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The one-dimensional quantum Ising model (1D QIM) simply shows quantum phase transi-
tions (QPTs) at the nearest neighbor interactions in a constant magnetic field. Many methods
have been heretofore devised to accurately solve 1D QIM. Here, by employing the continu-
ous unitary transformation as a new analytical method for solving many-particle systems, 1D
QIM is first solved in the case of a constant transverse magnetic field and a regular variable
(periodic) transverse magnetic field. As expected, the critical exponents obtained from the
accurate solution to these two models are the same as continuous unitary transformation’s re-
sults. Moreover, through the Padé approximation and the high-temperature series expansion,
we study the susceptibility of an Ising zero-field system to the antiferromagnetic interaction on
a kagome lattice. In this model, by assigning various values to the antiferromagnetic interac-
tion constant, the phase transition appears for 𝐽AF/𝐽F > −0.5. According to the universality
theory, such systems’ critical exponent is well consistent with that in the Ising model.
K e yw o r d s: quantum Ising model (1D QIM), quantum phase transitions, Padé approxima-
tion, antiferromagnetic interaction.

1. Introduction

The QIM with the nearest neighbor interaction in the
constant transverse magnetic field −𝐽𝑔𝜎𝑥

𝑛 is defined
through [1]:

𝐻 = −𝐽
∑︁
𝑛

(︀
𝑔𝜎𝑥

𝑛 + 𝜎𝑧
𝑛𝜎

𝑧
𝑛+1

)︀
, (1)

where 𝐽 > 0 is the coupling constant of ferromag-
netic interaction, 𝑔 > 0 is a dimensionless constant
adjustable for creating a QPT in this model, and 𝜎𝑥

𝑛

and 𝜎𝑧
𝑛 are Pauli’s matrices satisfying the commuta-

tive relation[︀
𝜎𝛼
𝑛 , 𝜎

𝛽
𝑚

]︀
= 2𝑖𝛿𝑛𝑚𝜀𝛼𝛽𝛾𝜎

𝛾
𝑛, (2)
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where {𝛼, 𝛽, 𝛾} = {𝑥, 𝑦, 𝑧}, 𝛿𝑛𝑚 is the Kronecker
delta function, 𝜀𝛼𝛽𝛾 is the Levi–Civita exponent, and
the indices 𝑚 and 𝑛 denote sites. In this Hamilto-
nian, the constant magnetic field −𝐽𝑔𝜎𝑥

𝑛 affects spin
states along the 𝑧-axis and perturbs a spin regularity
along this direction through inversing spins

𝜎𝑥 |↑⟩ = |↓⟩ , 𝜎𝑥 |↓⟩ = |↑⟩ . (3)

The second term in (1) represents the ferromagnetic
interaction between two neighboring spins. This term
causes a magnetic order in the system. Therefore,
the competition between the ferromagnetic coupling
constants 𝐽 and the magnetic field −𝐽𝑔𝜎𝑥

𝑛 determines
this system’s phase.

In the limit 𝑔 ≫ 1, the first term in (1) is dom-
inant, and the system’s ground state is almost the
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paramagnetic state, in which spins are oriented along
the directions +𝑥 and −𝑥:

|𝜓𝑔𝑠⟩ = |→⟩ |→⟩ . . . |→⟩ |→⟩ , (4)

|𝜓𝑔𝑠⟩ = |←⟩ |←⟩ . . . |←⟩ |←⟩ , (5)

where it is expected that

|→⟩ = 1√
2
(|↑⟩+ |↓⟩) , (6)

|←⟩ = 1√
2
(|↑⟩ − |↓⟩) . (7)

In the limit 𝑔 ≪ 1, the first term in (1) is negligi-
ble in comparison with the second one such that the
QIM Hamiltonian is reduced to 𝐻 ≈ −𝐽

∑︀
𝑛 𝜎

𝑧
𝑛𝜎

𝑧
𝑛+1.

In this limit, the system’s ground state is almost fer-
romagnetic in which all the spins are along +𝑧 and
−𝑧:

|𝜓𝑔𝑠⟩ =
∏︁
𝑛

|↑⟩𝑛, (8)

|𝜓𝑔𝑠⟩ =
∏︁
𝑛

|↓⟩𝑛. (9)

It is evident that the system has a double degen-
eracy selecting only one of the above states as the
ground state in the thermodynamic limit (symmetry
spontaneous breaking). Accordingly, when the pa-
rameter 𝑔 is activated and increased from zero to the
values much larger than 1, a quantum phase tran-
sition occurs from ferromagnetic phase to paramag-
netic phase at the critical point 𝑔 = 𝑔𝑐.

The another point that the 1D QIMs in −𝐽𝑔𝜎𝑥
𝑛 and

(−1)𝑛𝐽𝑔𝜎𝑥
𝑛 are simply converted to each other by a

180∘ rotation for even and odd spins.
In this paper, this model in −𝐽𝑔𝜎𝑥

𝑛 and (−1)𝑛𝐽𝑔𝜎𝑥
𝑛

is precisely solved employing continuous unitary
transformations (CUTs) [2–6], and its energy spec-
trum, quantum critical point 𝑔𝑐, and critical exponent
𝑧𝜈 are obtained [14–20]. Since these two models are
converted to each other under a 180∘ rotation, it is
expected that we obtain the same critical exponent by
accurately solving these two models [9–13]. The Ising
model is the simplest and most popular spin system
of statistical mechanics. This model can appropri-
ately describe various phenomena such as magnetic
matters, gas-liquid coexistence, and bimetallic alloys.
This model is used to study a system’s phase tran-
sitions and was first proposed by Lenz and Ising in

1925 as a ferromagnetic model [33–37]. Ising showed
in his PhD thesis that this model does not indicate
any phase transition in one dimension [33, 38]. By
the first calculations of zero-field free energy in 1944
and the calculation of simultaneous magnetization in
1952, this model’s second-order phase transition was
proved in two dimensions [37]. The 1D and 2D solu-
tions (in the absence of external fields) to the Ising
model can be used to determine the critical expo-
nents of the systems belonging to these two univer-
sality classes. Based on the universality theory, the
2D Ising model critical exponents with first-neighbor
interactions are the same as those obtained from ex-
actly solving the square-lattice Ising model [39–42].

2. Continuous Unitary Transformations

In 1994, the continuous unitary transformation (or
flow equations) method was devised and proposed in
the fundamental particle physics by Glazek and Wil-
son [2] and separately in condensed matter physics by
Wegner [3]. The main idea of this method is to use an
infinite number of ultrafine unitary transformations
that rescale the Hamiltonian’s parameters, and the
system’s Hilbert-space dimension remains completely
unchanged [21–23].

In this method, an infinite number of ultrafine uni-
tary transformations are required to diagonalize the
Hamiltonian matrix, and a generator is required to
generate unitary matrices. If 𝑈(𝐵) is the unitary
transformation matrix and 𝐵 is the flow parameter,
the transformed Hamiltonian of the system is ob-
tained as

𝐻 (𝐵) = 𝑈 (𝐵)𝐻𝑈(𝐵)
†
. (10)

By differentiating (10) with respect to 𝐵, the
Hamiltonian evolution of 𝐻(𝐵) can be rewritten as
the differential equation given below (flow equation)
[4, 5]:

𝑑𝐻 (𝐵)

𝑑𝐵
= [𝜂 (𝐵) , 𝐻 (𝐵)] , (11)

where

𝜂 (𝐵) =
𝑑𝑈 (𝐵)

𝑑𝐵
𝑈(𝐵)

†
= −𝜂(𝐵)

†
, (12)

𝜂(𝐵) is anti-Hermitian, and represents the unitary
matrix generator. A selection for 𝜂(𝐵) is defined as
𝜂(𝐵) = [𝐻𝑑, 𝐻𝑛𝑑] [4,5], where 𝐻𝑑 and 𝐻𝑛𝑑 denote the
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diagonal and non-diagonal parts of the Hamiltonian,
respectively. In this method, because the aim is to
diagonalize the Hamiltonian under an infinite number
of unitary transformations, the non-diagonal part of
the Hamiltonian tends to zero as 𝐵 → ∞, and the
rescaled diagonal part of the Hamiltonian will only
remain [24–32].

Another point is that, to obtain the expected values
of operators by this method, it is enough to calculate
the operators’ flow:

𝑑𝑂 (𝐵)

𝑑𝐵
= [𝜂 (𝐵) , 𝑂 (𝐵)] . (13)

Then, using the final eigenstates of the flow Hamil-
tonian 𝐻(𝐵 =∞), the expected values of the opera-
tors are obtained [4] as

⟨𝑂 (𝐵 = 0)⟩𝐵=0
𝑔𝑠 = ⟨Ψ𝑔𝑠 |𝑂 (𝐵 = 0)|Ψ𝑔𝑠⟩ =

=
⟨︀
Ψ𝑔𝑠

⃒⃒
𝑈†(∞)𝑈(∞)𝑂 (𝐵=0)𝑈†(∞)𝑈(∞)

⃒⃒
Ψ𝑔𝑠

⟩︀
=

=
⟨︀
Ψ𝑔𝑠

⃒⃒
𝑈† (∞)𝑂 (𝐵 = 0)𝑈 (∞)

⃒⃒
Ψ𝑔𝑠

⟩︀
=

= ⟨𝑂 (𝐵 = 0)⟩𝐵=∞
𝑔𝑠 . (14)

In comparison with other methods such as the
renormalization group and perturbation theory, the
Hilbert-space dimension remains completely in this
method (contrary to the renormalization group), and
this method can be used for strongly/weakly cor-
related systems (in contrast with the perturbation
method, in which there must be a weak coupling pa-
rameter in the system’s Hamiltonian). This method
is also able to investigate the time evolution of a sys-
tem [7, 33–42].

3. Accurate Solution of QIM
in −𝐽𝑔𝜎𝑥

𝑛 Using CUTs

The QIM Hamiltonian in the constant transverse
magnetic field −𝐽𝑔𝜎𝑥

𝑛 is given by

𝐻 = −𝐽
∑︁
𝑛

(︀
𝑔𝜎𝑥

𝑛 + 𝜎𝑧
𝑛𝜎

𝑧
𝑛+1

)︀
. (15)

To accurately solve this model through CUTs, first
by using Wigner–Jordan transformations [8]

𝜎𝑥
𝑛 = 1− 2𝑐†𝑛𝑐𝑛. (16)

𝜎𝑧
𝑛 = −

∏︁
𝑚<𝑛

(︀
1− 2𝑐†𝑚𝑐𝑚

)︀ (︀
𝑐†𝑛 + 𝑐𝑛

)︀
(17)

and the Fourier transformation

𝑐𝑘 =
1√
𝑁

∑︁
𝑛

𝑒𝑖𝑘𝑛𝑎𝑐𝑛, (18)

Eq. (15) is transformed into the spinless fermion
form:

𝐻 = 𝐻𝑑 +𝐻𝑛𝑑, (19)

𝐻𝑑 = 𝐽
∑︁
𝑘

{︁
2 [𝑔 − cos (𝑘𝑎)] 𝑐†𝑘𝑐𝑘 − 𝑔

}︁
, (20)

𝐻𝑛𝑑 = 𝑖𝐽
∑︁
𝑘

sin (𝑘𝑎)
(︁
𝑐†−𝑘𝑐

†
𝑘 − 𝑐−𝑘𝑐𝑘

)︁
. (21)

In CUTs, since, for each component of the Hamilto-
nian matrix 𝐻, there is a flow, in which non-diagonal
components tend to zero at the large enough values of
𝐵, all the coupling constants in (19) must be consid-
ered dependent on the momentum index. Doing so, in
fact, there will be a particular series of coupling con-
stants for each component of the Hamiltonian matrix.
Because the flow varies in different components of the
Hamiltonian matrix and depends on their energy, the
flowing Hamiltonian is defined as

𝐻 (𝐵) = 𝐻𝑑 (𝐵) +𝐻𝑛𝑑 (𝐵), (22)

𝐻𝑑(𝐵)=
∑︁
𝑘

𝐽𝑘(𝐵)
{︁
2 [𝑔𝑘 (𝐵)−cos (𝑘𝑎)] 𝑐†𝑘𝑐𝑘−𝑔𝑘 (𝐵)

}︁
,

(23)

𝐻𝑛𝑑 (𝐵)= 𝑖
∑︁
𝑘

𝐽𝑘 (𝐵) sin (𝑘𝑎)
(︁
𝑐†−𝑘𝑐

†
𝑘 − 𝑐−𝑘𝑐𝑘

)︁
. (24)

Employing the commutator of diagonal and non-
diagonal Hamiltonian parts, the generator of CUTs
is obtained as (we neglect to write the dependence of
constants and parameters on 𝐵, for simplification):

𝜂 (𝐵) = 2𝑖
∑︁
𝑘

𝐽𝑘 (𝐽𝑘 + 𝐽−𝑘)×

× (𝑔𝑘 − cos (𝑘𝑎))
(︁
𝑐†−𝑘𝑐

†
𝑘 − 𝑐−𝑘𝑐𝑘

)︁
. (25)

Using this generator, the differential equations ex-
hibiting the rescale of Hamiltonian’s constants can be
calculated as

[𝜂𝑘, 𝐻𝑑] = −4𝑖
∑︁
𝑘

{︁
𝐽𝑘 (𝐽𝑘 + 𝐽−𝑘)×
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Fig. 1. Single-particle energies vs 𝑘 for 𝑔 = 0.5, 1, 1.5, 2.0,
2.5, and 3.0. Minimum energy gap at 𝑔 = 1 and 𝑘 = 0

× (𝑔𝑘 − cos (𝑘𝑎)) sin (𝑘𝑎) {𝐽−𝑘 (𝑔−𝑘 − cos (𝑘𝑎))+

+𝐽𝑘 (𝑔𝑘 − cos (𝑘𝑎))}
(︁
𝑐†−𝑘𝑐

†
𝑘 + 𝑐−𝑘𝑐𝑘

)︁}︁
, (26)

[𝜂𝑘, 𝐻𝑛𝑑] = −4𝑖
∑︁
𝑘

{︁
𝐽𝑘 (𝐽𝑘 + 𝐽−𝑘)×

× (𝑔𝑘 − cos (𝑘𝑎)) sin (𝑘𝑎) {𝐽−𝑘 sin (−𝑘𝑎)+

+ 𝐽𝑘 sin (𝑘𝑎)}
(︁
𝑐†𝑘𝑐𝑘 + 𝑐†−𝑘𝑐−𝑘 − 1

)︁}︁
. (27)

Now, considering commutators (26) and (27), the
flow equations can be obtained by equalizing the op-
erators’ coefficients on both sides of (10):

𝑑

𝑑𝐵
{𝐽𝑘 (𝑔𝑘 − cos (𝑘𝑎))} = 2(𝐽𝑘 + 𝐽−𝑘)

2
sin (𝑘𝑎)

2×

×{𝐽−𝑘 (𝑔−𝑘 − cos (𝑘𝑎)) + 𝐽𝑘 (𝑔𝑘 − cos (𝑘𝑎))}, (28)

𝑑𝐽𝑘
𝑑𝐵

= −4𝐽𝑘 (𝐽𝑘 + 𝐽−𝑘)×

×{𝐽−𝑘 (𝑔−𝑘 − cos (𝑘𝑎)) + 𝐽𝑘 (𝑔𝑘 − cos (𝑘𝑎))}. (29)

Regarding (28) and (29), if 𝑘 → −𝑘, then 𝐽−𝑘 = 𝐽𝑘
and 𝑔−𝑘 = 𝑔𝑘. This result simplifies the differen-
tial equations. Equations (28) and (29) actually in-
dicate the rescale of the parameters 𝐽 and 𝑔 in the

1D quantum Ising Hamiltonian. By simultaneously
solving them and applying 𝐽𝑘(𝐵 = 0) = 𝐽 and
𝑔𝑘(𝐵 = 0) = 𝑔, we have

lim
𝐵→0
{𝐽𝑘 (𝑔𝑘 − cos (𝑘𝑎))}=±2𝐽

√︀
𝑔2 − 2𝑔 cos (𝑘𝑎) + 1,

(30)

lim
𝐵→∞

𝐽𝑘 (𝐵)→ 0. (31)

As is evident in (30) and (31), the coupling con-
stant 𝐽 approaches zero at the large enough values of
𝐵; consequently, the non-diagonal part of the Hamil-
tonian disappears. This means that the coefficient
2𝐽(𝑔 − cos(𝑘𝑎)) is inserted and rescales the Hamilto-
nian’s diagonal term to a new value. Using (30) and
(31), the flowing Hamiltonian (diagonalized Hamilto-
nian) is obtained as

�̃� =
∑︁
𝑘

𝜀𝑘

(︂
𝑐†𝑘𝑐𝑘 −

1

2

)︂
, (32)

where �̃� = 𝐻(𝐵 =∞), and

𝜀𝑘 = ±2𝐽0
√︁
𝑔20 − 2𝑔0 cos (𝑘𝑎) + 1 (33)

represents single-particle energies (SPEs) that were
calculated by a different method in [1] (Fig. 1). The
ground-state total energy and the first-excited energy
are calculated to investigate QPT and to obtain the
phase-transition critical point in this model. If we
assume that there are only positive (negative) single-
particle energies, there will not be any fermion (there
will be full of fermions) in the ground eigenstate.
Therefore, considering the flowing Hamiltonian (32),
the ground-state energy is equal to

𝐸𝑔𝑠 =
−1
2

∑︁
𝑘

|𝜀𝑘|. (34)

On the other hand, the excited states are created
by occupying single-particle states (to empty single-
particle states). Accordingly, the first excited state
is created when a particle with the lowest single-
particle energy occupies (empties) one of the single-
particle states in the system’s ground state. So the
first-excited energy is obtained from: 𝐸1ex = 𝐸𝑔𝑠+
+2𝐽 |𝑔 − 1|.
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The diagrams of the ground-state and first-excited
energies are plotted in Fig. 2. As observed, the en-
ergy gap is zero at 𝑔𝑐 = 1, and the first-excited energy
is tangent to the ground-state energy. Since there
is a singularity in the higher-order derivatives of the
ground-state energy with respect to the coupling con-
stant 𝑔 (Fig. 3), the phase transition in this system
is a second-order QPT from ferromagnetic phase to
paramagnetic phase. Considering (33) and the fact
that the energy gap exponentially tends to zero near
the critical point [1], we obtain

Δ ∝ 𝐽 |𝑔 − 𝑔𝑐|𝑣𝑧. (35)

Therefore, the critical exponent 𝑣𝑧 equals zero for
the QIM.

4. Calculation of ⟨𝜎𝑥
𝑛⟩, ⟨𝜎𝑧

𝑛⟩, and
𝐶𝑥(𝑗) = ⟨𝜎𝑥

𝑛𝜎
𝑥
𝑛+𝑗⟩ − ⟨𝜎𝑥

𝑛⟩
2

First, the flow operators 𝑐𝑛 and 𝑐†𝑛 must be obtained
to calculate the expected values ⟨𝜎𝑥

𝑛⟩ and ⟨𝜎𝑧
𝑛⟩ and the

correlation function 𝐶𝑥 (𝑗). Based on (13), the flow
equations for the creation and annihilation operators
𝑐𝑘 and 𝑐†𝑘 are calculated as

𝑑𝑐𝑘 (𝐵)

𝑑𝐵
= 8𝑖𝐽2 (𝑔 − cos (𝑘𝑎)) sin (𝑘𝑎) 𝑐†−𝑘 (𝐵), (36)

𝑑𝑐†𝑘 (𝐵)

𝑑𝐵
=−8𝑖𝐽2 (𝑔 − cos (𝑘𝑎)) sin (𝑘𝑎) 𝑐−𝑘 (𝐵). (37)

By simultaneously solving (37) and (38), we have

𝑐𝑘 (𝐵) =
1

2

(︁
𝑐𝑘 (0) + 𝑐†−𝑘 (0)

)︁
𝑒𝑖Γ𝑘(𝐵)+

+
1

2

(︁
𝑐𝑘 (0)− 𝑐†−𝑘 (0)

)︁
𝑒−𝑖Γ𝑘(𝐵), (38)

𝑐†𝑘 (𝐵) =
1

2

(︁
𝑐−𝑘 (0) + 𝑐†𝑘 (0)

)︁
𝑒−𝑖Γ𝑘(𝐵)+

+
1

2

(︁
𝑐†𝑘 (0)− 𝑐−𝑘 (0)

)︁
𝑒𝑖Γ𝑘(𝐵), (39)

where Γ𝑘 (𝐵) =
∫︀ 𝐵

0
8𝐽2 (𝑔 − cos (𝑘𝑎)) sin (𝑘𝑎) 𝑑𝐵′.

By considering (16), (17), (18), and the final Hamil-
tonian (32) as |Ψ𝑔𝑠⟩ = |0⟩𝐵=∞

𝑔𝑠 , the expected values
can be obtained as

⟨𝜎𝑥
𝑛⟩

𝐵=0
𝑔𝑠 =

⟨︀
1− 2𝑐†𝑛 (∞) 𝑐𝑛 (∞)

⟩︀𝐵=∞
𝑔𝑠

=

0 0.5 1 1.5 2

-2

-1

0

1

E

g

Egs

1 ex
E

Fig. 2. Energy vs 𝑔 (zero energy gap and second-order phase
transition at 𝑔𝑐 = 1)
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Fig. 3. Second derivative of the ground-state energy with
respect to 𝑔

= lim
𝐵,𝑁→∞

{︃
1− 2

𝑛

∑︁
𝑘

sin (Γ𝑘 (𝐵))
2

}︃
=

= 1− 𝑎

𝜋

𝜋
𝑎∫︁

−𝜋
𝑎

𝑑𝑘 sin

{︂
−𝑖
4

ln

(︂
𝑔𝑒𝑖𝑘𝑎 − 1

𝑔𝑒𝑖𝑘𝑎 − 𝑒2𝑖𝑘𝑎

)︂
2

}︂
=

=

{︃
0, 0 ≤ 𝑔 < 1,

1− 1

𝑔2
, 𝑔 ≥ 1. (40)

As can be seen, ⟨𝜎𝑥
𝑛⟩ respectively tends to one

and zero for 𝑔 ≫ 1 (in which most spins are ori-
ented along the transverse field) and 𝑔 ≪ 1 (Fig. 4).
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Similarly for ⟨𝜎𝑧
𝑛⟩:

⟨𝜎𝑧
𝑛⟩

𝐵=0
𝑔𝑠 =

⟨
−
∏︁
𝑚

(︀
1− 2𝑐†𝑚 (∞) 𝑐𝑚 (∞)

)︀
×

×
(︀
𝑐†𝑛 (∞) + 𝑐𝑛 (∞)

)︀⟩𝐵=∞

𝑔𝑠

= 0. (41)

Because an odd number of 𝑐𝑘 and 𝑐†𝑘 are multiplied
by each other, the expected value ⟨𝜎𝑧

𝑛⟩ becomes zero.
This result is unexpected and far from our physical
intuition, since the system’s total magnetization is
expected to be 1 or 0, at least at 𝑔 = 0. The reason
for this result is that since all the system’s Hilbert

space remains in the CUTs method, there are various
states of the system for down and up spins. Hence,
⟨𝜎𝑧

𝑛⟩ will be obtained in the zero space. Through a
similar process for 𝐶𝑥(𝑗), we will have

𝐶𝑥 (𝑗) =

⎧⎪⎨⎪⎩ 𝑎

2𝜋

𝜋
𝑎∫︁

−𝜋
𝑎

sin
[︁
2𝐹𝑘

]︁
sin (𝑗𝑘𝑎) 𝑑𝑘

⎫⎪⎬⎪⎭
2

+

+

⎧⎪⎨⎪⎩
(︁ 𝑎

2𝜋

)︁2 𝜋
𝑎∫︁

−𝜋
𝑎

(︁
cos

[︁
2𝐹𝑘1

]︁)︁2
cos (𝑗𝑘1𝑎) 𝑑𝑘1×

×

𝜋
𝑎∫︁

−𝜋
𝑎

(︁
sin

[︁
2𝐹𝑘2

]︁)︁2
cos (𝑗𝑘2𝑎) 𝑑𝑘2

⎫⎪⎬⎪⎭, (42)

where

𝐹𝑘= lim
𝐵→∞

⎧⎨⎩
𝐵∫︁
0

Γ𝑘 (𝐵
′) 𝑑𝐵′

⎫⎬⎭=
−𝑖
4

ln

(︂
𝑔 − 𝑒−𝑖𝑘𝑎

𝑔 − 𝑒𝑖𝑘𝑎

)︂
. (43)

Through numerically solving (43), the spin corre-
lation along the 𝑥-axis is achieved as Fig. 5. As is
evident from the diagram, the spin correlation along
𝑥 declines with increasing the distance, and it drops
faster as the magnetic field rises; consequently, the
long-range order in the system vanishes.

5. Accurate Solution of QIM
in (−1)

𝑛
𝐽𝑔𝜎𝑥

𝑛 Using CUTs

We perform a similar procedure to solve the
QIM Hamiltonian in the periodic magnetic field
(−1)𝑛𝐽𝑔𝜎𝑥

𝑛 (Eq. (1)) through CUTs. First, the
Wigner–Jordan and Fourier transformations are used,
and then CUTs are employed in the Fourier space.
But the difference is that each cell contains two atoms
in this state. One atom senses −𝐽𝑔𝜎𝑥

𝑛, and the other
senses 𝐽𝑔𝜎𝑥

𝑛 (Fig. 6). Therefore, each atom’s shift
vector will become 2k instead of k. By applying the
Wigner–Jordan transformation, relation (1) is trans-
formed to the spinless fermion Hamiltonian below:

𝐻 = 2𝐽𝑔
∑︁
𝑛

{︂(︂
𝑐†𝑛𝑐𝑛 −

1

2

)︂
−

(︂
𝑑†𝑛𝑑𝑛 −

1

2

)︂}︂
−

− 𝐽
∑︁
𝑛

(𝑐†𝑛𝑑𝑛 + 𝑑†𝑛𝑐𝑛)− 𝐽
∑︁
𝑛

(𝑑†𝑛𝑐𝑛+1 + 𝑐†𝑛+1𝑑𝑛)−

− 𝐽
∑︁
𝑛

(𝑐𝑛𝑑𝑛+𝑑𝑛𝑐𝑛)−𝐽
∑︁
𝑛

(𝑑†𝑛𝑐
†
𝑛+1+𝑐𝑛+1𝑑𝑛). (44)
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If 𝑎 and 𝑏 represent cell’s fermions, 𝑑†𝑛 and 𝑑𝑛 de-
note the creation and annihilation operators of 𝑎; 𝑐†𝑛
and 𝑐𝑛 are the creation and annihilation operators of
𝑏 in the 𝑛-th cell. Because this system’s shift vec-
tor is 2k, the Fourier transforms of the creation and
annihilation operators are as follows:

𝑐𝑛 =
1

𝑁

∑︁
𝑘

𝑒2𝑖𝑘𝑛𝑎𝑐𝑘, (45)

𝑐†𝑛 =
1

𝑁

∑︁
𝑘

𝑒−2𝑖𝑘𝑛𝑎𝑐†𝑘. (46)

Using these Fourier transforms, (45) is rewritten in
the momentum space as

𝐻 = 𝐽𝑔
∑︁
𝑘

{︂(︂
𝑐†𝑘𝑐𝑘 −

1

2

)︂
−
(︂
𝑑†𝑘𝑑𝑘 −

1

2

)︂
+ h.c.

}︂
−

−
∑︁
𝑘

{︁
𝐽
(︀
1 + 𝑒−2𝑖𝑘𝑎

)︀
𝑐†𝑘𝑑𝑘 + h.c.

}︁
+

+
∑︁
𝑘

{︁
𝐽
(︀
−1 + 𝑒2𝑖𝑘𝑎

)︀
𝑐†−𝑘𝑑𝑘 + h.c.

}︁
. (47)

To obtain the single-particle energies through
CUTs, an appropriate flowing Hamiltonian that con-
tains all the possible square terms under appropriate
initial conditions must be used. Considering the fact
that terms such as 𝑐†−𝑘𝑐

†
𝑘 + 𝑐𝑘𝑐−𝑘 or 𝑑†−𝑘𝑑

†
𝑘 + 𝑑𝑘𝑑−𝑘

are produced during the flow process (calculating
the commutators to obtain flow equations), we in-
sert these terms into the Hamiltonian under the zero
initial condition to consider such terms’ effect on
the rescale of the parameters of (1). Therefore, the
flowing Hamiltonian we employed to solve through
CUTs is

𝐻 (𝐵) = 𝐻0 (𝐵) +𝐻int (𝐵) , (48)

where

𝐻0(𝐵) =
∑︁
𝑘

{︂
𝜀𝑎𝑘(𝐵)

(︂
𝑐†𝑘𝑐𝑘 −

1

2

)︂
+

+ 𝜀𝑏𝑘(𝐵)

(︂
𝑑†𝑘𝑑𝑘 −

1

2

)︂}︂
, (49)

𝐻int (𝐵) =
∑︁
𝑘

{︁
𝐽𝑘 (𝐵) 𝑐†𝑘𝑑𝑘 + 𝐽*

𝑘 (𝐵) 𝑑†𝑘𝑑𝑘

}︁
+

+
∑︁
𝑘

{︁
𝛼𝑘 (𝐵) 𝑐†−𝑘𝑑

†
𝑘 + 𝛼*

𝑘 (𝐵) 𝑑𝑘𝑐−𝑘

}︁
+

+
∑︁
𝑘

{︁
𝛽𝑘 (𝐵) 𝑐†−𝑘𝑐

†
𝑘 + 𝛽*

𝑘 (𝐵) 𝑐𝑘𝑐−𝑘

}︁
+

+
∑︁
𝑘

{︁
𝛾𝑘 (𝐵) 𝑑†−𝑘𝑑

†
𝑘 + 𝛾*𝑘 (𝐵) 𝑑𝑘𝑑−𝑘

}︁
. (50)

To solve the flow equations, the initial conditions
in (50) and (51) are defined as follows:

𝛼𝑘(0)=𝐽(−1+𝑒2𝑖𝑘𝑎), 𝐽𝑘(0)=−𝐽(1+𝑒−2𝑖𝑘𝑎), (51)

𝜀𝑎𝑘(0)=2𝐽𝑔, 𝜀𝑏𝑘(0)=−2𝐽𝑔, 𝛽𝑘(0)=𝛾𝑘(0)=0. (52)

Performing the necessary calculations (see Ap-
pendix), the flow equations that rescale the Hamil-
tonian parameters include

𝑑𝜀𝑎𝑘
𝑑𝐵

= 2|𝐽𝑘|2
(︀
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︀
+

+2|𝛼−𝑘|2
(︀
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︀
+ 2|𝛽𝑘 − 𝛽−𝑘|2

(︀
𝜀𝑎𝑘 + 𝜀𝑎−𝑘

)︀
, (53)

𝑑𝜀𝑏𝑘
𝑑𝐵

= 2|𝐽𝑘|2
(︀
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︀
+

+2|𝛼𝑘|2
(︀
𝜀𝑎−𝑘 + 𝜀𝑏𝑘

)︀
+ 2|𝛾𝑘 − 𝛾−𝑘|2

(︀
𝜀𝑏𝑘 + 𝜀𝑏−𝑘

)︀
, (54)

𝑑𝐽𝑘
𝑑𝐵

= −𝐽𝑘
(︀
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︀2
+

+𝛼*
𝑘 (𝛽𝑘 − 𝛽−𝑘)

(︀
𝜀𝑎𝑘 + 𝜀𝑏𝑘 + 2𝜀𝑎−𝑘

)︀
−

−𝛼−𝑘

(︀
𝛾*𝑘 − 𝛾*−𝑘

)︀ (︀
𝜀𝑎𝑘 + 𝜀𝑏𝑘 + 2𝜀𝑏−𝑘

)︀
, (55)

𝑑𝛼𝑘

𝑑𝐵
= −𝛼𝑘

(︀
𝜀𝑎𝑘 + 𝜀𝑏𝑘

)︀2−
− 𝐽*

𝑘 (𝛽𝑘 − 𝛽−𝑘)
(︀
2𝜀𝑎𝑘 + 𝜀𝑎−𝑘 − 𝜀𝑏𝑘

)︀
−

− 𝐽−𝑘 (𝛾𝑘 − 𝛾−𝑘)
(︀
2𝜀𝑏−𝑘 + 𝜀𝑏𝑘 − 2𝜀𝑎−𝑘

)︀
, (56)

𝑑𝛽𝑘
𝑑𝐵

= −𝛽𝑘
(︀
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︀2−𝐽𝑘𝛼𝑘

(︀
𝜀𝑎−𝑘 − 𝜀𝑎𝑘 + 2𝜀𝑏𝑘

)︀
, (57)

𝑑𝛾𝑘
𝑑𝐵

=−𝛾𝑘
(︀
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︀2−𝐽*
−𝑘𝛼𝑘

(︀
𝜀𝑏𝑘 − 𝜀𝑏−𝑘 + 2𝜀𝑎−𝑘

)︀
. (58)

These differential equations give us the rescale of
the Hamiltonian parameters through CUTs. This
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𝑔 = 0.5, and a 200-site system

model’s accurate energy spectrum is obtained by si-
multaneously numerically solving these coupled dif-
ferential equations using the Runge–Kutta algorithm.
The calculation results: all the non-diagonal part’s
parameters are rescaled to zero, and four values of
single-particle energy are obtained for the atoms 𝑎
and 𝑏 (two values ±𝜀𝑎𝑘(∞) for 𝑎 and two values
±𝜀𝑏𝑘(∞) for 𝑏) (Figs. 7 and 8). Accordingly, the fi-
nal Hamiltonian (diagonalized Hamiltonian) that is
obtained after an infinite number of ultrafine unitary
transformations is as follows:

�̃� =
∑︁
𝑘

{︁
𝜀𝑎𝑘𝑐

†
𝑘𝑐𝑘 + 𝜀𝑏𝑘𝑑

†
𝑘𝑑𝑘 − 𝜀

𝑎
𝑘 − 𝜀𝑏𝑘

}︁
, (59)

where �̃� = 𝐻 (∞), 𝜀𝑎𝑘 = 𝜀𝑎𝑘 (∞), and 𝜀𝑏𝑘 = 𝜀𝑏𝑘 (∞).
Note that, although a differential equation has sev-

eral solutions, it has only one numerical solution.
Hence, if we numerically solve the above equations,
the non-physical solution 𝜀𝑎𝑘(∞) = −𝜀𝑏𝑘(∞) will be

obtained. For this reason, to solve these equations,
we add an extremely slight value 10−10 to 𝜀𝑎𝑘(𝐵 = 0)
or 𝜀𝑏𝑘(𝐵 = 0) (the initial condition for solving differ-
ential equations). This numerical solution’s results
are plotted in Figs. 7, 8, and 9.

As can be observed, the negative energy levels are
completely occupied by the fermions and the posi-
tive energy levels are empty. Therefore, depending
on whether we consider the single-particle energies to
be positive or negative, the system’s ground state is
completely empty or full of fermions, respectively. So
that, a particle should be created or annihilated in the
ground state to obtain the excited states. The energy
required for a particle to move from the lower energy
band to the higher empty energy band depends on the
value of 𝑔 so that it reaches its minimum for 𝑔 = 1

at 𝑘 = 0. Nevertheless, if we assume that 𝜀(𝑎,𝑏)𝑘 ≥ 0,
considering (60), the total energies of the ground and
first excited states will be obtained as follows:

𝐸𝑔𝑠 = −
∑︁
𝑘

(︀
𝜀𝑎𝑘 + 𝜀𝑏𝑘

)︀
, (60)

𝐸1𝑒𝑥 = 𝐸𝑔𝑠 +min
{︀
𝜀𝑎𝑘, 𝜀

𝑏
𝑘

}︀
. (61)

By studying the changes in the diagrams of 𝐸𝑔𝑠

and 𝐸1𝑒𝑥 versus 𝑔 (Fig. 10), we can conclude that
the energy gap is zero at the quantum critical point
(𝑔𝑐 = 1) such that no level cutoff occurs. Moreover, it
can be concluded from the energy-gap changes versus
|𝑔 − 1| that the critical exponent 𝑧𝑣 is equal to one.
This indicates that this model is placed in the univer-
sality class of QIM. The investigation of the changes
in the second-order derivative of the ground-state en-
ergy with respect to 𝑔 shows that there is a singular-
ity in this order of differentiation. So it is concluded
that the phase transition at 𝑔𝑐 = 1 is a second-order
quantum phase transition from ferromagnetic phase
to paramagnetic one.

6. Results and Discussion

This model is determined through a set of classical
double-valued variables, 𝑆𝑖 = ±1, so that 𝑆𝑖 rep-
resents the spins placed on the lattice sites. This
model’s Hamiltonian is defined as

𝐻 = −𝐽
∑︁
⟨𝑖𝑗⟩

𝑆𝑖𝑆𝑗 − ℎ
∑︁
𝑖

𝑆𝑖, (62)

where 𝐽 denotes the interaction constant, and ℎ is the
external magnetic field. The parameters 𝐽 and ℎ are

418 ISSN 2071-0186. Ukr. J. Phys. 2013. Vol. 58, No. 5



A New Method for Investigating and Accurately Solving

constants with energy dimension. In the first term,
⟨𝑖𝑗⟩ represents the interaction of the nearest-neighbor
spins. Here, if 𝐽 > 0, the spin interaction will be
ferromagnetic, otherwise, 𝐽 < 0, antiferromagnetic.

Herein, the calculation method is divided into the
high-temperature series expansion and the Padé ap-
proximation. First, the zero-field magnetic suscepti-
bility is calculated through the high-temperature se-
ries expansion, and then the obtained series is an-
alyzed in the Padé approximation. The series ex-
pansion method is a highly accurate approximation
method used to calculate varios lattices’ critical tem-
peratures and exponents. The series expansion the-
ory is applicable as a low/high-temperature approx-
imation. To understand system’s thermodynamic
properties, its partition function should be calculated.
Therefore, first using (63), the Ising-model partition
function is obtained as

𝑍(𝐾,ℎ) =
∑︁
{𝑆}

𝑒−𝛽𝐻 =

=
∑︁
{𝑆}

exp

⎛⎝𝐾∑︁
⟨𝑖𝑗⟩

𝑆𝑖𝑆𝑗 + 𝛽ℎ
∑︁
𝑖

𝑆𝑖

⎞⎠, (63)

where the summation is performed over all the pos-
sible configurations of the system, 𝐾 = 𝛽𝐽 is a
temperature-dependent coupling constant, and 𝛽 =
= 1/𝐾B𝑇 . At high temperatures, as 𝑇 rises, 𝐾 de-
clines. Hence, the partition function can be expanded
in 𝐾. Since 𝑆𝑖𝑆𝑗 = ±1 for the Ising model, the ex-
pression 𝑒𝐾𝑆𝑖𝑆𝑗 can be written as

𝑒𝐾𝑆𝑖𝑆𝑗 = (cosh𝐾)(1 + 𝑣𝑆𝑖𝑆𝑗), (64)

where 𝑣 = tanh𝐾. Through a similar calculation
procedure for the external field, the partition function
is obtained as

𝑍𝑁 (𝐾) = (cosh𝐾𝑡)
𝑁𝑞/2

(cosh𝛽ℎ)
𝑁×

×
∑︁
{𝑆}

∏︁
⟨𝑖𝑗⟩

(1 + 𝑣𝑆𝑖𝑆𝑗)×
∏︁

𝐾
(1 + 𝜏𝑆𝐾). (65)

The high-temperature expansion of Ising-model
zero-field magnetic susceptibility is introduced as

𝜒(𝑣) = 𝛽−1 lim
ℎ→0

𝜕2

𝜕ℎ2

(︂
1

𝑁
ln𝑍𝑁

)︂
=

ɛk

k
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Fig. 9. Single-particle energies vs 𝑘 for 𝑔 = 0.5, 1, 1.5, 2.0, 2.5,
and 3.0. Minimum energy gap at 𝑔 = 1 and 𝑘 = 0. Positive
energy bands are empty, whereas negative energy bands are
full of fermions

0 0.5 1 1.5 2

-2

-1

0

E

g

-3

-4

Egs

1 ex
E

Fig. 10. Energy vs. 𝑔 for QIM in (−1)𝑛𝐽𝑔𝜎𝑥
𝑛 (zero energy

gap and 2𝑛𝑑-order phase transition at 𝑔𝑐 = 1)

=
𝛽

𝑁𝑍𝑁

∑︁
𝑖,𝑗

∑︁
{𝑆}

𝑆𝑖𝑆𝑗𝑒
−𝛽𝐻. (66)

Consequently, we have

𝛽−1𝜒(𝑣) =
1

𝑁

∑︁
𝑖,𝑗

⟨𝑆𝑖𝑆𝑗⟩ = 1 + 2
∑︁
𝑖 ̸=𝑗

⟨𝑆𝑖𝑆𝑗⟩, (67)
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JF

JAF JAF

JAFJAF JAF

JAF JAF

JAFJAF JAF

JF JF JF JF JF

JF JF JF JF JF JF

JF JF JF JF

JF JF JF JF

Fig. 11. Ising model with ferromagnetic and antiferromag-
netic interactions on a kagome lattice

B A

J < 0

J > 0J > 0

C

Fig. 12. If the spin 𝐴 chooses the up/down direction, one of
the interactions will not be satisfied. Therefore, this spin is
frustrated to choose its direction

Table 1. Critical temperature of the high-temperature
expansion of the Ising-model magnetic susceptibility
on a kagome lattice through the Padé approximation

[𝐿,𝑀 ] 𝑥 = −0.2 𝑥 = −0.3 𝑥 = −0.4

[6, 6] 𝐾B𝑇C ≈ 1.316𝐽F 𝐾B𝑇C ≈ 1.234𝐽F 𝐾B𝑇C ≈ 0.793𝐽F
[5, 5] 𝐾B𝑇C ≈ 1.316𝐽F 𝐾B𝑇C ≈ 1.262𝐽F 𝐾B𝑇C ≈ 0.819𝐽F
[4, 4] 𝐾B𝑇C ≈ 1.234𝐽F 𝐾B𝑇C ≈ 1.052𝐽F 𝐾B𝑇C ≈ 0.840𝐽F
[3, 3] 𝐾B𝑇C ≈ 1.262𝐽F 𝐾B𝑇C ≈ 1.075𝐽F 𝐾B𝑇C ≈ 0.884𝐽F

Table 2. Critical exponent of the high-temperature
expansion of the Ising-model magnetic susceptibility
on a kagome lattice through the Padé approximation

[𝐿,𝑀 ] 𝑥 = −0.2 𝑥 = −0.3 𝑥 = −0.4

[6, 6] 𝛾 = 1.756 𝛾 = 1.760 𝛾 = 1.760

[5, 5] 𝛾 = 1.770 𝛾 = 1.770 𝛾 = 1.767

[4, 4] 𝛾 = 1.770 𝛾 = 1.690 𝛾 = 1.745

[3, 3] 𝛾 = 1.752 𝛾 = 1.770 𝛾 = 1.700

whose graphical expression is defined as

𝛽−1𝜒(𝑣) = �̄�(𝑣) = 1 + 2
∑︁
{𝑔2}

𝑐(𝑔)𝑣𝑙𝑔 , (68)

where 𝑔2 represents the graphs have two odd-degree
vertexes, 𝑐(𝑔) is the graph immersion factor (called

lattice constant), and 𝑙𝑔 denotes the number of bonds
pertaining to each graph. The analysis method varies
based on what data is supposed to be obtained from
the series. In this regard, there are various methods
to analyze series. The Padé approximation method
was first used for critical phenomena in 1961 [35].
The Padé approximation of the first 𝑁 terms of an
exponential series can be expressed as the division
of two polynomials. As an example, for the first 𝑁
terms of the function 𝐹 (𝑥), the Padé approximation
is written as

𝐹 (𝑥) ∼=
𝑁∑︁

𝑛=0

𝑎𝑛𝑥
𝑛 =

𝑃𝐿(𝑥)

𝑄𝑀 (𝑥)
, (69)

where 𝑃𝐿(𝑥) and 𝑄𝑀 (𝑥) respectively represent poly-
nomials of the order 𝐿 and 𝑀 such that 𝐿+𝑀 ≤ 𝑁 .
The polynomial coefficients 𝑃𝐿(𝑥) and 𝑄𝑀 (𝑥) are de-
termined by solving a set of linear equations. Em-
ploying such approximation, the analytical structure
of series can be investigated and the function poles
can be exactly determined. This procedure is as fol-
lows:

𝑓(𝑥) = 𝐴(𝑥𝐶 − 𝑥)−𝜃
, (70)

𝐷 log𝐹 (𝑥) ≡ 𝑓 ′(𝑥)

𝑓(𝑥)
=

𝜃

𝑥𝐶 − 𝑥
. (71)

Accordingly, the position of the singularity (critical)
points can be obtained by estimating the roots of
𝑄𝑀 (𝑥), and thereby the critical exponent 𝜃 is eval-
uated. The magnetic susceptibility near the critical
point is given by 𝜒 ∼ |𝑇−𝑇C|−𝛾 , where 𝛾 denotes the
magnetic susceptibility critical exponent. Using the
high-temperature expansion method, we study the
magnetic susceptibility of an Ising-model zero field
with first-neighbor interaction to ferromagnetic (𝐽F)
and antiferromagnetic (𝐽AF) interactions on a kagome
lattice. Such interaction is plotted in Fig. 11. The
kagome lattice is a 2D non-Bravais frustrated spin
system. This problem leads to an extreme complex-
ity in the calculations. This model’s zero-field mag-
netic susceptibility is calculated up to order 12 for
different values of 𝐽AF/𝐽F. Tables 1 and 2 show the
calculation results.

If −1 ≤ 𝐽AF/𝐽F ≤ −0.2, the zero-field mag-
netic susceptibility can be obtained through the high-
temperature series expansion. Applying the Padé
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approximation to the magnetic susceptibility series
for 𝐿 = 𝑀 , the critical exponent and tempera-
ture of different states can be obtained. Tables 1
and 2 provide, respectively, the values obtained for
the critical temperature and exponent for 𝐽AF/𝐽F =
−0.2,−0.3,−0.4, which is shown here by 𝑥.

As the tables indicate, the phase transition is ob-
served for different values of antiferromagnetic inter-
action constant. In these three states, the phase tem-
perature (𝐾B𝑇C) decreases with increasing the anti-
ferromagnetic interaction constant (𝑥). Also, these
states’ critical temperature is less than the transi-
tion temperature of the antiferromagnetic Ising model
on a kagome lattice (𝐾B𝑇C ≈ 2.38). Table 2 sug-
gests that, according to the universality theory, these
states’ critical exponents are well consistent with the
exact solution of the Ising model.

However, when −1 ≤ 𝐽AF/𝐽F ≤ −0.5, the re-
sults obtained through the Padé approximation do
not show any phase transition. The absence of a
phase transition in such states is due to the fact that
increasing the antiferromagnetic interaction constant
strengthens this interaction and consequently leads
to the spin confusion and magnetic frustration (see
Fig. 12). Magnetic frustration or confusion is char-
acterized as a state, in which a spin (or several) in a
system cannot choose a direction completely satisfy-
ing all the interactions. In other words, the system
cannot find a specific ground state for itself. Under
such conditions, the system’s ground state is several
degenerate states, none of which is superior to others.
Therefore, it can be said that the phase transition will
not be observed in such systems due to the magnetic
frustration.

7. Conclusions

In this paper, we have employed CUTs, as a new
method for solving many-body quantum issues, to
obtain the accurate energy spectrum of QIM in a
constant magnetic field −𝐽𝑔𝜎𝑥

𝑛 and a periodic mag-
netic field (−1)𝑛𝐽𝑔𝜎𝑥

𝑛. As we expected, by varying
the transverse magnetic field, both models showed
the same results at the quantum critical point 𝑔𝑐,
quantum phase type, and critical exponent 𝑧𝑣. Fur-
thermore, the calculation of the spin correlation func-
tion 𝐶𝑥(𝑗) has demonstrated that a rise in the trans-
verse magnetic field does not cause a long-range or-
der in the system. Also, the results of the high-

temperature series expansion of the Ising-model zero-
field magnetic susceptibility to antiferromagnetic and
ferromagnetic interactions on a kagome lattice for the
different values of antiferromagnetic interaction con-
stant and through the Padé approximation indicate
that when 𝐽AF/𝐽F = −0.2,−0.3,−0.4, the ferromag-
netic interactions dominate the antiferromagnetic in-
teractions, and the phase transition is observed, con-
sequently. These phase transition’ critical exponent
is well consistent with the exact solution of the Ising
model. However, when −1 ≤ 𝐽AF/𝐽F ≤ −0.5, the
antiferromagnetic interactions compete with the fer-
romagnetic interactions. The results of application of
the Padé approximation showed that no phase transi-
tion is observed in such systems due to the magnetic
frustration.

The work was fully supported by grants from the
Institute for Advanced Studies of Iran. The au-
thors would like to express genuinely and sincerely the
thanks and their acknowledgement to the Institute for
Advanced Studies of Iran.

APPENDIX A.
Calculation of the flow equation
for QIM in (−1)𝑛𝐽𝑔𝜎𝑥

𝑛 using CUTs

To calculate the generator, the diagonal part 𝐻0 and non-
diagonal part 𝐻int are considered as follows:

𝐻0(𝐵) =
∑︁
𝑘

{︂
𝜀𝑎𝑘(𝐵)

(︂
𝑐†𝑘𝑐𝑘 −

1

2

)︂
+ 𝜀𝑏𝑘 (𝐵)

(︂
𝑑†𝑘𝑑𝑘 −

1

2

)︂}︂
, (A1)

𝐻
(1)
int (𝐵) =

∑︁
𝑘

{︁
𝐽𝑘 (𝐵) 𝑐†𝑘𝑑𝑘 + 𝐽*

𝑘 (𝐵) 𝑑†𝑘𝑑𝑘

}︁
, (A2)

𝐻
(2)
int (𝐵) =

∑︁
𝑘

{︁
𝛼𝑘 (𝐵) 𝑐†−𝑘𝑑

†
𝑘 + 𝛼*

𝑘 (𝐵) 𝑑𝑘𝑐−𝑘

}︁
, (A3)

𝐻
(3)
int (𝐵) =

∑︁
𝑘

{︁
𝛽𝑘 (𝐵) 𝑐†−𝑘𝑐

†
𝑘 + 𝛽*

𝑘 (𝐵) 𝑐𝑘𝑐−𝑘

}︁
, (A4)

𝐻
(4)
int (𝐵) =

∑︁
𝑘

{︁
𝛾𝑘 (𝐵) 𝑑†−𝑘𝑑

†
𝑘 + 𝛾*

𝑘 (𝐵) 𝑑𝑘𝑑−𝑘

}︁
, (A5)

where 𝐻int = 𝐻
(1)
int +𝐻

(2)
int +𝐻

(3)
int +𝐻

(4)
int .

1. Calculation of the generator of unitary transformations

𝜂 =
∑︁
𝑘

{︁
𝐽𝑘

(︁
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︁
𝑐†𝑘𝑑𝑘 − 𝛼𝑘

(︁
𝜀𝑎−𝑘 + 𝜀𝑏𝑘

)︁
𝑐†−𝑘𝑑𝑘 +

+𝛽𝑘

(︀
𝜀𝑎𝑘 + 𝜀𝑎−𝑘

)︀
𝑐†−𝑘𝑐

† + 𝛾𝑘

(︁
𝜀𝑏𝑘 + 𝜀𝑏−𝑘

)︁
𝑑†−𝑘𝑑

†
𝑘

}︁
− h.c. (A6)

2. Calculation of the commutator [𝜂,𝐻0]

[𝜂,𝐻0] =
∑︁
𝑘

{︂
−𝐽𝑘

(︁
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︁2
𝑐†𝑘𝑑𝑘 − 𝛼𝑘

(︁
𝜀𝑎−𝑘 + 𝜀𝑏𝑘

)︁2
×

× 𝑐†−𝑘𝑑𝑘−𝛽𝑘

(︀
𝜀𝑎𝑘 + 𝜀𝑎−𝑘

)︀2
𝑐†−𝑘𝑐

†−𝛾𝑘

(︁
𝜀𝑏𝑘 + 𝜀𝑏−𝑘

)︁2
𝑑†−𝑘𝑑

†
𝑘

}︂
. (A7)
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3. Calculation of the commutator [𝜂,𝐻
(1)
int ][︁

𝜂,𝐻
(1)
int

]︁
=

∑︁
𝑘

{︁
|𝐽𝑘|2

(︁
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︁(︁
𝑐†𝑘𝑐𝑘 − 𝑑†𝑘𝑑𝑘−

)︁
−

−𝛼𝑘(𝜀
𝑎
−𝑘 − 𝜀𝑏𝑘)

(︁
𝐽𝑘𝑐

†
−𝑘𝑐

†
𝑘 + 𝐽*

−𝑘𝑑
†
−𝑘𝑑

†
𝑘

)︁
−

− 𝐽*
𝑘

(︁
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︁
(𝛽𝑘 − 𝛽−𝑘) 𝑐

†
−𝑘𝑑

†
𝑘−

− 𝐽−𝑘

(︁
𝜀𝑏𝑘 + 𝜀𝑏−𝑘

)︁
(𝛾𝑘 − 𝛾−𝑘) 𝑐

†
−𝑘𝑑

†
𝑘

}︁
+ h.c. (A8)

4. Calculation of the commutator [𝜂,𝐻
(2)
int ][︁

𝜂,𝐻
(2)
int

]︁
=

∑︁
𝑘

{︁
𝐽𝑘𝛼𝑘

(︁
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︁
𝑐†−𝑘𝑐

†
𝑘−

− 𝐽−𝑘𝛼
*
𝑘

(︁
𝜀𝑎−𝑘 − 𝜀𝑏−𝑘

)︁
𝑑𝑘𝑑−𝑘 + |𝛼−𝑘|2

(︁
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︁
𝑐†𝑘𝑐𝑘+

+ |𝛼𝑘|2
(︁
𝜀𝑎−𝑘 + 𝜀𝑏𝑘

)︁
𝑑†𝑘𝑑𝑘 + 𝛼*

𝑘

(︁
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︁
(𝛽𝑘 − 𝛽−𝑘) 𝑐

†
𝑘𝑑𝑘−

−𝛼*
−𝑘

(︁
𝜀𝑏𝑘 + 𝜀𝑏−𝑘

)︁
(𝛾𝑘 − 𝛾−𝑘) 𝑑

†
𝑘𝑐𝑘−|𝛼𝑘|2

(︁
𝜀𝑎−𝑘 + 𝜀𝑏𝑘

)︁}︁
+h.c.

(A9)

5. Calculation of the commutator [𝜂,𝐻
(3)
int ][︁

𝜂,𝐻
(3)
int

]︁
=

∑︁
𝑘

{︁
−𝐽𝑘

(︁
𝜀𝑎𝑘 − 𝜀𝑏𝑘

)︁ (︀
𝛽*
𝑘 − 𝛽*

−𝑘

)︀
𝑑𝑘𝑐−𝑘+

+𝛼𝑘

(︁
𝜀𝑎−𝑘 + 𝜀𝑏𝑘

)︁ (︀
𝛽*
𝑘 − 𝛽*

−𝑘

)︀
𝑑†𝑘𝑐𝑘+

+|𝛽𝑘 − 𝛽−𝑘|2
(︀
𝜀𝑎𝑘 + 𝜀𝑎−𝑘

)︀
𝑐†𝑘𝑐𝑘−

−𝛽𝑘

(︀
𝛽*
𝑘 − 𝛽*

−𝑘

)︀ (︁
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︁}︁
+ h.c. (A10)

6. Calculation of the commutator [𝜂,𝐻
(4)
int ][︁

𝜂,𝐻
(4)
int

]︁
=

∑︁
𝑘

{︁
−𝐽𝑘

(︁
𝜀𝑎−𝑘 − 𝜀𝑏−𝑘

)︁
(𝛾𝑘 − 𝛾−𝑘) 𝑐

†
−𝑘𝑑

†
𝑘−

−𝛼−𝑘

(︁
𝜀𝑎𝑘 + 𝜀𝑏−𝑘

)︁ (︀
𝛾*
𝑘 − 𝛾*

−𝑘

)︀
𝑐†𝑘𝑑𝑘+

+ |𝛾𝑘 − 𝛾−𝑘|2
(︁
𝜀𝑏𝑘 + 𝜀𝑏−𝑘

)︁
𝑑†𝑘𝑑𝑘−

− 𝛾𝑘
(︀
𝛾*
𝑘 − 𝛾*

−𝑘

)︀ (︁
𝜀𝑏𝑘 + 𝜀𝑏−𝑘

)︁}︁
+ h.c. (A11)
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A New Method for Investigating and Accurately Solving

А. Хейдарi, Ф. Горбанi, М. Горбанi

НОВИЙ МЕТОД ДОСЛIДЖЕННЯ
I ТОЧНОГО РОЗВ’ЯЗАННЯ ОДНОВИМIРНОЇ
КВАНТОВОЇ МОДЕЛI IЗIНГА ДЛЯ ПОСТIЙНОГО
I ЗМIННОГО ПОПЕРЕЧНИХ
МАГНIТНИХ ПОЛIВ

Р е з ю м е

Одновимiрна квантова модель Iзiнга (1КМI) описує кван-
товi фазовi переходи iз взаємодiєю найближчих сусiдiв в
постiйному магнiтному полi. Ранiше було розроблено ряд
методiв точного розв’язання 1КМI. Застосовуючи непе-
рервне унiтарне перетворення як новий аналiтичний ме-

тод опису багаточастинкових систем, ми вперше отри-
мали розв’язок 1КМI для постiйного i для регулярного
(перiодичного) поперечних магнiтних полiв. Як i очiку-
валося, критичнi iндекси є такими самими, що i в то-
чних розв’язках. Застосовуючи наближення Паде i роз-
винення в ряд у границi високих температур, ми вивчи-
ли сприйнятливiсть моделi Iзiнга без магнiтного поля з
антиферомагнiтною взаємодiєю на ґратцi кагоме. Пока-
зано, що при змiнi константи антиферомагнiтної взаємо-
дiї фазовий перехiд виникає за умови 𝐽AF/𝐽F > −0.5.
Згiдно з теорiєю унiверсальностi, критичнi iндекси для
таких систем добре узгоджуються з iндексами в моделi
Iзiнга.
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