIВ

Р е з ю м е

Структурне впорядкування, яке спостерiгається у мезо- та
макромасштабi у гранульованих матерiалах, та деяких iн-
ших об’єктах м’якої матерiї (скажiмо у запорошенiй пла-
змi), вивчається за допомогою геометричних методiв (мето-
ду Вороного), а також у термiнах вiдповiдних параметрiв
порядку. Аналiз фазових дiаграм у термiнах орiєнтацiйно-
го та трансляцiйного параметрiв порядку показує, що стру-
ктура гранульованих матерiалiв є природно анiзотропною.
Ентропiйна модель ґраткового газу застосована для опису
вертикального профiлю густини гранульованих матерiалiв
у зовнiшньому гравiтацiйному полi. Отриманi теоретичнi
результати добре узгоджуються iз експериментальними да-
ними, i майже точно вiдтворюють їх у найближчому околi
станiв з максимальним впакуванням.
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