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INVESTIGATION OF HADRON
MULTIPLICITIES AND HADRON YIELD
RATIOS IN HEAVY ION COLLISIONSPACS 25.75.-q, 25.75.Nq

We thoroughly discuss some weak points of the thermal model, which is traditionally used
to describe the hadron multiplicities measured in the central nucleus-nucleus collisions. In
particularly, the role of conservation laws and the values of hard-core radii along with the
effects of the Lorentz contraction of hadron eigenvolumes and the hadronic surface tension are
systematically studied. It is shown that, for the adequate description of hadron multiplicities,
the conservation laws should be modified, whereas the conservation laws are not necessary at
all for the description of hadron yield ratios. We analyzed the usual criteria for the chemical
freeze-out and found that none of them is robust. A new chemical freeze-out criterion of
constant entropy per hadron equals to 7.18 is suggested, and a novel effect of adiabatic chemical
hadron production is discussed. Additionally, we found that the data for the center-of-mass
energies above 10 GeV lead to the temperature of the nil hadronic surface tension coefficient
of about T0 = 147 ± 7 MeV. This is a very intriguing result, since a very close estimate for
such a temperature was obtained recently within an entirely different approach. We argue that
these two independently obtained results evidence that the (tri)critical temperature of a QCD
phase diagram is between 140 and 154 MeV. In addition, we suggest to consider the pion and
kaon hard-core radii as new fitting parameters. Such an approach allows us, for the first time,
to simultaneously describe the hadron multiplicities and the Strangeness Horn and to get a
high-quality fit of the available experimental data.
K e yw o r d s: hadron resonance gas, second virial coefficients, chemical freeze-out

1. Introduction

Experimental data on heavy ion collisions have tra-
ditionally been described by the thermal model [1–
27]. The thermal model core assumption is that
the fireball produced in the relativistic nuclear col-
lision reaches thermodynamic equilibrium. Such an
assumption allows one to describe the multiplicities
of particles registered in the experiment using two pa-
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rameters, namely the temperature T and the baryo-
chemical potential µb. The extracted values of T and
µb not only describe the experimental data, but they
also give an essential information about the last stage
of fireball evolution, when the inelastic collisions cease
to exist, but the elastic collisions between hadrons
and the decay of resonances take place. This stage is
usually called the chemical freeze-out. The thermal
model was initially used for the AGS and SPS data
[13] and was subsequently employed to describe the
data collected at SIS [14,15], SPS [16], and RHIC [17–



D.R. Oliinychenko, K.A. Bugaev, A.S. Sorin

20]. Using the thermal model, it was possible to cor-
rectly predict the hadron ratios measured at LHC [2],
while the only wrong prediction for LHC was made
for p̄/π− ratio [21]. An analysis of the energy depen-
dence of thermal parameters extracted from fits of
the experimental data established the line of chemi-
cal freeze-out [22]. Consequently, the thermal model
is an established tool for the particle production anal-
ysis and the chemical freeze-out investigation.

However, the thermal model suffers from several
weak points, which should be accounted for in more
careful studies. The present paper is just devoted
to a critical analysis of the thermal model and con-
tains several directions to develop and to improve it.
First of all, we would like to note that the term “ther-
mal model” is a common name for a set of similar
models, each having its specific features such as the
strangeness suppression factor γs, the inhomogeneous
freeze-out scenario [14, 19, 26, 27], etc. Here, we con-
sider the minimal thermal model with two major pa-
rameters T and µb, following the approach of An-
dronic et al., [2]. Below, we briefly formulate the
main problems of the model to be analyzed in the
present work.

– Particle table. In order to describe the experi-
mental data using the thermal model, one needs the
masses, widths, and decay branching ratios of all ex-
isting resonances. In principle, the mass spectrum of
hadronic resonances that are heavier than 2.3 GeV is
known poorly, and, hence, they could create a prob-
lem. However, it was shown recently that the large
width of heavy resonances leads to their strong sup-
pression [28], and, hence, their contribution to the
thermodynamic functions of the hadronic phase is
negligible.

Note that not only the parameters of hadrons from
the “tail” of the mass spectrum are poorly known.
For example, both the mass and the width of σ(600)
meson are not well established, but the thermal model
predictions are strongly influenced by the values of
the mass and width of this meson [3]. For many other
baryons, the width and the branching ratios of decays
are not well established at all. Thus, the particle table
is one source of uncertainty of the thermal model.

– Radii of hard-core spheres. The ideal-gas
description has proven to be unsatisfactory [4] long
ago. The simplest way to introduce an interaction
between hadrons is to use the repulsive hard-core po-
tential, since the attraction between them is usually

accounted for via many sorts of hadrons [28]. In the
simplest case, this potential depends only on a single
parameter – the hard-core radius. In the general case,
each particle type can be characterized by its own
hard-core radius. But, for the sake of convenience
and simplicity, the hard-core radius is usually taken
to be identical for all particles. The usual value for
such a radius is r = 0.3 fm. This value is motivated
by the hard-core volume known from nucleon-nucleon
scattering [1]. There are, however, two restrictions
on the range of hard-core radii: (i) they should be
small enough to satisfy the condition Veigen ≪ V , i.e.
the total eigenvolume of all particles Veigen should be
much smaller than the total volume of the system,
V ; (ii) on the other hand, these radii should not be
too small, because, otherwise, the model will lead to
a contradiction with the lattice quantum chromody-
namics (QCD) thermodynamics data [8]. Thus, there
is a certain freedom in defining the values of hard-core
radii which, so far, was not systematically exploited
to describe the whole massive of existing experimen-
tal data.

– Conservation laws. Here, we would like to
discuss the baryon charge and isospin projection
conservation laws. It was suggested to use them
in the form [2]{∑

i niI3i = I3init/V,∑
i niBi = Binit/V.

The initial values are chosen I3init = −20 and Binit =
= 200 [2], neglecting the fact that only a part of ini-
tial particles belongs to the midrapidity region. Be-
low, we study the role of these conservation laws and
show that such a treatment leads to physically unreal-
istic freeze-out volumes and to a very bad description
of hadron multiplicities, while the description of par-
ticle yield ratios (we use such a term for the ratio of
multiplicities in order to avoid a confusion) can be
extremely good.

– Multiplicities fit. The fit of hadron multiplici-
ties is usually performed, by using three parameters:
T, µb, and V [2]. Below, we show that such a proce-
dure combined with the above-mentioned conserva-
tion laws is mathematically ambiguous, and it leads
to the problems with the imposed baryonic charge
conservation law.

In addition to these usual features of the thermal
model, we would like to thoroughly investigate the
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role of the Lorentz contraction of the eigenvolumes of
hadrons to essentially improve the previous analysis
[24, 25, 29] and to study the influence of the hadronic
surface tension on the fit of the freeze-out parame-
ters. As we argued, the latter may provide us with a
new information about the critical temperature value
of the QCD phase diagram. Such a comprehensive
analysis of the different features of the thermal model
and the experimental data will also allow us to eluci-
date the correct criterion of the chemical freeze-out,
which is a very hot topic nowadays. Furthermore,
we perform the simultaneous fit of hadron multiplic-
ities and the K+/π+ ratio for all available energies
of collisions and, hence, obtain, for the first time, the
high-quality fit of the Strangeness Horn, i.e., the peak
of the K+/π+ ratio.

The work is organized as follows. The basic fea-
tures of the thermal model are outlined in the next
section. In Section 3, we discuss the important prob-
lems related to the conservation laws and propose
their solutions. The discussion of the existing chem-
ical freeze-out criteria and the formulation of a new
criterion along with a novel effect of the adiabatic
chemical hadron production are given in Section 4,
while Section 5 is devoted to the model reformulation
for a multicomponent hadron gas mixture. In Section
6, we investigate the values of hard-core radii and
study the effect of the Lorentz contraction of hard-
core spheres. Section 7 is devoted to the analysis of
the hadronic surface tension, while, in Section 8, we
describe the Strangeness Horn. Section 9 contains
our conclusions.

2. Model Formulation

In order to study the role of conservation laws in a
form suggested in [2] and employed in their subse-
quent publications, it is necessary, first of all, to re-
produce the results obtained in that work. For this
purpose, let us consider the Boltzmann gas consisting
of hadrons of s sorts with temperature T and volume
V . Each i-th sort is characterized by its own mass mi

and chemical potential µi. Suppose that the number
of particles of the i-th sort is Ni. Then its canonical
partition function is

Zcan(T, V,N1, . . . , Ns) =

=

s∏
i=1

[
giV

(2π)3

∫
exp

(
−
√
k2 +m2

i

T

)
d3k

]Ni

. (1)

Here, gi = 2S + 1 is the degeneracy factor of the
i-th hadron sort, and k is the particle momentum.
The corresponding grand canonical partition function
reads

Zgr.can. =
∞∑

N1=0

· · ·
∞∑

Nh=0

exp

[
µ1N1 + · · ·+ µsNs

T

]
×

×Zcan(T,N1, . . . , Ns). (2)

From (2), one gets the number of particles of each
sort:

Ni = V ϕi(T,mi, gi) exp
[µi

T

]
≡

≡ giV

(2π)3

∫
exp

(
µi −

√
k2 +m2

i

T

)
d3k. (3)

Following the commonly accepted approach, we consi-
der the conservation of baryon charge B, strangeness
S, and isospin projection I3 on the average:

N∑
i=1

niSi = Sinit = 0, (4)

N∑
i=1

niBi = Binit/V = 200/V, (5)

N∑
i=1

niI3i = I3init/V = −20/V. (6)

These conservation laws define the value of total
chemical potential for hadrons of the sort i as µi =
= Biµb + Siµs + I3iµI3 , where the quantities Bi, Si,
and I3i denote, respectively, the baryonic, strange,
and isospin projections of such a hadron, while the
corresponding chemical potentials are denoted as µb,
µs, and µI3 .

The interaction of hadrons and resonances is usu-
ally accounted for by the hard-core repulsion of the
van der Waals type [5] as

p = pid.gas exp

(
−pb

T

)
, ni =

nid
i exp

(
−pb

T

)
1 + pb

T

, (7)

where the pressure pid.gas and the i-th charge density
nid
i of an ideal gas is modified due to the hard-core

repulsion. Here, b = 2π
3 (2R)3 is the excluded volume

for the hard-core radius R, which was taken in actual
calculations to be R = 0.3 fm for all hadrons. The
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Fig. 1. Examples of the description of particle yield ratios.
Dots denote the experimental values, while the lines show the
fitting results. Upper panel:

√
SNN = 6.3 GeV, T = 139 MeV,

µb = 503 MeV, the mean square deviation per degree of freedom
is χ2/NDF = 4.8/4. Lower panel:

√
SNN = 130 GeV, T =

= 169 MeV, µb = 31 MeV, χ2/NDF = 3.4/9

usual van der Waals correction affects the particle
densities, but has no effect on the particle ratios [5].
While its effect on the charge and particle densities
may be strong, the excluded volume correction for the
freeze-out densities obtained at and above the highest
SPS energy

√
SNN = 17.6 GeV leads to a reduction

of the densities by about of 50 percent.
As usual, the resonance decays are accounted for

in the following way: the final multiplicity of hadron
X consists of the thermal contribution N th

X and the
decay ones:

Nfin
X =N th

X +Ndecay=N th
X +

∑
Y

N th
Y Br(Y →X), (8)

where Br(Y → X) is the decay branching of the Y -th
hadron into the hadron X. The masses, widths, and
decay branchings were taken from the particle tables
used by the thermodynamic code THERMUS [7].

The width Γ of the resonance with mean mass m
is accounted for by replacing the Boltzmann distribu-
tion function in the particle pressure by its average
over the Breit–Wigner mass distribution as∫

exp

(
−
√
k2 +m2

T

)
d3k →

→

∫∞
M0

dxi

(xi−m)2+Γ2/4

∫
exp

(
−
√

k2+x2
i

T

)
d3k∫∞

M0

dxi

(xi−m)2+Γ2/4

, (9)

where M0 is the dominant decay channel threshold.

3. Role of Conservation Laws

Using the thermal model formulated in the pre-
vious section, we fitted the hadron yield ratios
in the energy range from AGS to RHIC, i.e., for√
SNN = 2.7÷200 GeV. We used the χ2 minimiza-

tion for all the ratios available for this energy range
as the fit criterion. The present consideration is very
similar to that used in [2]. The main sources of dif-
ference are listed below.

– The Boltzmann statistics is used here instead
of the quantum statistics employed in [2]. This allows
us to essentially fasten the simulations since the mo-
mentum integration can be done only once for each
hadron species. We checked that, for the freeze-out
temperatures T ≥ 50 MeV obtained here, the differ-
ence of the results due to the Boltzmann statistics is
almost negligible.

– The charm conservation is not accounted for
by the present model, since it is important only for
the charmed particles multiplicities description which
is not considered here.

– The particle table used here is slightly differ-
ent from that in [2], but this does not lead to a big
difference in results. Although, in contrast to [2], we
do not fit the mass and the width of σ(600) meson.

– Inclusion of the resonance width is done in
this work for all values of colliding energy

√
SNN ,

while the width was accounted in [2] only for the AGS
energy range.
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Fig. 2. Dependence of thermal model fitting parameters
on the center-of-mass collision energy

√
SNN . Upper panel:

the chemical freeze-out temperature T vs.
√
SNN . Lower

panel: the chemical freeze-out baryonic chemical potential µb

vs.
√
SNN . The results obtained from the fit of hadron yield

ratios (circles) with the conservation laws and from the fit of
hadron multiplicities (open squares) are compared with those
obtained in [2] (crosses)

As is seen from Fig. 1, the experimental hadron
yield ratios are reproduced very well within the
present model. The dependence of the chemical
freeze-out fitting parameters on

√
SNN is given in

Fig. 2. In Fig. 2, we show only the statistical er-
rors for the obtained fit; while, for the parameters of
work [2], the shown errors account for the systematic
and statistical ones. As one can see from Fig. 2, the
discrepancy between the results of the present model
and those of [2] is within the error bars.

Fig. 3. Chemical freeze-out volume vs.
√
SNN for the ideal

hadron gas and the hadron gas with hard-core radii of 0.3 fm.
The smaller symbols correspond to the fit of hadron yield ratios
with all the conservation laws (4)-(6) accounted for, while the
larger symbols are obtained by the fit of hadron multiplicities,
by ignoring Eq. (5) (see the text for details)

Similarly to [2], we found that both the chemical
freeze-out temperature T and the baryonic chemi-
cal potential µb are almost independent of the ini-
tial value of baryon charge Binit and the initial value
of isospin projection I3init . However, we found that
the freeze-out volume V, which stands on the right-
hand side of the conservation laws (5) and (6), is very
sensitive to them. The obtained chemical freeze-out
volume dependence on

√
SNN for Binit = 200 and

I3init = −20 is shown in Fig. 3.
From the larger symbols in Fig. 3, one can

clearly see that, for the center-of-mass collision en-
ergies

√
SNN = 2.7–4.3 and

√
SNN = 12–200 GeV,

the found chemical freeze-out volume is so large
that it exceeds the volume of kinetic freeze-out [9].
Here, we found that, unlike the hadron yield ra-
tios, the chemical freeze-out volume is very sensi-
tive both to the excluded volume correction and
to the values of parameters Binit and I3init . From
Eq. (5), one can deduce that the larger value of
excluded volume b corresponds to the larger value
of chemical freeze-out volume V, since the larger
the b value, the smaller the particle concentra-
tions ni and, consequently, the larger the volume
V = Binit/

∑
niBi. Therefore, the minimal chem-

ical freeze-out volume corresponds to an ideal gas,
i.e. for b = 0. This minimal chemical freeze-out
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Fig. 4. Upper panel: π+ multiplicity at chemical freeze-out
vs.

√
SNN . Lower panel: K+ multiplicity at chemical freeze-

out vs.
√
SNN . The circles correspond to the experimental

data, whereas the stars are found from particle densities as
N = nV

volume is also shown in Fig. 3. Despite the ab-
sence of the excluded volume correction, the chem-
ical freeze-out volume for an ideal gas remains huge.
Hence, we conclude that the initial values in the con-
servation laws, namely Binit and I3init , are of crucial
importance for an extraction of the chemical freeze-
out volume.

From the comparison of the hadron multiplicity
N = nV obtained within the thermal model and its
experimental value dN/dy|y=0 measured at zero ra-
pidity, one can conclude whether the thermal model
provides a reliable description of hadron multiplici-
ties. Such a comparison for π+ and K+ mesons is
shown in Fig. 4. Since the hadron yield ratios shown

in Fig. 1 are described well by the thermal model,
one would expect that, if the multiplicity of a single
hadron type is in good agreement with the experimen-
tal data, then the multiplicities of all other sorts of
hadrons should be well described too. However, from
Fig. 4, one can see that, at

√
SNN ≥ 10 GeV, the ex-

perimental values of multiplicities are much smaller
than the theoretical ones. At lower

√
SNN , there is

no such a problem, despite the big chemical freeze-out
volume V . Our conclusion is that, for higher energies,
the value of parameters Binit and |I3init | should be
taken smaller than those for lower energies. In par-
ticular, according to Fig. 4 at

√
SNN = 200 GeV, the

values of Binit and |I3init | should be about 10 times
smaller than those for the low-energy collisions.

A different way to describe the hadron multiplici-
ties was used in [2]. The chemical freeze-out volume
V was treated there as a free parameter. Let us show
that such a treatment leads to a mathematical am-
biguity. Consider the conservation laws (4)–(6) to-
gether with the following expression for the pressure
in the system:

p = pid(T, µb, µs, µI3) exp

(
−p b

T

)
. (10)

This system of equations for six unknowns, i.e. T ,
µb, µs, µI3 , V , and p, includes four equations. Hence,
two unknowns should be treated as free fitting pa-
rameters. If, however, one treats three unknowns as
free parameters, then one of the equations may be not
satisfied, in general. More specifically, if T , µb, and V
are the free fitting parameters, then the baryon charge
conservation equation (5) may be broken down. To
demonstrate this explicitly, we have considered the
thermal model fit with three free parameters – T , µb

and V – and ignored the baryon charge conservation
equation (5); while the isospin projection conserva-
tion law (6) was used to find the chemical potential
µI3 . After fitting the experimental hadron multiplic-
ities dN/dy|y=0 (not their ratios!) for the same en-
ergy range as before, we found the resulting baryonic
charge as Sb = V

∑N
i=1 niBi summing up the den-

sities ni of all baryons and antibaryons multiplied
by their baryonic charge Bi. Clearly, if Eq. (5) is
satisfied, then this sum, Sb, should match the value
of Binit = 200. However, Fig. 5 demonstrates that
Eq. (5) cannot be satisfied. Although the chemical
freeze-out temperature and the baryonic chemical po-
tential obtained by the fitting of hadron multiplicities
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do not differ essentially from those found by the fit of
hadron yield ratios (see open squares in Fig. 2), the
freeze-out volumes obtained from the multiplicity fit
are essentially smaller (see smaller symbols in Fig. 3)
and more physically adequate for

√
SNN ≥ 5 GeV

than those found from the fit of hadron yield ratios.
Additionally, we found that the values of Binit

and I3init should strongly depend on the collision
energy: at

√
SNN = 200 GeV, they are about ten

times smaller than those at the AGS energies. The
hadron yield ratios are not sensitive to the values
of Binit and I3init . Hence, the baryon charge and I3
conservation can be neglected for the description of
hadron yield ratios. If, however, one supposes that
Binit = const > 0 and I3init = const > 0, then the
description of hadron multiplicities completely fails.
Evidently, one can describe the hadron multiplicities
by introducing the

√
SNN dependence of Binit and

I3init values, if such dependences are known. Since
such dependences are unknown, one has to ignore the
baryon charge (5) and isospin projection (6) conser-
vation laws and to fit the parameters T , µb, µI3 , and
V to describe the hadron multiplicities or to fit the
parameters T , µb, and µI3 in order to get the descrip-
tion of hadron yield ratios. Note, however, that the
strangeness conservation law (4) does not create such
problems, and, hence, it should be always obeyed.

4. Chemical Freeze-out Criteria
and Adiabatic Chemical Hadron Production

The thermal model discussed above allows us to clar-
ify the long standing question on the physically ap-
propriate chemical freeze-out criterion which is widely
discussed [22, 23]. The most popular chemical freeze-
out criteria are (I) the constant value of the mean
energy per hadron, ⟨E⟩/⟨N⟩ ≃ 1.08 GeV, (II) the
constant value of the entropy density to the cube
of the temperature, s/T 3 ≃ 7, and (III) the con-
stant value of the total baryon and antibaryon den-
sity nB + nB̄ ≃ 0.12fm−3. Criterion (I) is believed
to be more robust, while criteria (II) and (III) show
a strong dependence on the hard-core radius value
[23]. We have performed the analysis and found that
criteria (II) and (III) are not obeyed at all, while
the validity of criterion (I) depends essentially on
the thermal model parametrization. The validity of
these statements for criteria (I) and (II) are, respec-
tively, demonstrated in the middle and upper panels

Fig. 5. Obtained baryonic charge Sb = V
∑N

i=1 niBi (dots)
vs.

√
SNN . The dots are calculated from the baryon charge

conservation, whereas the line corresponds to the expected
value Binit = 200

of Fig. 6. Moreover, the thermal model results that
we extracted from [2] are very similar to our ones,
despite several differences in the parametrizations of
these two models.

Our detailed analysis shows that there exists a
much more robust chemical freeze-out criterion than
all previously discussed ones. This novel criterion
corresponds to the constant value of the entropy per
number of particles which can be expressed in terms
of the entropy density s and the hadron number den-
sity ρpart as

s

ρpart
≃ 7.18. (11)

The lower panel of Fig. 6 shows that, for two dif-
ferent parametrizations of the thermal model, the ra-
tio s

ρpart
stands between 6.6 and 7.6, i.e. it deviates

within ± 8 % only, while the values of the center-of-
mass energy of the collision change by two orders of
magnitude! Such a behavior of the s

ρpart
quantity ev-

idences for the adiabatic chemical hadron production
in heavy ion collisions.

5. Multicomponent Gas and Hard-Core Radii

Although it is clear that the hadron radii can serve as
the parameters of the thermal model, they, however,
are rarely treated as free parameters. The common
approach is to fix one radius for all hadrons. The
value of this radius was discussed in [11], and it ranges
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Fig. 6. Different chemical freeze-out criteria. Upper panel:
the ratio of the entropy density to the cube of temperature
s/T 3 at chemical freeze-out vs.

√
SNN . Middle panel: the

energy per particle ⟨E⟩/⟨N⟩ at the chemical chemical freeze-out
vs.

√
SNN . Lower panel: the novel criterion of chemical freeze-

out, entropy per particle at the chemical freeze-out s/ρ ≃ 7.18.
The shown errors combine the statistical and systematic errors.
The results of the present work (squares) are very similar to
those extracted from [2]

from 0.2 fm to 0.8 fm [12]. However, the value r = 0.3
fm that was taken from the nucleon-nucleon scatter-
ing [10] seems to be an established value. To investi-
gate the role of the hard-core radii, we introduce the
different radii for mesons Rm and for baryons and Rb,
respectively. To study the influence of the Lorentz
contraction of hard-core radii on the chemical freeze-
out parameters T and µb and on the hadron yield
particle ratios, we need the hadron gas model, which
accounts for different values of their eigenvolumes.
For this purpose, we use the approach developed in
[24, 25, 29]. Below, we give the necessary theoreti-
cal apparatus to study a multicomponent hadron gas
mixture, whereas the results of the global fit for the
cases with and without Lorentz contraction are given
in the subsequent section.

Consider again the Boltzmann gas of s hadron
species in a volume V at a temperature T . Let Ni

be a quantity of the i-th sort of hadrons

N =

N1
N2
...
Ns

. (12)

The total number of particles is M =
∑s

i=1 Ni. It is
assumed that, for every two sorts of hadrons i and j,
there is the excluded volume bij . Then one can intro-
duce the excluded volume matrix B = (bij). Natu-
rally, it is supposed that the matrix B is symmetric,
i.e. bij = bji.

The canonical partition function can be obtained
by adding the particles of some eigenvolume one-by-
one and considering all the corresponding excluded
volumes of the previously added particles. Such an
approximation was suggested in [25], and it gives the
following expression for the canonical partition of a
van der Waals hadron gas mixture

ZVdW(T, V,Ni)=

[
s∏

i=1

ϕNi
i

Ni!

][
V − NTBN

M

]M
, (13)

where the thermal particle density ϕi(T,m, g) is de-
fined in (3), and NT is the transposed matrix to that
one given by (12).

In the next step, we write the grand canonical par-
tition function (GCPF) as

Z=
∞∑

N1=1

∞∑
N2=1

. . .
∞∑

Ns=1

(
s∏

i=1

exp

[
µiNi

T

])
×ZVdW. (14)
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It is well known [31] that, in the thermodynamic limit,
the GCPF can be replaced by the maximal term of
the multiple sum in Z (the maximum term method).
Suppose that the array N∗ gives the maximal term
of Z. Then the pressure in the system is given by

p/T = lim
V→∞

Z
V

=

= lim
V→∞

1

V
ln

[
s∏

i=1

A
N∗

i
i

N∗
i !

(
V − (N∗)TBN∗

M∗

)M∗]
, (15)

where Ai = ϕi exp
[
µi

T

]
. Let us find N∗ from the

maximum conditions (i = 1..s):

∂

∂N∗
i

[
ln

[
s∏

i=1

A
N∗

i
i

N∗
i !

(
V − (N∗)TBN∗

M∗

)M∗]]
=0. (16)

Performing the differentiations, we get

ξi = Ai exp

− s∑
j=1

2ξjbij +
ξTBξ∑s
j=1 ξj

, (17)

with ξi =
Ni

V−NT BN
M

and

ξ =

ξ1
ξ2
...
ξs

. (18)

Using (17), one can express the hadron densities ni =

=
N∗

i

V and the system pressure p as

ni =
ξi

1 + ξTBξ∑s
j=1 ξj

, p = T
s∑

i=1

ξi. (19)

The solution of the system of equations (17)–(19) de-
fines the hadron densities for the multicomponent gas.

In a special case, if all the elements of the excluded
volume matrix are equal bij = v0, Eqs. (17)–(19) give
ξi = Ai exp(−p v0/T ),

ni =
ξi

1+p v0/T
,

p/T = (
∑s

i=1 Ai) exp(−p v0/T ).

(20)

In this case, the ratios of two-particle densities from
(20) match those of the mixture of the corresponding
ideal gases for an arbitrary value of v0, while the par-
ticle densities themselves may essentially differ from
the particle densities of the ideal gas.

6. Results for Hard-Core Radii
with the Lorentz Contraction

In this section, it is assumed that all baryons have
the same hard-core radius Rb, and all mesons have
the same hard-core radius Rm. By performing the
global fit, we would like firstly to find the pair of
radii (Rm, Rb) that provides the best fit, and, sec-
ondly, we would like to study the influence of Lorentz
contraction of the chemical freeze-out parameters.

To simplify the numerics, let us define that two
hadrons belong to the same type, if their excluded
volumes are equal. The number of equations in sys-
tem (17) is equal to the number of particle types.
Hence, the case with the Lorentz contraction included
is more complicated, because, instead of two sets of
particles, one should treat each hadron type as a new
kind of particles. In order to avoid the large num-
ber of equations in system (17), the particles heavier
than 900 MeV are considered non-relativistically, i.e.
they all belong to two sorts: either to the baryons
with the hard-core radius Rb or to heavy mesons with
hard-core radius Rm. For two particles i and j, both
heavier than 900 MeV, the element of the excluded
volume matrix bi,j is 2π

3 (Ri + Rj)
3. For other cases,

the second virial coefficients bi,j are calculated using
Eqs. (3) and (4) of [29] by the direct translation of
one ellipsoid around the other with the subsequent
averaging of the obtained excluded volume over the
ellipsoid positions.

The fit procedure is the same as that described in
the preceding subsection: we fit the hadron yield ra-
tios by T , µb, and V , respect the isospin projection
conservation law (6) to find the value of µI3 , but ig-
nore the baryonic charge conservation law (5). This
effort to study the role of the Lorentz contraction
is inspired by the fact that the conventional ther-
mal model has problems with the description of light
mesons. Thus, to describe the pion multiplicity and
the ratios containing the pions, it was proposed to in-
troduce Rπ which is smaller than all the other hadron
radii [5, 30]. Another example of difficulties with the
light mesons is a "Strangeness Horn", i.e. the peak
in the K+/π+ ratio. Its description was finally im-
proved by fitting the σ(600) meson mass and width
[3], but the obtained description is far from being
very good.

Let us see whether the Lorentz contraction might
resolve these problems. At a given temperature,
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Fig. 7. The chemical freeze-out parameters obtained from
the fit with (circles) and without (rectangles) the Lorentz con-
traction. Upper panel: the chemical freeze-out temperature
T vs.

√
SNN . Lower panel: the chemical freeze-out baryonic

chemical potential µb vs.
√
SNN

the eigenvolumes of the lighter particles decrease
more than that of the heavier ones. Consequently,
the excluded volume of lighter particles gets smaller
compared to the excluded volume of heavier ones
[24,25,29]. Such a behavior of the Lorentz contracted
excluded volume provides us with the natural expla-
nation of the fact that the pion hard-core radius Rπ

is smaller than other hard-core radii. On the other
hand, this might improve the Strangeness Horn de-
scription. It was also shown [29] that the Lorentz
contraction removes the causality paradox from the

Fig. 8. Strangeness Horn description improvement for the
model with the Lorentz contraction included and without it

thermal model, i.e. the speed of sound at high densi-
ties does not exceed the speed of light. Therefore, it is
necessary to incorporate the Lorentz contraction into
the conventional thermal model and to study its ef-
fect on the hadron multiplicity description. In order
to make the numerical evaluation of the relativistic
excluded volumes faster, we heuristically derived an
approximate formula for such volumes, which allows
one to reduce the six-dimensional integration over the
pair of three-vectors of particle momenta to the three-
dimensional integral. The derivation of such a for-
mula and its verification are given in the Appendix.

To compare the models with and without the
Lorentz contraction, we have chosen the hard-core
radii Rm = 0.45 fm and Rb = 0.3 fm and have
found the new best-fit T and µb values for the case
with Lorentz contraction, see Fig. 7. From this fig-
ure, one can conclude that the baryo-chemical po-
tential is almost unaffected by the Lorentz contrac-
tion, while the temperature is slightly higher for the
case with the Lorentz contraction. It is also inter-
esting to check, whether the inclusion of the Lorentz
contraction improves the Strangeness Horn descrip-
tion. From Fig. 8, we conclude that there is a small
improvement, which is not sufficient to qualitatively
improve the Strangeness Horn description.

The important result, however, is that the Lorentz
contraction inclusion provides us with the better fit
quality for any pair of radii (Rm, Rb). From Fig. 9,
one can see the difference between the χ2/NDF val-
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Fig. 9. Difference of χ2/NDF between the model without the
Lorentz contraction and the model with it for different values
of meson and baryon hard-core radii

ues found without the Lorentz contraction and with
it. Obviously, when both radii are small, then the cor-
rection due to the Lorentz contraction is small too.
At (Rb, Rm) = (0.3, 0.4) fm, ∆χ2/NDF ≈ 0.1, while
χ2/NDF itself is 1.48.

The simplest way to obtain the best fit radii is to
perform a global fit, including the radii into the fit-
ting procedure. However, in the (Rm, Rb) plane, there
exist the domains, where χ2 stays almost unchanged.
For example, in the case without the Lorentz contrac-
tion, χ2 is the same along the line Rb = Rm, which
follows directly from (20). This makes the straightfor-
ward global fit rather difficult. Therefore, we perform
the fit procedure of particle ratios in central nucleus-
nucleus collisions at

√
SNN = 2.7, 3.3, 3.8, 4.3, 4.9,

6.3, 7.6, 8.8, 12, 17, 130, 200 GeV for each pair of the
radii (Rm, Rb) and find the domains, where χ2 differs
from its minimal value less than 10%. The results are
shown in Fig. 10.

7. Determination of Hadronic Surface Tension

Recently the extremely important role of the surface
tension of quark gluon bags was realized within the
exactly solvable models for the deconfinement phase
transition with the tricritical [32, 33] and the crit-
ical [34] endpoints. It was shown [32–34] that the
(tri)critical endpoint appears due to vanishing the
surface tension coefficient, while, at low baryonic den-
sities, the deconfinement phase transition degener-

Fig. 10. Upper panel: χ2/NDF for the model without the
Lorentz contraction for different values of meson and baryon
hard-core radii. Lower panel: same as in the upper panel, but
for the model with the Lorentz contraction included

ates into a cross-over just due to the negative val-
ues of surface tension coefficient. The existence of
the negative values of surface tension coefficient at
the cross-over temperature was demonstrated analyt-
ically within the model of color confining tube [35].
Using this model, it was possible to predict the value
of (tri)critical temperature of QCD phase diagram
Tcep = 152.9 ± 4.5 MeV [36] using the plausible as-
sumption on the temperature dependence of the sur-
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Table 1. Results of the global fit including the extracted surface tension parameters

Collision energies set,
√
SNN χ2/NDF without surface tension χ2/NDF with surface tension σ0,MeV fm−2 T0, MeV

2.7–7.6 25.8135/33 = 0.782 25.8043/31 = 0.832 0.91× 10−2 61
2.7–200 103.096/82 = 1.2573 103.036/80 = 1.288 −1.37× 10−2 57

2.7–62.4 (no 130 and 200) 85.51/65 = 1.3156 85.268/63 = 1.3534 −3.21× 10−2 62
12, 17, 62.4, 130, 200 62.5452/37 = 1.69 62.1454/35 = 1.776 0.654 147

face tension coefficient σ(T ) = a2
(
1− T

Tcep

)
[37],

which is typical of ordinary liquids.
Since the lattice QCD is not reliable at the non-zero

values of the baryonic chemical potential, it would be
interesting to study the surface tension for hadrons at
the chemical freeze-out. The surface free energy can
be written as Fsurf = σ(T )S, where the hadron sur-
face S is given by its hard-core radius R as S = 4πR2.
Note that such a parametrization of the surface free
energy is typical of multicomponent gas mixtures [32–
34, 38]. Inclusion of the surface free energy into
the thermal model is equivalent to adding the term
σ(T )S to the total chemical potential. If S is the
same for all hadrons, such a surface tension correc-
tion does not affect the hadron yield ratios. There-
fore, we have taken Rm = 0.45 fm, Rb = 0.3 fm,
to have the noticeable radii difference. In the actual
simulations, the surface tension coefficient σ(T ) was

Fig. 11. Strangeness Horn description for the model with pion
and kaon hard-core radii to be independent fitting parameters.
The resulting quality of the global fit is χ2/NDF ≃ 1.19

parametrized as

σ(T ) = σ0

(
1− T

T0

)
. (21)

Here, σ0 and T0 > 0 are the free parameters to be
found from a global fit. Note that, for T ≤ T0, such
a temperature dependence coincides with the famous
Fisher droplet model parametrization [37]; whereas,
for T > T0, it is in line with the recent findings [32–
36]. We have performed several global fits with the
parametrization (21), using different data sets. The
results are listed in Table 1.

From this table, one can conclude that the inclu-
sion of the surface tension in the form (21) does not
improve the fit quality. However, since the value of
χ2/NDF in all cases is almost the same as that with-
out accounting for the surface tension, it also does
not spoil the fit quality. This fact allows us to take
the obtained values of parameters σ0 and T0 rather
seriously. It is not surprising that the value of σ0 is
close to zero; otherwise, the sizable surface tension
of hadrons could be already found. The really sur-
prising fact is that, for the center-of-mass energies√
SNN ≥ 12 GeV, the parameter T0 = 147 ± 7 MeV

is extremely close to the critical temperature value
Tcep = 152.9±4.5 MeV found in [36] more than a year
ago using the entirely different approach. Of course,
the reason of why the global fit that includes the low-
energy data gives the essentially lower value of the
parameter T0 should be understood, and, hence, the
investigation of the hadronic surface tension should
be continued using both the experimental data on
hadron production and the lattice QCD data.

8. Multicomponent Hadron Gas
and the Strangeness Horn Description

The thorough analysis performed above led us to a
conclusion that, besides the hadron surface tension
inclusion, the further improvement of the thermal
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model can be achieved, if we consider the pion and
kaon hard-core radii, as independent fitting parame-
ters. On the one hand, this would allow us to have
two additional fitting parameters, and, on the other
hand, one could include the Strangeness Horn data
into the fitting procedure. Note that the quality of
the Strangeness Horn description is far from being
satisfactory up to now, although very different for-
mulations of the thermal model are used for this pur-
pose [2, 30, 39]. Thus, the most recent compilation
of the Strangeness Horn description by the different
thermal models can be found in [39].

The necessity to improve the Strangeness Horn de-
scription can be easily understood from the fact that
just the non-monotonic behavior of the K+/π+ ratio
as a function of the center-of-mass energy of collision
is often claimed to be one of a few existing signals of
the onset of a deconfinement [40–42]. The multicom-
ponent hadron gas model developed in [25] is perfectly
suited to treat the pion and kaon hard-core radii as
independent fitting parameters. The physical idea be-
hind such an approach is that the hadronic hard-core
radii are the effective parameters, which include the
contributions of repulsion and attraction. Since the
parameters of the hadron-hadron interaction are, gen-
erally speaking, individual for each kind of hadrons,
each kind of hadrons can have its own hard-core ra-
dius. Based on this idea, we performed a global fit of
all hadron multiplicities (as described above) together
with the Strangeness Horn data, by considering the
pion hard-core radius Rπ and the kaon hard-core
radius RK as independent variables together with
the chemical freeze-out temperature and the baryonic
chemical potential, whereas the hard-core radius of
all other mesons and the hard-core radius of baryons
were fixed, respectively, as Rb = 0.3 fm and Rm = 0.5
fm, according to the findings of Section 6.

The results of such a fit are shown in Fig. 11. Com-
paring Figs. 8 and 11, one can see the dramatic im-
provement of the K+/π+ ratio for the collision ener-
gies

√
SNN above 8 GeV. In fact, the K+/π+ ratio

shown in Fig. 11 deviates from the experimental er-
ror bars only for the energy

√
SNN = 3.8 GeV, while

for all other collision energies it does not essentially
deviate from the experimental error bars. Thus, the
variations of the pion and kaon hard-core radii es-
sentially improve the description of this ratio for all
collision energies, but, at the same time, the qual-
ity of the fit of all other hadronic multiplicities does

not worsen as it is seen from the resulting value of
χ2/NDF ≃ 1.19 for the global fit, which, so far, is
the best result obtained in the literature.

9. Conclusions

In this work, we performed a comprehensive analysis
of the experimental hadron multiplicities within the
thermal model. As in previous studies, the consid-
ered thermal model has two hard-core radii (Rb for
baryons and Rm for mesons) and two new elements:
an inclusion of the Lorentz contraction of eigenvol-
umes of hadrons and a treatment of the hadronic
surface tension. Using this model, we studied the
role of the imposed conservation laws (5) and (6) and
showed that, for the adequate description of hadron
multiplicities, the conservation laws should be modi-
fied, whereas, for the description of the hadron yield
ratios, the conservation laws are not necessary at all.
In addition, we suggested and analyzed the thermal
model, in which the pion and kaon hard-core radii
are independent fitting parameters compared to all
other mesons.

Here, we also analyzed the usual criteria for the
chemical freeze-out and found that none of them is
robust. Therefore, we suggested a novel criterion of
chemical freeze-out, a constant value of entropy per
hadron number equal to 7.18. Such a criterion is also
supported by different formulations of the thermal
model [2], and it evidences for the new physical ef-
fect which we called the adiabatic chemical hadron
production.

The performed analysis allowed us to find the re-
strictions on the hard-core radii that are imposed
by the experimental data. We also showed that, al-
though the inclusion of the Lorentz contraction im-
proves the fit quality for any pair of baryon and meson
hard-core radii, it has a small effect on the chemical
freeze-out parameters and on K+/π+ ratio.

In addition, we phenomenologically introduced the
surface tension in the thermal model and made sev-
eral global fits to find its parameters. Although the
surface tension inclusion does not improve the fit
quality, it is found for the first time that the tem-
perature of the nil surface tension value depends on
the considered interval of the collision energy. Thus,
if the low-energy data are included into the fit, then
the nil surface tension temperature is about 60 ± 5
MeV, while the data for the center-of-mass energies
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above 10 GeV lead to an essentially larger value of
this temperature: T0 = 147 ± 7 MeV. The latter is
a very intriguing result, since a very close estimate
for the nil surface tension temperature was obtained
recently within the entirely different analysis of the
quark gluon bag surface tension [35]. Therefore, it
is possible that these two independently obtained re-
sults, indeed, evidence that the (tri)critical tempera-
ture of the QCD phase diagram is between 140 and
154 MeV.

The most dramatic numerical effect, however, is
obtained for the truly multicomponent hadron gas
model worked out in [25] and employed here for the
first time. In this model, the hard-core radii of pi-
ons and kaons differ from the hard-core radius of all
other mesons, and they are treated as independent
fitting parameters. Such an approach allowed us for
the first time to simultaneously fit the hadron mul-
tiplicities together with the Strangeness Horn and to
get the chemical freeze-out data description of a very
high quality.
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and A.I. Ivanytskyi, I.N. Mishustin, and L.M. Sa-
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acknowledge the partial support of the Program ‘On
Perspective Fundamental Research in High Energy
and Nuclear Physics’ launched by the Section of Nu-
clear Physics of the National Academy of Sciences of
Ukraine. The work of A.S.S. was supported in part
by the Russian Foundation for Basic Research, Grant
No. 11-02-01538-a.

APPENDIX
Heuristic derivation of the approximate excluded
volume formula for ellipsoids of revolution

In order to fasten the numerical evaluation of the relativis-
tic excluded volumes, we would like to obtain an approximate
expression, which would reduce the dimension of momentum
integrations of two particles from six to three. Basically, we
employ the heuristic method suggested in [29]. The main dif-
ference, however, is in that work [29] gives the ultra-relativistic
expression for the excluded volume, while we would like to
get an expression, which would be accurate both in the non-
relativistic and ultra-relativistic limits.

For this purpose, let us consider two relativistic spheres S1

and S2, the γ-factors being γ1 and γ2, respectively. The hard-
core radii in their rest frames are R1 and R2, respectively. Let
us fix an angle θ between the momenta of two particles, which

is the standard spherical angle. It is chosen in such a way that
the three-momentum of S1 coincides with the OZ-axis (see
Figs. 12 and 13 for details). Then the angle θ is the azimuthal
spherical angle of the momentum of the second particle. Due
to the Lorentz contraction, the both spheres shrink in the di-
rection of their momenta, and one obtains two ellipsoids of
revolution. Here, we show how to get an approximate formula
for the excluded volume for such ellipsoids.

The basic idea is to neglect the complexity of the problem
and to treat the excluded volume as an ellipsoid, afterward to
symmetrize the obtained expression with respect to the inter-
change 1 ↔ 2, and to take a half of the sum of two expressions.
Then the unsymmetrized excluded volume reads

Vexc =
4

3
πRxRyRz , (22)

where the ellipsoid’s radii Rx, Ry , and Rz are found from the
geometrical consideration given below.

From Fig. 12, one can see that

Ry = R1 +R2. (23)

To obtain the radius Rx, one should consider the ellipsoids de-
picted in Figs. 13–15. The radius Rz can be found analogously
to the radius Rx from Fig. 16.

Let us show how one can get an expression for the radius
Rx. A convenient projection and the notations are depicted in
Figs. 13 and 14. From Fig. 14, one gets

Rx = R1 +∆x. (24)

Turning the reference frame to the main axes x2 and y2
of S2 (see Fig. 15), one easily finds the coordinates of the
touching point K(x0, y0). The equation of S2 for the principal
axes shown in Fig. 15 reads

x2
2 + y22γ

2
2 = R2

2. (25)

The equation for a tangent to an ellipse shown in Fig. 15 is

dy2

dx2
= −

x2

γ2
2y2

= tg(π/2− θ). (26)

Now solving (25) together with (26), one gets the touching
point coordinates x0 and y0:

x0 = −
R2γ2 ctg θ√
1 + γ2

2 ctg2 θ
, (27)

y0 =
R2

γ2

√
1 + γ2

2 ctg2 θ
. (28)

Turning back from the (x2,y2)-coordinate system to the (x,y)-
system, we obtain

∆x= |x0 cos θ−y0 sin θ|=
R2 sin θ

γ2

√
1+γ2

2 ctg2 θ (29)

in accord with Figs. 14 and 15. Hence, we get

Rx = R1 +
R2 sin θ

γ2

√
1 + γ2

2 ctg2 θ. (30)
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Fig. 12. Explanation of how to obtain the expression for the
radius Ry of the relativistic excluded volume, when the second
ellipsoid is translated around the first one in the plane XOY

Fig. 13. Explanation of how to obtain the expression for the
radius Rx of the relativistic excluded volume, when the second
ellipsoid is translated around the first one in the plane XOZ

From Fig. 16, one can see that, in order to obtain the radius
Rz , one should simply replace R1 → R1/γ1 and π/2 − θ → θ

in expression (30) for the radius Rx. Then we find

Rz =
R1

γ1
+

R2 cos θ

γ2

√
1 + γ2

2 tg2 θ. (31)

Finally, substituting Eqs. (23), (30), and (31) in (22), we
obtain

Vexc =
4π

3
(R1 +R2)

(
R1

γ1
+

R2 cos θ

γ2

√
1 + γ2

2 tg2 θ

)
×

×
(
R1 +

R2 sin θ

γ2

√
1 + γ2

2 ctg2 θ

)
. (32)

Evidently, the expression above precisely recovers the excluded
volume of two non-relativistic spheres, i.e. for γ1 = γ2 = 1.
Thus, in contrast to the result of [29], Eq. (32) gives an exact
result for the non-relativistic particles. One can analytically
show that Eq. (32) gives a rather good approximation (with

Fig. 14. Detailed projection of the second ellipsoid translation
around the first one in the plane XOZ. This is the explanation
of how to derive Rx from Fig. 13

Fig. 15. Fragment of Fig. 14, which is necessary to determine
the coordinates of the touching point K in the coordinate sys-
tem of S2

Fig. 16. Projection, which is necessary to derive the radius
Rz of the approximate excluded volume (33). Comparing this
projection with that shown in Fig. 14, we find that it is nec-
essary to replace formally R1 → R1/γ1 and π/2 − θ → θ in
expression (30) to get the expression for Rz from that for Rx
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Fig. 17. Temperature dependence of the exact second virial
coefficient of two pions (curve with symbols) and its approxi-
mation (curve without symbols) given by Eqs. (33)-(35) in the
units of non-relativistic excluded volume Vnon−rel =

32
3
πR3

1 of
two hard spheres of the same radius R1 = R2 = 0.5 fm. The
comparison is made for the pion-pion interaction only, since,
in this case, the effect of Lorentz contraction is strongest

the deviation below 10 % from the exact result) also for other
extreme cases where one particle is non-relativistic and another
particle is ultra-relativistic or when both particles are ultra-
relativistic.

Nevertheless, in order to improve (32) further, we sym-
metrize it with respect to the interchange 1 ↔ 2. Evidently,
such a procedure will not break down the above-discussed prop-
erties of (32). However, a symmetrization of (32) can be done
in many possible ways, but we found numerically that the best
approximation to an exact result is given by the expression

V rel
exc=

π

12
(Rz + R̃z)

[
(Rx +Ry)

2+(R̃x + R̃y)
2
]
, (33)

where the tilded values R̃a(R1, R2, γ1, γ2) = Ra(R2, R1, γ2, γ1)

stand for the interchange 1 ↔ 2 in the expressions for the radii
Rx, Ry , and Rz of this Appendix. Expression (33) leads to the
following approximate value of the second virial coefficient [29]:

Vrel =
1

ρ(T,m1)ρ(T,m2)

∫
d3k1

(2π)3
d3k2

(2π)3
V rel
exc(k1, k2,Θ2)×

× exp

−

√
k21 +m2

1

T

 exp

−

√
k22 +m2

2

T

. (34)

Evidently, it can be analytically integrated over three spherical
angles. In Eq. (34), the thermal density of the particle of mass
m at temperature T is defined as

ρ(T,m) =

∫
d3k1

(2π)3
exp

−

√
k21 +m2

T

. (35)

A comparison between the exact value of the second virial co-
efficient with the Lorentz contraction accounted for both parti-
cles and the second virial coefficient found from approximation

(33) is depicted in Fig. 17. For such a comparison, we choose
the worst possible case, i.e. the largest allowed values of the
hard-core radii, and take the pions, since the relativistic effects
are most important for them. As one can see from Fig. 17,
the approximate expression (33) gives a very good description
of the pion-pion second virial coefficient. In fact, for temper-
atures below 180 MeV, the relative deviation of the obtained
approximation does not exceed 6%. Since the hard-core repul-
sion provides a small correction (less than 10%) to the system
pressure, the resulting error for the pion pressure generated by
approximation (33) is less than 0.5% for all considered tem-
peratures. The correction to the pressure of heavier hadrons is
practically negligible, since the relativistic effects for them are
essentially weaker than those for pions.
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Д.Р. Олiйниченко, К.О. Бугаєв, О.С. Сорiн

ДОСЛIДЖЕННЯ АДРОННИХ
МНОЖИННОСТЕЙ I ВIДНОШЕНЬ ВИХОДIВ
АДРОНIВ У ЗIТКНЕННЯХ ВАЖКИХ IОНIВ

Р е з ю м е

У цiй роботi докладно обмiрковуються деякi слабкi сторони
термальної моделi, яка традицiйно використовується для
опису адронних множинностей, якi було вимiряно в цен-
тральних ядро-ядерних зiткненнях. Зокрема, систематично
дослiджуються роль законiв збереження, величини радiусiв
твердого кора адронiв разом з ефектами лоренцова скороче-
ння їх власних об’ємiв i з поверхневим натягом адронiв. По-
казано, що для адекватного опису адронних множинностей
закони збереження повиннi бути модифiкованi, в той час як
для опису вiдношень виходiв частинок закони збереження
взагалi не потрiбнi. Також проаналiзовано звичайнi крите-
рiї хiмiчного фрiзаута i виявилось, що жоден iз цих крите-
рiїв не є строгим. Запропоновано новий критерiй хiмiчного
фрiзаута сталої ентропiї на частинку i обмiрковано новий
ефект адiабатичного народження адронiв. Також знайдено,
що данi для енергiй зiткнення в системi центра мас вище
за 10 ГеВ приводять до температури занулення коефiцiєн-
та поверхневого натягу адронiв T0 = 147± 7 МеВ. Це дуже
iнтригуючий результат, оскiльки дуже близьку оцiнку для
цiєї температури було отримано нещодавно за допомогою
зовсiм iншого пiдходу. Представлено аргументи на користь
того, що цi два незалежно отриманi результати свiдчать про
те, що значення (три)критичної температури фазової дiа-
грами КХД знаходиться мiж 140 i 154 МеВ. Також в цiй ро-
ботi запропоновано розглядати радiуси твердого кора пiонiв
i каонiв як новi параметри фiтування. Такий пiдхiд впер-
ше дозволив одночасно описати як адроннi множинностi,
так i Пiк дивностi i отримати високоякiсний фiт наявних
експериментальних даних.
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