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The ground state and thermodynamic properties of an asymmetric diamond Ising–Hubbard
chain with the on-site electron-electron attraction has been considered. The problem can be
solved exactly using the decoration-iteration transformation. In the case of the antiferromag-
netic Ising interaction, the influence of this attraction on the ground state and the temperature
dependences of the magnetization, magnetic susceptibility, and specific heat has been studied.
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1. Introduction

The spin-chain problem, which is solved exactly with
the use of the decoration-iteration transformation [1–
4] attracts interest, because it allows certain features
in the properties of complicated spin systems and
magnetic materials to be studied [5–7]. These are the
intermediate plateaux on magnetization curves and
extra maxima on the temperature dependence of the
heat capacity. The spin chains also enable the interre-
lation between a geometrical frustration and quantum
fluctuations to be analyzed [8–10]. Moreover, they
can serve as models for the quantitative description
of magnetic properties of materials [7, 11]. That is
why the one-dimensional models, which can be solved
exactly with the use of the decoration-iteration trans-
formation, are actively studied [12–21].

Work [16], in which the properties of an asym-
metric diamond Ising–Hubbard chain were considered
without refard for the on-site electron-electron inter-
action, has started the researches of exactly solved
(by applying the decoration-iteration transformation)
Ising–Hubbard systems [22, 23]. This chain reveals
the following features: the 0 and 1/3 magnetization
plateaux [16], one [16] or two [24] additional low-
temperature peaks in the zero-field heat capacity, and
the considerable adiabatic magnetocaloric coefficient
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[17]. The influence of the on-site Coulomb repulsion
of electrons on the property of this chain was stud-
ied in work [24]. In particular, in the interval with
substantial repulsion, the zero-field heat capacity was
shown to have an additional maximum at high tem-
peratures.

If the chain of electrons interacts with local
phonons, an effective on-site electron-electron attrac-
tion can be realized in it [25–27]. By analogy, in this
work, the properties of an asymmetric diamond Ising–
Hubbard chain [16] with the on-site electron-electron
attraction is considered. In particular, in the case of
the Ising antiferromagnetic interaction, when a geo-
metrical frustration in the chain emerges, the influ-
ence of this attraction on the ground state and ther-
modynamic properties will be analyzed.

2. Model and Its Exact Solution

Consider an asymmetric diamond Ising–Hubbard
chain [16, 24] with the on-site electron-electron at-
traction (Fig. 1) in a magnetic field. The primitive
cell of this chain is determined by the 𝑘-th and (𝑘+1)-
th nodes, both occupied by the so-called Ising spins,
𝜇𝑘, which are coupled with neighbor spins by means
of the Ising interaction. Two electrons with the on-
site attraction between them execute quantum jumps
over two interstitial positions (𝑘, 1) and (𝑘, 2) in the
primitive cell.
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Fig. 1. Schematic diagram of a fragment in an asymmetric
diamond Ising–Hubbard chain. Solid and hollow circles de-
note nodes and interstitial positions, respectively. For the 𝑘-th
primitive cell, the nodal spins, 𝜇𝑘, the 𝑧-components of total
spins in the interstitial positions, 𝑆𝑘,𝑖, and the parameters of
the Ising interaction for bonds along the diamond sides, 𝐼𝑖, are
indicated

The Hamiltonian ℋ of the chain is written down as
a sum of cell Hamiltonians ℋ𝑘,

ℋ =
𝑁∑︁

𝑘=1

ℋ𝑘,

ℋ𝑘=
∑︁

𝜎∈{↑,↓}

𝑡
(︀
𝑐†𝑘,1;𝜎𝑐𝑘,2;𝜎 + 𝑐†𝑘,2;𝜎𝑐𝑘,1;𝜎

)︀
−

−
2∑︁

𝑖=1

𝑈𝑛𝑘,𝑖;↑𝑛𝑘,𝑖;↓+

+ 𝜇𝑘(𝐼1𝑆𝑘,1 + 𝐼2𝑆𝑘,2) + 𝜇𝑘+1(𝐼2𝑆𝑘,1 + 𝐼1𝑆𝑘,2)−

− ℎe(𝑆𝑘,1 + 𝑆𝑘,2)−
1

2
ℎi(𝜇𝑘 + 𝜇𝑘+1), (1)

where 𝑁 is the number of primitive cells in the
chain; 𝑐†𝑘,𝑖;𝜎 and 𝑐𝑘,𝑖;𝜎 are the operators of creation
and annihilation, respectively, of an electron with
the spin 𝜎 ∈ {↑, ↓} at the interstitial position (𝑘, 𝑖);
𝑛𝑘,𝑖;𝜎 = 𝑐†𝑘,𝑖;𝜎𝑐𝑘,𝑖;𝜎 is the operator of electron num-
ber; 𝜇𝑘 is the 𝑧-component of the spin-1/2 operator;
𝑆𝑘,𝑖 = (𝑛𝑘,𝑖;↑−𝑛𝑘,𝑖;↓)/2 is the 𝑧-component of the op-
erator of total electron spin at the interstitial position
(𝑘, 𝑖); 𝑡 is the transfer integral; 𝑈 is the magnitude
of the on-site electron-electron attraction (𝑈 ≥ 0); 𝐼1
and 𝐼2 are the parameters of the Ising interaction for
the bonds along the diamond sides (this interaction
being identical only for collinear bonds) (Fig. 1); and
ℎe and ℎi are magnetic fields that act on electron spins
and Ising spins, respectively. It should be noted that
Hamiltonian (1) also corresponds to a simple Ising–
Hubbard chain (the nodes and interstitial positions
are aligned), in which the Ising spin 𝜇𝑘 is coupled
with the first, 𝐼1, and second, 𝐼2, neighbors.

The replacement of the on-site electron-electron
attraction by a repulsion in Hamiltonian (1) trans-
forms it into the chain Hamiltonian from work [24],
which was solved exactly by applying the decoration-
iteration transformation. Therefore, the exact solu-
tion for our chain can be obtained by replacing the
on-site electron-electron repulsion by the attraction
(𝑈 → −𝑈) in all results of work [24]. The spec-
trum of the Hamiltonian ℋ𝑘 obtained in such a way
looks like

ℰ1(𝜇𝑘, 𝜇𝑘+1) =
𝐼1 + 𝐼2

2
(𝜇𝑘 + 𝜇𝑘+1)−ℎe−

−ℎi

2
(𝜇𝑘+𝜇𝑘+1),

ℰ2(𝜇𝑘, 𝜇𝑘+1) = −𝐼1 + 𝐼2
2

(𝜇𝑘 + 𝜇𝑘+1)+ℎe−

−ℎi

2
(𝜇𝑘+𝜇𝑘+1),

ℰ3(𝜇𝑘, 𝜇𝑘+1) = Λ1|𝜇𝑘 − 𝜇𝑘+1| −
ℎi

2
(𝜇𝑘 + 𝜇𝑘+1),

ℰ4(𝜇𝑘, 𝜇𝑘+1) =
1

2

(︁√︀
𝑈2 + 16𝑡2 − 𝑈

)︁
|𝜇𝑘 + 𝜇𝑘+1|+

+ Λ2|𝜇𝑘 − 𝜇𝑘+1| −
ℎi

2
(𝜇𝑘 + 𝜇𝑘+1),

ℰ5(𝜇𝑘, 𝜇𝑘+1) = −1

2

(︁√︀
𝑈2 + 16𝑡2 + 𝑈

)︁
|𝜇𝑘 + 𝜇𝑘+1|+

+ Λ3|𝜇𝑘 − 𝜇𝑘+1| −
ℎi

2
(𝜇𝑘 + 𝜇𝑘+1),

ℰ6(𝜇𝑘, 𝜇𝑘+1) = −𝑈 − ℎi

2
(𝜇𝑘 + 𝜇𝑘+1), (2)

where Λ3 < Λ1 < Λ2 are the eigenvalues of the matrix

ℒ =

⎛⎝ 0 𝐼1−𝐼2
2 0

𝐼1−𝐼2
2 0 2𝑡
0 2𝑡 −𝑈

⎞⎠.

From this spectrum, the ground state and the param-
eters of a decoration-iteration transformation can be
determined [24].
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3. Numerical Results and Their Discussion

Consider the properties of our chain in the case of
the antiferromagnetic Ising interaction (𝐼𝑖 > 0), when
there exists a geometrical frustration in it. The mag-
netic fields are put to be identical, ℎ = ℎi = ℎe.
Without any loss of generality, we adopt that 𝐼1 ≥ 𝐼2
and introduce the parameter Δ𝐼 = 𝐼1 − 𝐼2, similar
to what was done in work [16]. Let us pass to the
dimensionless parameters,

𝑡 =
𝑡

𝐼1
, �̃� =

𝑈

𝐼1
, Δ𝐼 =

Δ𝐼

𝐼1
, ℎ̃ =

ℎ

𝐼1
.

It will be recalled that the parameter Δ𝐼 ∈ [0, 1] char-
acterizes the degree of asymmetry for the Ising inter-
action along the diamond sides [24].

Consider firstly the properties of the system in the
ground state. The latter corresponds to the minimum
energy in spectrum (2) for all possible configurations
𝜇𝑘 and 𝜇𝑘+1. Depending on the parameters 𝑡, �̃� , Δ𝐼,
and ℎ̃, the system concerned can be in four ground
states – similarly to what take place at �̃� 6 0 [16,24] –
namely, the saturated paramagnetic (SPA), ferrimag-
netic (FRI), nonsaturated paramagnetic (UPA), and
nodal antiferromagnetic (NAF) states. The energies
of those states per cell are [24]

ℰ̃SPA = 1− Δ𝐼

2
− 3ℎ̃

2
, ℰ̃FRI = −1 +

Δ𝐼

2
− ℎ̃

2
,

ℰ̃UPA = −1

2

(︁
�̃� +

√︀
�̃�2 + 16𝑡2

)︁
− ℎ̃

2
, ℰ̃NAF = Λ̃3,

where Λ̃𝑖 are the eigenvalues of the matrix ℒ̃ = ℒ/𝐼1.
The wave functions of those states are [24]

|SPA⟩ =
𝑁∏︁

𝑘=1

|+⟩𝑘 | ↑, ↑⟩𝑘,1;𝑘,2,

|FRI⟩ =
𝑁∏︁

𝑘=1

|−⟩𝑘 | ↑, ↑⟩𝑘,1;𝑘,2,

|UPA⟩ =
𝑁∏︁

𝑘=1

|+⟩𝑘
[︀
Ψ++

5

]︀
𝑘,1;𝑘,2

,

|NAF⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑁∏︀

𝑘=1

⃒⃒
(−)𝑘

⟩︀
𝑘

[︁
Ψ

(−)𝑘(−)𝑘+1

5

]︁
𝑘,1;𝑘,2

𝑁∏︀
𝑘=1

⃒⃒
(−)𝑘+1

⟩︀
𝑘

[︁
Ψ

(−)𝑘+1(−)𝑘+2

5

]︁
𝑘,1;𝑘,2

,
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Fig. 2. Phase diagram (Δ𝐼, ℎ̃) for the ground state. Transi-
tion lines for two sets of 𝑡- and �̃� -values are shown. The results
obtained for �̃� = 0 coincide with those of work [16]

where |+⟩𝑘 = | ↑⟩𝑘, and |−⟩𝑘 = | ↓⟩𝑘 describe the
state of spin 𝜇𝑘, | ↑, ↑⟩𝑘,1;𝑘,2 = 𝑐†𝑘,1;↑𝑐

†
𝑘,2;↑|0⟩, and the

notation (−)𝑛 means the sign of (−1)𝑛. The other
notations are

Ψ++
5 =𝐴++

5

(︀
| ↑, ↓⟩+ | ↓, ↑⟩

)︀
+𝐵++

5

(︀
| ↑↓, 0⟩+ |0, ↑↓⟩

)︀
,

Ψ±∓
5 =𝐴±∓

5 | ↑, ↓⟩+𝐴∓±
5 | ↓, ↑⟩+𝐵+−

5

(︀
| ↑↓, 0⟩+|0, ↑↓⟩

)︀
,

where

| ↑, ↓⟩ = 𝑐†𝑘,1;↑𝑐
†
𝑘,2;↓|0⟩, | ↓, ↑⟩ = −𝑐†𝑘,1;↓𝑐

†
𝑘,2;↑|0⟩,

| ↑↓, 0⟩ = 𝑐†𝑘,1;↑𝑐
†
𝑘,1;↓|0⟩, |0, ↑↓⟩ = 𝑐†𝑘,2;↑𝑐

†
𝑘,2;↓|0⟩,

and the quantities 𝐴++
5 , 𝐵++

5 , 𝐴+−
5 , 𝐴−+

5 , and 𝐵+−
5

are obtained from the corresponding coefficients in
work [24] by replacing �̃� → −�̃� .

Let us consider the phase diagram for the ground
state, (Δ𝐼, ℎ̃), which depends on the parameters 𝑡
and �̃� . One of the possible phase diagrams (Δ𝐼, ℎ̃)
is depicted in Fig. 2. The FRI and UPA states in it
are separated by the transition line Δ𝐼F|U = 𝒯 (𝑡, �̃�),
where 𝒯 (𝑡, �̃�) = 2 − �̃� −

√︀
�̃�2 + 16𝑡2. The criti-

cal point between the FRI and NAF states in the
zero field, Δ𝐼F.N, is determined from the equation
Δ𝐼F.N = 2 + 2ℰ̃NAF.

The topology of the phase diagram (Δ𝐼, ℎ̃) for the
ground state belongs to one of three types, depending
on the parameters 𝑡 and �̃� . The topology type is
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Fig. 3. Topological diagram (𝑡, �̃�) for the phase diagram of
the ground state, (Δ𝐼, ℎ̃), with “equitopological” lines. Bold
lines separate the ranges of three typical topologies designated
by the corresponding figures

determined by the parameter 𝒯 (𝑡, �̃�). The first type
of the phase diagram topology is realized at 1 ≤ 𝒯 .
In this case, it looks as a part of Fig. 2 within the
interval [0,Δ𝐼F|U] [16, 24]. The second topology type
is realized at 0 < 𝒯 < 1 (see Fig. 2). The third
topology type is realized at 𝒯 ≤ 0. In this case,
the phase diagram (Δ𝐼, ℎ̃) looks like a part of Fig. 2
within the interval [Δ𝐼F|U, 1], but now the line of the
NAF ↔ UPA transition always begins at the point
(0,0) [16, 24].

It is convenient to represent the dependence of
the (Δ𝐼, ℎ̃) phase diagram topology on the param-
eters 𝑡 and �̃� in the form of a topological diagram
(𝑡, �̃�), which is shown in Fig. 3. “Equitopological”
lines in this diagram are described by the equation
𝒯 (𝑡, �̃�) =const. The changes of �̃� and 𝑡 along the
“equitopological” line are reflected in the phase di-
agram (Δ𝐼, ℎ̃) as a displacement of only those lines
that bound the range of the ground NAF state, which
is demonstrated in Fig. 2. In particular, as the pa-
rameter �̃� grows, the range of the ground NAF state
in it decreases.

Now consider the influence of the on-site electron-
electron attraction on the magnetization, magnetic
susceptibility, and heat capacity in the regime
𝒯 (𝑡, �̃�) = const, i.e. along an “equitopological”
line. Numerical calculations of those characteristics
were carried out for a number of points (𝑡, �̃�) along
the “equitopological” line that belongs to region 2 in
Fig. 3 and passes through the points (0.375, 0) and

Fig. 4. Temperature dependences of the zero-field heat ca-
pacity at various Δ𝐼: (a) Δ𝐼 ≤ Δ𝐼F.N and (b) Δ𝐼 > Δ𝐼F.N.
Solid and dashed curves correspond to the results obtained for
𝑡 = 0.15 and �̃� = 0.63. Dotted curves show the results ob-
tained for 𝑡 = 0.375 and �̃� = 0, which were exhibited in work
[16] except for the curve for Δ𝐼 = 0.4

(0.15, 0.63), for which the phase diagram (Δ𝐼, ℎ̃) of
the ground state is exhibited in Fig. 2.

A comparison of the results obtained for the mag-
netization and the magnetic susceptibility at various
points on the “equitopological” line shows that the
field and temperature curves of magnetization and
the temperature curve of magnetic susceptibility in
the zero field shift at strengthening the attraction,
similarly to what takes place at weakening the on-site
electron-electron repulsion [24]. In particular, if the
attraction becomes stronger, the temperature curves
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of total and electron magnetizations shift downward,
and the temperature curve of magnetization for Ising
spins shifts upward.

The modification of the temperature dependence
of the zero-field heat capacity under the influence of
the attraction is shown in Fig. 4. In the absence of
attraction (�̃� = 0), the temperature curve of the heat
capacity has the main and low-temperature maxima
in a wide range of Δ𝐼 [16]. In a certain vicinity of the
critical point Δ𝐼F.N, it has another low-temperature
maximum, which is the closest to the zero temper-
ature [24]. While the attraction grows to a defi-
nite value of about 0.42, the main maximum shifts
toward lower temperatures. However, if the attrac-
tion grows further, the maximum shifts back toward
higher temperatures. As a result, the main maxi-
mum of the curves that correspond to small Δ𝐼 can
merge with the low-temperature maximum (Fig. 4).
Moreover, starting from �̃� ≃ 0.5, there emerges an
additional maximum in the temperature dependence
of the heat capacity, which is located between the
low-temperature and main maxima (Fig. 4). At first,
this additional maximum exists within a small inter-
val for Δ𝐼 in the range of the ground NAF state. As
the attraction becomes stronger, this interval broad-
ens and surrounds the critical point Δ𝐼F.N (Fig. 4).
The modification in the temperature dependence of
the zero-field heat capacity induced by the attraction
growth is associated with changes in spectrum (2) of
the cell Hamiltonian ℋ𝑘. Namely, as the parameter
�̃� increases, the energies ℰ6, ℰ4(Λ2), and ℰ3(Λ1) in
this spectrum decrease.

It is also worth noting that the temperature curve
of the heat capacity for �̃� = 0.63 has an additional
low-temperature maximum in a very close–much nar-
rower than at �̃� = 0–vicinity to the critical point
Δ𝐼F.N. This maximum, which is the nearest to the
zero temperature, was described in detail in work [24].

4. Conclusions

In this work, the properties of an asymmetric dia-
mond Ising–Hubbard chain with the on-site electron-
electron attraction are studied in the ground state
at finite temperatures. It is an example of the ex-
act solution obtained with the use of the decoration-
iteration transformation. In the case of the antiferro-
magnetic Ising interaction, when there is a geometri-
cal frustration in the chain, the influence of the on-
site electron-electron attraction on the ground state,

the field and temperature dependences of the mag-
netization, and the temperature dependences of the
zero-field magnetic susceptibility and the heat capac-
ity are studied.

The phase diagram for the ground state is plot-
ted in the plane (Δ𝐼, ℎ̃). A modifications of this
phase diagram induced by the transfer integral and
the on-site attraction is represented in the form of a
topological diagram (𝑡, �̃�). It is shown that strength-
ening the attraction along the “equitopological” line
𝒯 (𝑡, �̃�) = const is reflected in the phase diagram
(Δ𝐼, ℎ̃) as a displacement of the ground NAF state
boundaries so that the corresponding confined area
becomes smaller.

As the on-site electron-electron attraction becomes
stronger along the “equitopological” line, the temper-
ature curves of the magnetization, at various fields,
and the zero-field magnetic susceptibility shift, as it
was in the case of weakening the on-site electron-
electron repulsion [24]. The temperature dependence
of the zero-field heat capacity in a certain range
(𝑡, �̃� ,Δ𝐼) has an additional maximum between the
main and low-temperature maxima.

The results of this work also correspond to a simple
Ising–Hubbard chain, in which the nodes and the in-
terstitial positions are aligned, and the nodal Ising
spin is coupled with those of the first and second
neighbors.
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M. Horvatić and C. Bertheir, Prog. Theor. Phys.
Suppl. 159, 1 (2005).
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13. J. Strečka and M. Jaščur, J. Phys. Condens. Matter
15, 4519 (2003).

14. J.S. Valverde, O. Rojas, and S.M. de Souza, Physica A
387, 1947 (2008).

15. J.S. Valverde, O. Rojas, and S.M. de Souza, J. Phys.
Condens. Matter 20, 345208 (2008).

16. M.S.S. Pereira, F.A.B.F. de Moura, and M.L. Lyra,
Phys. Rev. B 77, 024402 (2008).

17. M.S.S. Pereira, F.A.B.F. de Moura, and M.L. Lyra,
Phys. Rev. B 79, 054427 (2009).

18. V. Ohanyan, Condens. Matter Phys. 12, 343 (2009).
19. D. Antonosyan, S. Bellucci, and V. Ohanyan, Phys.

Rev. B 79, 014432 (2009).
20. O. Rojas and S.M. de Souza, Phys. Lett. A 375, 1295

(2011).
21. O. Rojas, S.M. de Souza, V. Ohanyan, and M. Khur-

shudyan, Phys. Rev. B 83, 094430 (2011).
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Б.М. Лiсний

АСИМЕТРИЧНИЙ РОМБIЧНИЙ ЛАНЦЮЖОК
IЗIНГА–ГАББАРДА З ПРИТЯГАННЯМ

Р е з ю м е

Розглянуто основний стан i термодинамiчнi властивостi
асиметричного ромбiчного ланцюжка Iзiнга–Габбарда з
одноцентровим електрон-електронним притяганням, який
є точно розв’язуваним за допомогою декорацiйно-iтерацiй-
ного перетворення. У випадку антиферомагнiтної взаємо-
дiї Iзiнга вивчено вплив цього притягання на основний
стан i температурну залежнiсть намагнiченостi, магнiтної
сприйнятливостi та теплоємностi.
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