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MECHANISMS FOR ANOMALOUS DIFFUSION
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Mechanisms for anomalous diffusion of colloidal particles in a nematic environment are theo-
retically investigated. It is shown that thermal fluctuations of the nematic director may couple
to the translational and orientational motions of particles, which leads to anomalous diffu-
sion. Both superdiffusion, when the mean square displacement increases with the time faster
than linearly, and subdiffusion, when this dependence is slower than linear, are possible. For
micrometer-sized particles, the anomalous diffusion effects are expected on millisecond time
scales.
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1. Introduction

Transport phenomena are ubiquitous in nature and
play the essential role in physics, chemistry, and bi-
ology. Microscopically, particles embedded in a fluid,
be they molecules, agglomerates, or even live bacte-
ria, are subject to a random motion as a result of
their random collisions with the surrounding parti-
cles. This thermal motion, first described by Scottish
botanist Robert Brown in 1828 [1], is strongly influ-
enced by the properties of the surrounding medium.
The physical approach to the Brownian motion, de-
veloped in the beginning of the 20th century by Ein-
stein [2], Smoluchowski [3], and Langevin [4], still
forms the basis for our understanding of this stochas-
tic dynamics. The main result first derived by Ein-
stein [2] consists in that the mean square displace-
ment (MSD) ⟨∆r2⟩ of a particle undergoing the Brow-
nian motion in a Newtonian fluid increases linearly
with the time,

⟨∆r2(t)⟩ = 6Dt, (1)
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where D is the diffusion constant. For a spherical
particle with hydrodynamic radius R in a fluid with
viscosity η, the diffusion coefficient is given by the
Stokes–Einstein relation

D = kBT/ζ, (2)

where kB is the Boltzmann constant, T the temper-
ature, and ζ the Stokes friction coefficient, which is
given under no-slip conditions by

ζ = 6πηR. (3)

These results are valid for the Brownian motion un-
der the influence of two forces, the viscous frictional
force linear in the particle velocity, −ζV, and a ran-
dom force F(t) with white-noise-spectrum due to ran-
dom collisions with surrounding particles. The cor-
responding stochastic equation of motion for a Brow-
nian particle with mass m, known as the Langevin
equation [4], reads

m
dV

dt
= −ζV + F(t), (4)
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whose solution for the velocity autocorrelation func-
tion reads (see, e.g., [5])

CV(t) ≡ ⟨V(0) ·V(t)⟩ = ⟨V 2⟩e−t/τ , (5)

where τ = m/ζ is the correlation time, and the aver-
age thermal velocity V follows from the equipartition
theorem, m⟨V 2⟩/2 = 3kBT/2. The MSD along, say,
the x-axis is expressed through the velocity autocor-
relation function as follows [6]:

⟨∆x2(t)⟩ = 2

t∫
0

dt′
t′∫

0

CVx
(t′′) dt′′. (6)

Conversely,

CVx
(t) =

1

2

d2⟨∆x2(t)⟩
dt2

. (7)

Evidently, the normal diffusion regime of Eq. (1),
i.e., ⟨∆x2(t)⟩ = 2Dt, is established on the time scale
t ≫ τ , where CV(t) = 0 (τ is usually a submicrosec-
ond time). If CV(t) ≷ 0 for some reason, then, de-
pending on the sign of CV(t), the MSD will increase
slower (CV(t) < 0, subdiffusion) or faster (CV(t) > 0,
superdiffusion) than linearly with the time. Such dif-
fusion would be anomalous, as it deviates from the
normal behavior expressed by Eq. (1).

If the Brownian motion occurs in a system with ad-
ditional degrees of freedom that exhibit a relatively
slow dynamics (such as the relaxational dynamics
in polymers), then this dynamics may couple to the
Brownian dynamics, introducing a certain correlation
into the particle motion. For instance, the dynamics
of colloidal particles in polymer networks may cou-
ple to the Rouse relaxation dynamics of the poly-
mer and exhibit, as a result, the subdiffusive behavior
⟨∆r2(t)⟩ ∝ tα, where α < 1 [7]. Superdiffusion with
α > 1 was observed in other kinds of polymer sys-
tems, the so-called “living polymers” [8]. Even in wa-
ter, the interaction with hydrodynamic modes leads
to long negative “tails” in Cv(t) [9], so that the Brow-
nian motion is, in fact, (slightly) subdiffusive even
in normal liquids. It is natural to expect deviations
from the normal diffusion of Eq. (1) in soft mat-
ter systems, since soft matter typically possesses slow
degrees of freedom, whose dynamics may couple with
the Brownian dynamics.

Colloidal dispersions in nematic liquid crystals
(NLC) have recently emerged as a novel type of soft

matter [10]. A particle immersed in a nematic envi-
ronment distorts a local ordering of the liquid crys-
tal, which leads to a number of intricate effects even
concerning the static properties of such particles [10].
The nematic phase is anisotropic [11], so that the
translational diffusion is also anisotropic with two in-
dependent diffusion constants D∥ and D⊥ that cor-
respond to the diffusion in parallel and perpendic-
ularly to the nematic director n [12]. Compared to
isotropic liquids, the liquid crystals exhibit a substan-
tial additional dynamics of relatively slow director
fluctuations. It is due to these fluctuations or rather
the concomitant birefringence fluctuations that a bulk
NLS strongly scatters light and, therefore, looks tur-
bid. The characteristic relaxation time depends on
the configuration of the NLC system. In a thin-
film configuration such as that in liquid crystal dis-
plays, the characteristic time (which actually deter-
mines the display reaction time) is of the order of mil-
liseconds. One then expects that, on such millisecond
time scales, the liquid crystal dynamics may influence
the diffusion dynamics of colloidal particles. In this
work, we theoretically analyze possible mechanisms
and consequences of such effects and show that they
may lead to anomalous sub- and superdiffusion.

In the next section, we summarize the (known) re-
sults concerning the nematic relaxation dynamics; in
the subsequent section, the coupling of these dynam-
ics to the Brownian motion is analyzed.

2. Thermal Fluctuations
in a Nematic Medium

In addition to hydrodynamic modes typical of nor-
mal liquids, the nematic environment supports direc-
tor fluctuation modes, whose spectrum shall now be
analyzed. The equations of nematodynamics are sig-
nificantly non-linear [11] and do not allow for gen-
eral analytical solutions. However, the relaxational
dynamics of NLC and their power spectrum can be
analytically obtained under simplifying assumptions.
Let us consider a bulk NLC in the absence of external
fields, and neglect flow and inertial effects. The equa-
tion of motion for the director fluctuations δn reduces
to the torque equation that balances the viscous and
elastic torques [11, 13, 14],

γ1
∂

∂t
δn = K∇2δn, (8)
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where γ1 is the rotational viscosity, and K is the effec-
tive (average) elastic constant. Performing the space-
time Fourier transformation of Eq. (8) yields the dis-
persion relation with a purely imaginary frequency
ω = −iKq2/γ1 (q is the wave vector), which implies
that the fluctuation modes are overdamped and, thus,
purely relaxational with the relaxation time

τq = γ1/Kq2. (9)

The fluctuation dynamics thus occur on all time
scales, depending on the length scales of fluctuations,
as expressed by the wavenumber q. Adding an exter-
nal source (force) to Eq. (8), one solves the equation
for the response (susceptibility) function ([14]), which
leads through the fluctuation-dissipation theorem to
the following fluctuation power spectral density [14]:

In,q(ω) =
kBT

Kq2
τq

1 + (ωτq)
2
. (10)

In what follows, we will be interested in the au-
tocorrelation function of the director fluctuations,
Cn,q(t) = ⟨δn−q(0)δnq(t)⟩. Recalling that the fluc-
tuation power spectrum equals the Fourier transform
of the fluctuation autocorrelation function (Wiener-
Khinchin theorem), the sought autocorrelation func-
tion is the inverse Fourier transform of Eq. (10),

Cn,q(t) ≡ ⟨δn−q(0)δnq(t)⟩ =
2

π

∞∫
0

In,q(ω) cosωt dω =

=
kBT

Kq2
e−t/τq . (11)

It should be noted that, under the implied approxi-
mations, the correlation function of Eq. (11) is un-
physical at short times, whereas a physically consis-
tent, even in time, autocorrelation function may not
have discontinuous derivatives at the origin. A re-
lated inconsistency is already seen in Eq. (9), which
predicts an arbitrarily fast τq as q → ∞. Conversely,
this yields fluctuations at arbitrarily high frequencies,
which is a consequence of the neglect of inertial ef-
fects. Evidently, the description of Eq. (8) is invalid
on the molecular length scales l (e.g., the molecular
length of a classical liquid crystal 5CB is l ∼ 2 nm),
which corresponds to qmax ≃ 2π/l in the reciprocal
space. With the typical values of viscous and elastic
constants, γ1 ∼ 20 mPa and K ∼ 10 pN [11], one then

estimates from Eq. (9) that the short-time limit of
the validity of the above description is tmin ∼ 0.2 ns,
which is clearly beyond the time scales we are inter-
ested in. The correct asymptotic behavior of Cn,q(t)
at t . tmin follows from the boundedness of its power
spectrum in frequency. This requires the first initial
derivative of Cn,q(t) be zero, and the second deriva-
tive be finite and negative. This has implications for
the director angular velocity correlation function, dis-
cussed below.

By symmetry, there are two uncoupled fluctua-
tion modes with orthogonal polarizations and similar
spectra of Eq. (10) [14]. In the first mode, δn1 is par-
allel to the (n,q) plane. In the second mode, δn2 is
orthogonal to that plane. Significantly, these modes
involve different types of deformations and, thus, cou-
ple differently to the diffusion dynamics we are in-
terested in. Specifically, mode 1 involves bend and
splay deformations, whereas mode 2 involves bend
and twist ones. (The deformations are classified as
follows: ∇n ̸= 0 for splay, ∇ × n ⊥ n for bend, and
∇ × n ∥ n for twist deformations.) Because of the
different deformations involved, the effective elastic
constant K in Eqs. (9), (10), and (11) will be dif-
ferent for the two modes, so their time scales will be
somewhat different as well.

3. Coupling of Nematic Fluctuations
and Brownian Dynamics

A particle embedded in NLC distorts the local direc-
tor order, by creating a topological defect. In the
case of a spherical particle with homeotropic bound-
ary condition (i.e., the director at the particle surface
is orthogonal to the surface), two commonly encoun-
tered director configurations around the particle are
of the dipole and quadrupole symmetries, respectively
[15]. We will mostly concentrate the attention on
dipolar inclusions that behave themselves as elastic
dipoles with the dipole moment P, which is oriented
in parallel to the (undistorted) local director n, has
the magnitude P = aR2 (R is the particle radius,
a = 2.04 [15]), and therefore interacts with inhomo-
geneities of the director field that arise due to ther-
mal fluctuations. The effect is two-fold: the particle
influences the local director field and its dynamics,
and vice versa. To solve the problem mathematically,
one would have to solve the coupled equations of mo-
tion of a particle (Newton’s equation) and nematic
(Ericksen–Leslie’s equations) dynamics with the ap-
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propriate boundary conditions at the particle and cell
surfaces. Here, we do not attempt to rigorously solve
this formidable problem, but rather analyze it under
simplifying conditions. First, we neglect the effect
of the particle dynamics on the nematic. Similarly,
we assume that the nematic director dynamics at the
particle is the same as that in the far field of a bulk
NLC and is expressed by Eqs. (10) and (11).

The energy of interaction between P and n
reads [15]:

U = −4πKP · n∇ · n = −4πKP ∇ · n, (12)

where the last equality follows from the fact that P
prefers to orient along the local director n, and, there-
fore, P · n = P . If ∇ · n ̸= 0 (splay deformation)
due to fluctuations, then there appears a force on the
particle,

F = −∇U = 4πKP∇(∇·n) = 4πKP ∇(∇·δn), (13)

where it is assumed that the director distortions are
fluctuations δn in an otherwise uniform director field,
so that ∇ · n = ∇ · δn. Under the action of this
force and neglecting inertial effects, the particle will
start to move with a velocity v, so that the viscous
force balances the force F from director fluctuations,
F = ζv. Thus,

v =
4πKP

ζ
∇(∇ · δn). (14)

Fourier-transforming Eq. (14) into the reciprocal
space, director fluctuation component δnq with wave
vector q results in the particle velocity vq given by
the following relation:

vq =
4πKP

ζ
q(q · δnq). (15)

The particle velocity autocorrelation function is then

Cv,q(t) = ⟨v−q(0) · vq(t)⟩ =

=

(
4πKP

ζ

)2

q2⟨q · δn−q(0)q · δnq(t)⟩. (16)

Note that the splay deformations leading to the ef-
fects described above exist only in the 1st fluctua-
tion mode (cf. the previous section), for which δn is
in the (n,q) plane and perpendicular to n, so that

q ·δn = q δn sin θ, where θ is the angle between q and
n. Equation (16) can thus be re-written as

Cv,q(t) =

(
4πKP

ζ

)2

q4 sin2 θ ⟨δn−q(0) δnq(t)⟩ =

= Aq2 sin2 θ e−t/τq , (17)

where we substituted the director fluctuation correla-
tion function Cn,q(t) from Eq. (11) and absorbed all
the constant pre-factors into A = (4πP/ζ)2KkBT .

Equation (17) describes the contribution of ther-
mal director fluctuations with wavevector q to the
particle velocity autocorrelation function. To obtain
the full velocity correlation function, Eq. (17) has to
be integrated over q. (Note that fluctuations with
different q are uncorrelated.) Integration has to only
involve fluctuations occurring on length scales large
as compared with the particle size d = 2R, which
corresponds to wavenumbers smaller than qd = 2π/d.
Thus,

Cv(t) = A

∫
q<qd

q2 sin2 θ e−t/τq dq. (18)

Evidently, the correlation function Cv(t) is positive
and thus corresponds to the superdiffusive behavior.
On which time scales are such anomalous diffusion
effects expected? In other words, what is the cor-
relation time of the correlation function (18)? The
correlation time of a normalized correlation function
is, by definition, its time integral. For the correlation
function above, it is easy to obtain

τcorr = C−1
v (0)

∞∫
0

Cv(t) dt =
5

3

γ1
Kq2d

. (19)

With the typical values of viscous and elastic con-
stants, γ1 ∼ 20 mPa and K ∼ 10 pN [11], and for a
5-µm particle, τcorr ∼ 2 ms. Thus, the superdiffusive
behavior of micron-sized particles due to the coupling
to the director fluctuation dynamics is expected to
occur on millisecond time scales.

The coupling mechanism between director fluctu-
ations and Brownian dynamics, discussed above, is
only functional for the fluctuations that involve splay
deformations; in particular, such deformations only
occur in the 1st (of the two) fluctuation mode (cf.
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the previous section). Can the fluctuations that in-
volve other types of deformations affect Brownian
dynamics? Bend and twist fluctuations are basi-
cally director rotations. So, by symmetry, they can-
not directly couple to the particle translation. How-
ever, they can obviously couple to the particle ro-
tation, influencing thereby the rotational Brownian
motion. Microscopically, a rotating director field ex-
erts a torque on the particle, which is proportional
to the director change rate ṅ. In response, the parti-
cle acquires an angular velocity proportional to the
applied torque, so that it is balanced by the vis-
cous friction torque. As a result, the particle angu-
lar velocity correlation function will be proportional
to the director angular velocity correlation function
Cṅ(t) = ⟨ṅ(0)ṅ(t)⟩.

In the case of anisotropic diffusion, the transla-
tional and rotational motions of a diffuser are cou-
pled (Ref. [5], p. 149; [16]). Another possible mech-
anism of rotation-translation coupling is specific to
NLC and related to the nonlinear Stokes drag and
its coupling to rotations [17, 18]. One more mecha-
nism of rotational-translational coupling appears in
a vicinity of boundaries, such as walls of the con-
taining cell, through hydrodynamic interactions with
the walls. Overall, we thus expect that the rota-
tional Brownian dynamics, insofar it is influenced by
the nematic fluctuations, is reflected in the trans-
lational Brownian motion. Specifically, the parti-
cle velocity v acquires a contribution proportional to
the director angular velocity |ṅ(t)|, so that the par-
ticle velocity autocorrelation function becomes pro-
portional to the director angular velocity correlation
function,

Cv,q(t) = c ⟨ṅ−q(0)ṅq(t)⟩, (20)

where c is a coupling constant. Following the same
reasoning as that prior to Eq. (18), the full correla-
tion function is

Cv(t) = c

∫
q<qd

⟨ṅ−q(0)ṅq(t)⟩ dq. (21)

Recalling the well-known theorem of statistical
physics, which states that, for any mechanical prop-
erty X that is a function on the phase space of a clas-
sical many-particle system, there holds ⟨Ẋ(0)Ẋ(t)⟩ =
= −d2/dt2 ⟨X(0)X(t)⟩ [19], it follows that the di-

rector angular velocity correlation function is ex-
pressed through the correlation function of Eq. (11)
as Cṅ,q(t) = −d2/dt2 Cn,q(t), so that

Cṅ,q(t) = − kBT

Kq2τ2q
e−t/τq . (22)

Clearly, the director angular velocity autocorrelation
function Cṅ,q(t) is negative. This is easy to under-
stand in view of the fact that the director fluctuations
are only small angular excursions from the mean, so
that if the director rotates in a certain direction at a
given instant of time, it has to be rotating back at a
later time, which means a negative angular velocity
autocorrelation. At short times, however, the relation
(22) is not valid, as the initial value of autocorrela-
tion function must be positive. As was discussed in
relation to Eq. (11), the correct asymptotic behavior
of Cn,q(t) is such that its initial second derivative is
negative, so that Cṅ,q(t) is positive at short times, as
it should be.

Substituting Eq. (22) in (21), we obtain

Cv(t) = −B

∫
q<qd

q2e−t/τq dq, (23)

where B = ckBTKγ−2
1 . The correlation function is

negative, so that this mechanism of coupling between
the director fluctuation and the Brownian dynamics
leads to the subdiffusion. Similarly to Eq. (19), the
correlation time of (23) is evaluated as τcorr = 5

3
γ1

Kq2d
,

so that this sort of anomalous Brownian dynamics is
likewise expected on millisecond time scales.

Thus, there are two mechanisms of coupling be-
tween the nematic director and the Brownian dynam-
ics that lead to anomalous diffusion. The first mecha-
nism, discussed here for colloidal inclusions with dipo-
lar symmetry, is a direct coupling through interac-
tions of the elastic dipole with transient gradients of
the director field that appear due to thermal fluctua-
tions. This results in positive velocity autocorrelation
tails and, thus, to the superdiffusive behavior of par-
ticles. The second mechanism is an indirect coupling,
whereby director reorientations couple to particle ro-
tations and further, through a rotation-translation
coupling, to particle translation. This effect results
in negative velocity autocorrelation tails and, there-
fore, to subdiffusion. Both effects occur on similar
time scales. Thus, their interplay, depending on their
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relative strength and characteristic times, may lead to
various intricate scenarios of particle dynamics. De-
pending on material parameters, the time scales of the
sub- and superdiffusive effects may actually be well
separated, as they originate from different, uncoupled
nematic fluctuation modes. In the case of a strong
anisotropy, the relevant elastic constants may be sig-
nificantly different for the two modes, so that their
characteristic time scales will be different as well.

4. Conclusions

In conclusion, the Brownian dynamics in a nematic
environment is theoretically analysed. It is shown
that thermal fluctuations of additional, with respect
to those of an isotropic fluid, degrees of freedom,
namely the nematic director fluctuations, may cou-
ple to particle’s translation and rotation, influenc-
ing thereby the Brownian dynamics. On certain time
scales, this leads to anomalous diffusion effects. Both
superdiffusion (when the mean square displacement
increases with the time faster than linearly) and sub-
diffusion (when this dependence is slower than lin-
ear) are possible. For micrometer-sized particles, the
anomalous diffusion effects are expected on millisec-
ond time scales.
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О.М. Бродин

МЕХАНIЗМИ АНОМАЛЬНОЇ ДИФУЗIЇ
В НЕМАТИЧНОМУ СЕРЕДОВИЩI

Р е з ю м е

Теоретично дослiджено механiзми аномальної дифузiї ко-
лоїдних частинок у нематичному середовищi. Показано,
що тепловi флуктуацiї директора рiдкого кристала можуть
зв’язуватись з поступальним та обертальним рухом части-
нок, приводячи до аномальної дифузiї. Можлива як супер-
дифузiя, коли середньоквадратичне змiщення зростає з ча-
сом швидше, нiж лiнiйно, так i субдифузiя, коли ця зале-
жнiсть повiльнiша вiд лiнiйної. Для мiкронних частинок ре-
жим аномальної дифузiї передбачається на мiлiсекундних
часових масштабах.
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