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THE CONDITIONS OF STABILITY
OF TWO-DIMENSIONAL QUANTUM
SYSTEMS OF THREE CHARGED PARTICLESPACS 21.45.+v

For a two-dimensional Coulomb system of three charged particles, among which two particles
are identical and the third particle is of different nature, we study the conditions of existence
for symmetric and antisymmetric bound energy states (conditions of stability) in the mass–
charge (m,Z) plane. High-precision three-body numerical calculations based on a stochastic
variational method with Gaussian bases are performed. Several anomalous effects in the behav-
ior of the characteristic distances between particles are revealed, and the nonzero quadrupole
moment is found in a two-dimensional polar-symmetric field. The systematic comparison of
the results for two- and three-dimensional systems is performed. The values of energy and size,
the density distributions, and the correlation functions for the various reference three-particle
systems are obtained.
K e yw o r d s: three charged particles, two-dimensional systems, stability, variational method,
structural functions

1. Introduction

Interest in two-dimensional quantum systems arises
in the studies of defects in solids, physics of graphene,
thin films consisting of one or few atomic layers, and
various surface phenomena in condensed media. In
general, the investigation of the dependence of fun-
damental physical characteristics on the space di-
mensionality and the difference of basic laws from
those in three-dimensional problems is crucial for the
deeper understanding of the various physical princi-
ples. Moreover, in different approaches, additionally
to the basic Coulomb systems with fundamental par-
ticles, it is necessary to consider various quasiparti-
cle and exciton systems, where the natural physical
parameters of mass and charge can be varied. The
dependence on the space dimensionality can be eas-
ily found for the simplest Coulomb systems of two
charged particles, where the problem allows the ex-
plicit analytical solution. Increasing the complexity,
the next step is to study the general problem of three
charged particles such as trions XXY (see [1]), where
it is possible to achieve highly accurate results. In the
three-dimensional space, the general problem of three
charged particles has been widely studied (see [2, 3]).

c⃝ I.V. SIMENOG, V.V. MIKHNYUK,
M.V. KUZMENKO, 2013

In the present work, we consider the general con-
ditions of existence of bound states for three charged
particles on a plane. We build the diagrams of stabil-
ity thresholds and analyze some abnormal phenomena
for two-dimensional Coulomb systems.

2. Statement of the Problem
and Research Methods

Consider two-dimensional systems such as symmet-
ric trions, consisting of two identical particles with
masses m1 = m2 = m and charges Z1 = Z2 = 1
and the third particle with mass m3 =M and charge
Z3 = −Z (we use atomic units with ~ = e2 = 1). The
Hamiltonian is

Ĥ =
p̂21 + p̂22
2m

+
p̂23
2M

+
1

r12
− Z

(
1

r13
+

1

r23

)
. (1)

We consider here only the zero total angular momen-
tum. For the most of subsequent calculations, we
can put M = 1 without loss of generality. Assume
similarly to the previous paper [3] that the condi-
tions of stability of the quantum system in an appro-
priate state (conditions of existence of bound states)
are defined by the fact that the energy of this state
is below the ground-state energy (threshold) of the
most stable subsystem. In the case of three parti-
cles with Hamiltonian (1), the conditions of stability
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of the system in the n-th state with respect to the
decay (123) → (23) + (1) are as follows:

En(3;m,Z) ≤ E0(2;m,Z). (2)

Here, En(3;m,Z) is the estimated energy of the n-th
state of three particles (1). The threshold energy of
the two-particle subsystem has the obvious analytical
form

E0(2;m,Z) = −2mZ2

m+ 1

1

(d− 1)2
, (3)

where d is the space dimensionality. Note that the
energy of two charged particles increases, as the di-
mensionality decreases, and becomes indefinite in the
one-dimensional case (collapse occurs for the ground
state). Moreover, for the potential −1/r, the ground
state cannot be determined for the fractional dimen-
sionality less than 1. For the 2D problem of two par-
ticles, the binding energy is 4 times higher than that
for the 3D problem.

The investigation of bound states of the three-
particle system (1) is performed, by using the varia-
tional Galerkin method with Gaussian basis (notation
is similar to that for the three-dimensional problem
[3]). We have
ϕi(r12, r13, r23) = exp

{
−air212 − bir

2
13 − cir

2
23

}
. (4)

Then the total wave function with zero angular mo-
mentum is defined as

ψ(r12, r13, r23) =
K∑
i=1

NiŜϕi(r12, r13, r23), (5)

where Ŝ is the symmetrization operator with respect
to the permutations of identical particles, and K is
the number of basis functions.

The energy spectrum and the corresponding sym-
metrized three-particle wave functions (rather, the
linear coefficients Ni of the expansion or the state
vectors) are solutions of the system of linear algebraic
equations for the eigenvalues
K∑
l=1

Nl

{
⟨Ŝϕk

∣∣∣Ĥ − E
∣∣∣ Ŝϕl⟩} = 0, k = 1,K, (6)

where the energy matrix on the basis functions (4)
for an arbitrary space dimensionality d is⟨
Ŝϕi|K̂ + V − E|Ŝϕj

⟩
=

(
1 + sP̂ (bi ↔ ci)

)
×

×
{
d

1

Dd/2+1

[
2

m
aiaj(b+ c) +

(
1

m
+

1

M

)
×

×
(
bibj(a+ c) + cicj(a+ b)

)
+

1

m

(
b(aicj + ajci)+

+c(aibj + ajbi)
)
+

1

M
a(bicj + bjci)

]
+

+
Γ (d− 1/2)

Γ (d/2)

1

D(d−1)/2
×

×
[

1√
b+ c

− Z

(
1√
a+ c

+
1√
a+ b

)]
− E

1

Dd/2

}
. (7)

Here, D is the determinant of the corresponding
quadratic forms that are diagonalized by integration
with Gaussians
D = ab+ ac+ bc. (8)
Here, a = ai + aj , b = bi + bj , c = ci + cj , and
P̂ (bi ↔ ci) is the permutation operator of correspond-
ing parameters, Γ(x) is the standard gamma function,
s = ±1 for symmetric and antisymmetric states with
respect to the permutations of coordinates of iden-
tical particles. All calculations were performed only
for d = 2 (two-dimensional space) and partially for
d = 3 (three-dimensional space). But, for generality,
the energy matrix is presented for any dimensionality
including its fractional values.

The next practically important step in variational
calculations is the selection of optimal schemes to
minimize the energy with respect to nonlinear varia-
tional parameters {a, b, c}. We systematically adopt
certain variational stochastic techniques (see, e.g., [3–
5]) that allow us to minimize the energy of any given
state. It was found that the optimal strategy that
keeps the balance of performance and accuracy of
calculations is to increase the basis size by one func-
tion at every step and to perform a random sampling
of variational parameters of the added basis func-
tion, keeping all the remaining nonlinear parameters
frozen. The number of samples varies from few thou-
sands (for a small-size basis) to few hundreds (when
the basis is extended to several hundred functions).
The maximal size of the basis varies from 600–700 to
1000 for the accuracy better than a fraction of per-
cent. We emphasize also that, in order to obtain the
best accuracy for the energy of each three-particle
state, similar optimization schemes can be used for
each state independently. This is very important
from a practical point of view, if we are interested
in the structure of the energy spectrum only. With
this strategy, we get, of course, the best values for the
energy levels, but somewhat violate the orthogonality
condition for wave functions of different states.
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3. Diagrams of Thresholds of Stability

First, we formulate the main result of this work,
which consists of general conditions for the existence
of bound states (diagram of stability) of 2D systems
of three charged particles with Hamiltonian (1) de-
pending on the mass m and the charge Z. We also
compare the obtained diagrams of stability with those
of 3D problem analyzed in [3].

We note that, in the 2D problem for Z < 0 (repul-
sion), there is no bound states. But, for Z > 1 and
any mass m > 0, the number of bound states is infi-
nite similarly to the 3D case. Indeed, in the polariza-
tionless cluster variational approximation where the
wave function (w.f.) of three particles is represented
as the product of the ground-state w.f. of the two-
particle subsystem (2 and 3) and the w.f. of the first
particle relative to the center of mass of the other two
ones, we have

ψ(r1, r2, r3, ) ≈

≈ exp

{
−
√

2m

m+ 1
|E0(2,m, Z)|r23

}
f(r). (9)

Then the asymptotics of the effective potential on the
coordinate r = r1 −

mr2 + r3
m+ 1

is the Coulomb attrac-
tion

Veff.(r) ≃ −Z − 1

r
− (d+ 1)(3− d)(d− 1)2

32Z2
×

×
(
Z − 1

m2

)
1

r3
+ ..., (10)

where d is the space dimensionality. Then the spec-
trum for Z > 1 is obviously unlimited even in this ap-
proximation from above (analog of the Kato theorem
in the 3D space). It is worth to note that, for the 3D
problem, the asymptotic potential Veff.(r) is Coulomb
with exponential accuracy. In the 2D problem, the
major corrections to the Coulomb asymptotics are
polynomial, because the quadrupole moment

Q2 = ⟨
(
3z2 − r2

)
⟩ = (d+ 1)(3− d)(d− 1)2×

×
(
1 +

1

m

)2
1

16Z2
(11)

(and all multipole momenta of even orders) has
nonzero value even in a polar-symmetric field. It is

Z

m

Z

m

Z
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Z
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Z
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Fig. 1. Diagrams (given schematically) of the stability of the
energy levels of two-dimensional systems of three charged par-
ticles

also interesting that, in the molecular region m≫ 1,
the correction of the order 1/r3 in (10) is attractive
for d < 3 and repulsive for d > 3. In the atomic
region m≪ 1, the result is opposite.

The region of intermediate charges 0 < Z < 1 is
more complicated (note that fractional values of
charge are allowed, because we consider the relative
charge of two kinds of particles or quasiparticles).
There, we have performed high-accuracy calculations
of stability thresholds, and the results are presented
on the (m,Z)-plane (Fig. 1) in the form of threshold
diagrams. The threshold lines of symmetric si and
antisymmetric ai (with respect to permutations of
identical particles) states show (schematically) that
these bound states exist above certain lines. From
Fig. 1, we see that the systems in the atomic re-
gion (one-center problem) with m ≪ M = 1, e.g.,
an atomic hydrogen ion H− (we use the traditional
notation for the (pee) bound system) or a positron-
ium ion Ps− ((eee+) bound system), have only one
symmetric bound state for Z > Z0 = 0.8085 (and
m = 0) in the two-dimensional case. Comparing to
the 3D case where Z0 = 0.911 [3], we see that, in
the 2D case, three particles have more possibilities
to form a bound state. The symmetric ground state
exists for all values of mass m. To be more specific,
we show some points for the curve s0 obtained from
our calculations in Table 1. Note that the threshold
line of stability for the ground state is nonmonotonic
with a maximum at m = 0.285, that is 1.93 times less
than the similar value in the 3D problem. This value
of Z0 is by a factor of 1.14 less than that in the 3D
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case. In the maximum of the s0 curve, the formation
of a bound state is least favorable. In the molecu-
lar region m ≫ 1 (two-centered problem) where the
domain of existence of bound states in 2D is wider,
in the limit m → ∞ and Z > Zs(crit.)(2) = 0.64656
(for the 3D problem, Zs(crit.)(3) = 0.8101), the num-
ber of symmetric vibrational bound states approaches
infinity. Similarly, for states antisymmetric with re-
spect to the permutations of identical particles in
the molecular region, all threshold lines are located
above the critical value Za(crit.) = 0.9977, which is
close enough to the corresponding three-dimensional
value Za(crit.) = 0.9997. We emphasize that vibra-
tional antisymmetric bound states exist only in the
region Z ∼ 1.

Table 1. Dependence of Z0(m) for the ground
state threshold line (s0)

m Z0 m Z0

0 0.80853 0.5 0.81177
0.001 0.80857 1.0 0.80487
0.01 0.80890 2.0 0.78953
0.1 0.81136 5.0 0.75817
0.2 0.81262 10.0 0.73234
0.28 0.8128865 104 0.64835
0.285 0.8128868 106 0.64668
0.3 0.8128793 108 0.64656

Table 2. Critical values of mass for symmetric
states (with Z = 1)

State index n 0 1 2 3 4 5

m
(s)
n(crit.)

0.0 6.0 20.45 41.48 68.56 101.2

m
(s)
n(crit.)(2D)

m
(s)
n(crit.)(3D)

– 0.63 0.69 0.70 0.69 0.68

Table 3. Critical values of mass for antisymmetric
states (with Z = 1)

State index n 0 1 2 3

m
(a)
n(crit.)

156.0 892.0 2340. 4960.

m
(a)
n(crit.)(2D)

m
(a)
n(crit.)(3D)

0.47 0.51 0.51 0.55

Interesting behavior can be observed at the top
part of the stability diagram when Z = 1. In this
case, each new vibrational energy level appears at
increasing critical values of the mass, which are pre-
sented for symmetric states in Table 2, and for the an-
tisymmetric states in Table 3. It is worth noting that
the general rule is that the accuracy of calculations
listed in these tables decreases for higher excitations.
To be more specific, we show the ratio of critical mass
values for 2D and 3D in Table 2 (third line). All these
values are close to 0.68, which shows a greater degree
of connectedness in two-dimensional problems. Note
that if the bound ground state exists for all masses
m, then the 1-st excited state s1 for Z ≤ 1 and the
2D space appears only at m ≥ 6.0. We note (see Ta-
ble 2) that, for symmetric states, the threshold lines
are significantly shifted to the region of lower masses
comparing to the three-dimensional problem (similar
result occurs for antisymmetric states as well). It is
worth noting that the critical values of mass satisfy
the quadratic rule similarly to the 3D case [3]. But,
unlike 3D where the law was justified by quasiclassical
quantization conditions, the quasiclassical formalism
in the 2D case requires substantial modifications and
cannot be used directly. We can present the approx-
imation formulae for the critical masses, where new
symmetric and antisymmetric states appear. We have

m
(s)
n(crit.) ≈ 3.4n(n+ 1),

m
(a)
n(crit.) ≈ 367n(n+ 1) + 156. (12)

Note that the higher the excited level, the more accu-
rate are these quadratic approximations. Moreover,
the approximation formulas like (12) for antisymmet-
ric states in 2D and 3D contain coefficients that are
almost two times different. This indicates the linear
dependence of m(a)

n(crit.) on (d − 1). It can be seen
from the calculations (Table 3) and the approximate
formulas (12) that the ratio of the critical masses
for 2D and 3D problems for antisymmetric states is
close to 0.51.

At the top part of Fig. 1, some reference sys-
tems are indicated, from which we can qualitatively
see the number of bound states. From the approx-
imating formulas (12), one can see that a hydrogen
molecular ion H+

2 ((ppe) bound system with the mass
m ∼ 1836) has 24 symmetric and 2 antisymmetric
bound states. It is likely that, in 2D, the deuterium
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molecular ion D+
2 has about 33 symmetric and 3 an-

tisymmetric bound states.

4. Mean-Square Distances
and Structural Features

We define the mean-square distance Rik (m.s.d.) be-
tween particles as

Rik =
(
⟨Ψ

∣∣∣(ri − rk)
2
∣∣∣Ψ⟩)1/2 (13)

and mean-square radii Rj (m.s.r.) as

Rj =
(
⟨Ψ

∣∣∣(rj −Rc.m.)
2
∣∣∣Ψ⟩)1/2, (14)

where Rc.m. =
m(r1 + r2) + r3

2m+ 1
is the coordinate of

the center of mass of the three-particle system. In
basis (5) with any space dimensionality d, we obtain
the distance R12 between identical particles as

R2
12 =

d

2N

K∑
i,j=1

NiNj(b+c)
(
1 + sP̂ (bi ↔ ci)

) 1

Dd/2+1

(15)
and the distance

R2
13 =

d

2N

K∑
i,j=1

NiNj

(
1 + sP̂ (bi ↔ ci)

)
×

×
(
1 + sP̂ (b↔ c)

) a+ c

Dd/2+1
. (16)

Here, the full normalization integral is defined as

N =
K∑

i,j=1

NiNj

(
1 + sP̂ (bi ↔ ci)

) 1

Dd/2
, (17)

and D is defined by (8). The permutation opera-
tor P̂ (bi ↔ ci) in (15), (16), and (17) is the same
as in (7).

Note that there are the general relations for any
space dimensionality between m.s.r. of the system
(the distance from the particle to the center of mass
of the system) and m.s.d.

R2
1 = R2

2 =
1

(1 + 2m)2
[
m(m+ 1)R2

12 +R2
13

]
, (18)

R2
3 =

m2

(1 + 2m)2
[
4R2

13 −R2
12

]
. (19)

It is easy to derive the inverse relation

R2
12 = 4R2

1 −R2
3/m

2, (20)

R2
13 = R2

1 + (1 + 1/m)R2
3. (21)

In a Gaussian basis, the expressions like (15) and (16)
have a universal form for different excited states, and
these expressions depend on the state only through
linear {Ni} and nonlinear {ai, bi, ci} variational pa-
rameters. By the way, (18) and (19) show also that
this type of relationships does not depend explic-
itly on the space dimensionality, and the inequalities
R12 < 2R13 and R1 > R3/2m are always satisfied.
Additionally, relation (18) in case of infinite mass m
yields the obvious relation R1 = R2 ∼ R12/2, since
the center of mass of the three-particle system coin-
cides with the center of mass of two heavy particles.

Consider the functional dependence of distances
R12 and R13 on the mass and the charge. It is natural
that, in the 3D case, distance R12 between identical
particles that repel each other by Coulomb’s law is
greater than the distance R13 between particles with
attraction [3] (triangle inequality). This result holds
for all masses and, e.g., this is true for the struc-
tures of a molecular hydrogen ion H+

2 and an atomic
hydrogen ion H−. In the 2D space where the cou-
pling is significantly greater, the abnormal ratio in
the ground symmetric state is observed for the dis-
tance between identical heavy particles and the dis-
tance between different particles that attract each
other. From the calculations by (15) and (16), we
obtain the inequality R12 < R13: distance between
heavy identical particles is smaller than the distance
between different particles in the 2D space for sym-
metric states in molecular mode for sufficiently heavy
masses m. In Fig. 2, the dependence of the distances
between the particles on the mass of the heavier iden-
tical particles is presented for the ground state and
Z = 1. In particular, the distance between protons in
a molecular hydrogen ion (two fixed centers) is some-
what smaller than the distance between the electron
and a proton. For Z = 1, the inequality R12 < R13

holds for m > 540. In Fig. 3, we display the dia-
gram, where the lines s0 and s1 for the ground state
and the symmetric first excited state distances cor-
respond to the equality R12 = R13 and divide the
whole area into two parts. These curves are dis-
played schematically, but with appropriate symbols
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for the asymptotics, on the (m,Z) plane in all im-
portant intervals of masses and charges. The abnor-
mal inequality R12 < R13 holds for the ground state
above the line s0 and the same is true for the first
excited level. There is a similar picture for higher ex-
cited levels, where the corresponding line sn is shifted
to the right and upward, as the excitation increases.
As for antisymmetric states, the normal structure
with R12 > R13 is observed in all reasonable regions
of the (m,Z) plane.

The abnormal structure with R12 < R13 can be
interpreted as follows. For the 2D problem in the
molecular region (e.g., molecular hydrogen ion H+

2 ),
where two heavy particles repel each other and are
located, in fact, at a fixed distance R12 (this fix-

ation of the distance is more significant comparing
to the 3D space because of a much stronger bind-
ing), a light particle binding the system quickly moves
only on the plane around one of the centers (every
time, the light particle is at a considerable distance
from another center). The mean value of these dis-
tances is R13, which is greater than the distance be-
tween the fixed centers. For a light particle, there
are much less possibilities for a maneuver, since it
moves strictly in the plane. At the same time, if the
mass m of heavy particles decreases, then the ampli-
tude of motion of heavy particles increases (the dis-
tance between these particles increases as well), and
the light particle spends more time between the cen-
ters. In this case, the distance R13 becomes equal
to the distance R12 at some point and then grad-
ually become less than R12 (see Fig. 2). Finally,
if two identical particles are light (atomic hydrogen
ion H−), then the distance between them increases
significantly due to the repulsion, and we observe a
normal situation. For the 3D problem (and higher
dimensions), the binding is much weaker, and the
amplitude of a relative vibration of two heavy par-
ticles is higher, i.e., the result is normal. That the
distance between identical particles is larger, than
the distance between different particles for all val-
ues of mass m. In this case for the light particle,
which binds the whole system, there is a significant
probability to be located in the space between the
heavy particles due to the significant space dimen-
sionality. Therefore, R13 < R12. Finally, if the space
dimensionality d is the fractional and approaches 1,
then the collapse occurs, and the third binding par-
ticle can be located only between the identical par-
ticles, and R13 < R12 again. Thus, we see the non-
monotonicity in this anomalous effect for the relations
between distances depending on the space dimen-
sionality d.

It is useful to note some computational peculiari-
ties of stochastic variational schemes with Gaussian
basis. Indeed, the characteristic mean-square dis-
tances for the ground state monotonically decrease
and approach the exact values, as the number of ba-
sis functions increases. The same is true for the en-
ergy of this state. The following natural law holds:
the stronger the binding, the smaller is the system
with the approximate relation R ∼ 1/

√
|E|. Note

also that, for excited states, only the energy mono-
tonically approaches its exact value (variational prin-
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ciple). At the same time, some minor fluctuations can
occur for the size (or other average quantities), and
these quantities converge to their exact values only
on the average.

Consider now the basic structural functions such
as particle density distributions and pair correlation
functions for different bound states of three particles.
The density distribution of particles,

ρi(r) = ⟨Ψ|δ (r− ri +Rc.m.) |Ψ⟩, (22)

determines the probability to find the i-th particle at
a distance r from the center mass of the system. For
the Gaussian basis functions (4) and for any space
dimensionality d, they are defined by the expressions

ρ3(r) =
(1 + 2m)d

πd/2mdN

K∑
i,j

NiNj

(4a+ b+ c)d/2
×

×
(
1 + sP̂ (bi ↔ ci)

)
exp

{
− (1 + 2m)2

m2

D

4a+ b+ c
r2
}
,

(23)

ρ1(r) =
(1 + 2m)d

2πd/2N

K∑
i,j

NiNj

(
1 + sP̂ (bi ↔ ci)

)
×

×
(
1 + sP̂ (b↔ c)

) 1

(a+m2b+ (m+ 1)2c)
d/2

×

× exp

{
− (1 + 2m)2D

a+m2b+ (m+ 1)2c
r2
}
. (24)

Similarly, the pair correlation functions

gkl(r) = ⟨Ψ|δ (r− rkl) |Ψ⟩ (25)

determine the probability to find a pair of particles
kl at a distance r and have the form

g12(r) =
1

πd/2N

K∑
i,j

NiNj

(b+ c)d/2

(
1 + sP̂ (bi ↔ ci)

)
×

× exp

{
− D

b+ c
r2
}
, (26)

g13(r) =
1

2πd/2N

K∑
i,j

NiNj

(
1 + sP̂ (bi ↔ ci)

)
×

×
(
1 + sP̂ (b↔ c)

) 1

(a+ c)d/2
exp

{
− D

a+ c
r2
}
. (27)
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Fig. 4. Structural functions for the ground state of Ps−

In all expressions (23), (24), (26), and (27), the full
normalization integral is denoted by N (17), D is
determined by (8), and the permutation operator
P̂ (b↔ c) is similar to (7).

As an example of the radial dependence of the
structural functions for two-dimensional systems, let
us consider the particle density distributions and the
correlation functions (Fig. 4) in a positronium ion
Ps− (Z = 1, and m = 1 corresponds to an inter-
mediate case between the atomic and molecular re-
gions). First, we note that the electron density dis-
tribution ρe(r) (formula (24)) has a small dip at the
origin (relative to the center of mass of the entire
three-particle system) due to the repulsion between
electrons. Second, the correlation functions have a
much more extent asymptotic behavior in comparison
with the density distributions. Consequently, m.s.d
are always much larger than m.s.r. Third, the corre-
lation function of two identical electrons gee(r) (for-
mula (26)) has a considerable dip at small distances
because of their repulsion. Such behavior of the cor-
relation functions is common for all systems, where
the pair of particles has repulsion at small distances.

We now consider the density distributions of par-
ticles in a molecular hydrogen ion (H+

2 , M = 1, m =
= 1836.152701). As seen from Fig. 5, firstly, the
heavy particles (protons p) are located almost at a
fixed distance from the center of mass, which is lo-
cated at the middle between the heavy particles. At
the same time, the density distribution of the light
particle (electron e) has a maximum at the origin (at
the center of mass). Secondly, the figure shows the
values of rρ(r) for greater clarity, which directly cor-
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respond to the probability of finding the correspond-
ing particles at a distance r. One can see that m.s.r.
of light particles is substantially larger than m.s.r. of
heavy particles. The correlation functions are rep-
resented in Fig. 6 for H+

2 . This confirms again the
fact that the heavy particles are located at a prac-
tically fixed distance, since gpp(r) is strongly local-
ized around a distance of the order of 0.55. At the
same time, the correlation function of different par-
ticles gpe(r), especially that multiplied by r, is more
extent, and its typical radius can be larger than the
distance between the identical particles, what have
been discussed.

Finally, we indicate the general trends concern-
ing the structural functions with a changing mass
m (and for a fixed charge) from very small values
in the atomic regime (or m = 1 and a very large

mass of the third particle M) to significant m in the
molecular regime. In the atomic regime (for example,
atomic hydrogen ion), the heavy particle is strongly
localized in a vicinity of the center of mass. The
density distribution has a delta-like form, and two
electrons are located at considerable distances from
each other and from the fixed center. Meanwhile,
the electronic density distribution monotonically de-
creases, as the distance increases. We emphasize that,
in the atomic regime (single-centered problem), the
correlation function between light and heavy parti-
cles is quite similar to the density distribution of a
light particle. At the same time, the pair correla-
tion function gee(r) at small distances is suppressed
significantly due to the repulsion and has a consider-
able tail at large distances. The extent of the corre-
lations between light particles in the ground state is
especially significant, when the system is close to the
two-particle break-up (close to the threshold curve s0
in Fig. 1). With increasing mass m (decreasing M),
the center of mass becomes less fixed, and the ampli-
tude of oscillations of two identical particles becomes
smaller. For larger masses m, two identical particles
become two fixed centers. If Z > 1, and if the mass
M is large (e.g., helium atom), then two electrons in
the ground state move in the field of a fixed center.
In this case, the electron-electron repulsion becomes
negligible, the electron distributions are monotoni-
cally decreasing, as the distance increases, and the
density distribution radius decreases significantly.

5. Some Reference Three-Particle Systems

In this section, we briefly discuss the results of cal-
culations of energies and sizes for some specific stan-
dard two-dimensional trions and compare them with
other available results and with corresponding three-
dimensional problems.

1. Consider firstly a molecular hydrogen ion H+
2

((ppe) with m = 1836.152701). In Table 4, we present
the dissociation energy Dn =E0(2)−En(3) of several
first symmetric vibrational (s) excited states (accord-
ing to (12), the total number of symmetric states is
24) and two existing antisymmetric (a) states. Com-
paring to the 3D problem [3], the dissociation energy
for symmetric states in the 2D space is larger by al-
most one order of magnitude (around 8 times). For
the antisymmetric excited state, the difference is more
by almost 4 orders. In Table 5 (second row), the re-
sults for the ground-state energy and the characteris-
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tic distance are presented (the energy of the ground
state of a hydrogen atom is E0(2D)(2) = −1.99891).
The data in this paragraph for the three-dimensional
system are borrowed from [3]. It is useful to compare
quantitatively the degree of stronger binding of two-
dimensional systems comparing to three-dimensional
ones. The following inequalities are satisfied:

E0(2D)(3)

E0(3D)(3)
= 4.65 > 4, (28)

R0(2D)(3)

R0(3D)(2)
= 1/3.2 < 1/2

√
2. (29)

They reflect more general patterns of relative growth
due to the increased number of particles and the cor-
responding reduction in size. It is useful to note an
abnormal ratio for m.s.d. for the molecular regime
that has been discussed above: the distance Rpe be-
tween particles with attraction is slightly greater than
the distance Rpp between identical heavy particles
with repulsion.

2. For a positronium ion Ps−, which is the most
typical example of a system that corresponds to an
intermediate case between the molecular and atomic
regimes, we have only one weakly bound state, which
is a demonstration of the stability diagram in Fig. 1.
The energy and characteristic distances are shown in
Table 5 (third line). It is also worth noting that
the three-particle system is more bound than the
two-particle one (E0(2D)(2)=-1.0), and inequalities
(28) and (29) are satisfied, although weaker than
those for H+

2 .
Note that the ground-state energy of a positronium

ion is obtained in work [6] coincides with the value
from Table 5.

3. Consider the next trion with atomic nature,
namely an atomic hydrogen ion H−, for which there
is also only one weakly bound energy level with pa-
rameters displayed in the 4-th row of Table 5. This
system have one-center regularities, when the heavy
proton is located almost in the center of mass (R3 is
very small), and the electron-electron distance R12 is
significantly greater than the distance from the elec-
tron to the proton. In addition, inequalities (28) and
(29) are even weaker than those for P−

s . Note also
that the energy of H− depends slightly on the mass
of the nucleus (proton). For the mass M = ∞, the
energy E0(2D)(3) =−2.2402, which is consistent with
the result in [6].

4. Consider some results for a helium atom He
(Z = 2, m = 1, M = 7294.2995) in the 2D space.
First of all, we again recall that, since Z > 1,
the discrete spectrum for this atom is infinite for
both symmetric and antisymmetric states. Here, we
present the data only for the first three (symmet-
ric s0 and s1 and antisymmetric a0) lowest states
(Table 6), and the threshold energy of two particles
E0(2) = −7.99891. For a He atom, the role of a finite
mass of the nucleus is else smaller. The calculated
ground-state energy of a helium atom with infinite
mass of the nucleus is E0(2D)(3) = −11.89982, which
is consistent with [7].

Note that the binding in the ground state of a he-
lium atom in 2D is at least 4 times stronger than that
in the 3D problem. But, for the excited levels, this
ratio is somewhat smaller and decreases monotoni-
cally to 1, as the excitation increases. In particular,
it holds for two particles, where the spectrum with
zero angular momentum and dimension d is

En(2;m,Z) = −
(
2mZ2/(m+ 1)

)
/(2n+d−1)2. (30)

Table 4. Dissociation energies of the lowest
energy states of He+2

State n s0 s1 s2 a0 a1

Dn 0.779 0.696 0.615 1.97× 10−4 1.89× 10−5

Table 5. Energy and characteristic distances
for the ground states of H+

2 , Ps−, and H−

E0(2D)(3) R12 R13 R1 R3 E0(3D)(3)

−2.778 0.5489 0.5611 0.2747 0.4907 −0.59713682
−1.1215948 3.0178 2.1889 1.5988 1.0571 −0.26200507

−2.239 1.646 1.132 1.131 8.46× 10−4 −0.5274458

Table 6. Energy and characteristic distances
for an atom He

E0(2D)(3) R12 R13 R1 R3

E0(3D)(3)

s0 −11.89811 0.559954 0.386898 1.131 7.3195 · 10−5

−2.90330444
a0 −8.2948 2.948 2.083 2.083 4.04 · 10−4

−2.17493011
s1 −8.2493 3.437 2.429 2.429 4.707 · 10−4

−2.14567849
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Note that levels with different symmetries alternate
in the energy spectrum of helium atoms, similarly
to the 3D problem [3]. Moreover, the ground-state
energy of an atom is separated from excited levels by
a considerable interval or gap in the spectrum. This
fact is characteristic of the atomic regime.

6. Conclusion

Our main result establishes the conditions of stability
on the mass-charge plane for the ground and excited
symmetric and antisymmetric states with zero angu-
lar momentum for the two-dimensional problem of
three charged particles. The constructed diagrams of
stability allow us to give the general pattern of bound
states for trion systems in the 2D space.

There are the nontrivial structural features of some
reference systems with three charged particles, and
the general regularities depending on the mass and
the charge of symmetric trions XXY in the 2D space.
First, it is found that the quadrupole moment on the
spherically symmetric wave functions is zero only in
the 3D space. For the two-dimensional problem, the
quadrupole moment is always positive, and it gener-
ates an attractive effective multipole interaction po-
tential, which has the asymptotic behavior −1/r3

even in a polar-symmetric field. Second, for three
charged particles in the molecular regime, in partic-
ular for a molecular ion H+

2 in the 2D space, it is
found that the distance between two protons, which
repel each other, is less than the distance between the
proton and the electron, although they attract each
other. It is generally known that such anomalies do
not exist for the three-dimensional problems.

These issues will be further considered in the adia-
batic approximation, where a proper justification on
a transparent physical level can be provided.

The current research have a perspective to study
the common problems of low-dimensional Coulomb
systems with a few particles or centers with proper
consideration of correlations, many-body effects, and
corresponding symmetries of many-centered problems
and specific Coulomb problems in spaces with any
dimensionality d, including fractional ones.

The work was performed in the frame of the target
topic 0112U000056 “Microscopic and phenomenolog-
ical models of fundamental physical processes in the
micro- and macroworld” of the Fundamental research
program of the Division of Physics and Astronomy of
the National Academy of Sciences of Ukraine.
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УМОВИ СТАБIЛЬНОСТI
ДВОВИМIРНИХ КВАНТОВИХ СИСТЕМ
ТРЬОХ ЗАРЯДЖЕНИХ ЧАСТИНОК

Р е з ю м е

Дослiджено умови iснування симетричних та антисиметри-
чних зв’язаних енергетичних рiвнiв (умови стабiльностi) на
площинi маса–заряд (m,Z) для двовимiрних кулонiвських
систем трьох заряджених частинок, коли розглядаються двi
тотожнi частинки одного сорту, а третя частинка iншого
сорту. Високоточнi тричастинковi чисельнi розрахунки ви-
конано на основi стохастичного варiацiйного методу з гау-
соїдними базисами. Встановлено низку аномальних ефектiв
у поведiнцi характерних вiдстаней мiж частинками та на-
явностi ненульового квадрупольного моменту у двовимiр-
ному полярно-симетричному полi. Виконано систематичне
порiвняння результатiв дослiдження для дво- та тривимiр-
них систем. Для декотрих еталонних систем трьох частинок
отримано енергiї, розмiри, розподiли густини та кореляцiй-
нi функцiї.
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