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CASIMIR FORCE INDUCED ON A PLANE
BY AN IMPENETRABLE FLUX TUBE OF FINITE RADIUSPACS 11.27.+d, 11.10.Kk

A perfectly reflecting (Dirichlet) boundary condition at the edge of an impenetrable magnetic-
flux-carrying tube of nonzero transverse size is imposed on the charged massive scalar matter
field which is quantized outside the tube on a plane, which is transverse to the tube. We show
that the vacuum polarization effects outside the tube give rise to a macroscopic force acting at
the increase of the tube radius (if the magnetic flux is held steady).

K e yw o r d s: vacuum polarization, Casimir effect, magnetic vortex.

1. Introduction

Polarization of the vacuum of quantized matter fields
under the influence of boundary conditions was stud-
ied intensively over more than six decades since
Casimir [1] predicted a force between grounded metal
plates: the prediction was that the induced vac-
uum energy in bounded spaces gave rise to a macro-
scopic force between bounding surfaces, see reviews in
Refs. [2] and [3]. The Casimir force between grounded
metal plates has now been measured quite accurately
and agrees with the theoretical predictions (see, e.g.,
Refs. [4] and [5], as well as other publications cited in
Refs. [2] and [3]).

In the present paper, we consider the vacuum en-
ergy which is induced by boundary conditions in
space that is not bounded but, instead, is not simply
connected, being an exterior to a straight infinitely
long tube. This setup is inspired by the famous
Aharonov–Bohm effect [6], and we are interested in
the polarization of vacuum which is due to imposing
a boundary condition at the edge of the tube carrying
magnetic flux lines inside itself; this may be denoted
as the Casimir–Aharonov–Bohm effect (see also [7]).

The vacuum polarization effects which are due to
imposing the boundary conditions of various types
at the cylindrical surfaces were extensively discussed
in the literature, see [8]–[12]. In general, the Casimir
effect in the presence of a single smooth object (cylin-
der or sphere) is rather different from that in the
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presence of two disjoint ones (e.g., plates): new di-
vergences appear, and, to tame them, one has to sum
the contributions of a quantized matter from both
sides of the boundary surface, still this does not help
in some cases to get rid completely of divergences, see
[3] and references therein. In view of this, the conven-
tional prescription which is to subtract the vacuum
energy of the empty Minkowski space-time becomes
insufficient for obtaining the meaningful results. The
author of Ref. [13] proposes to define the Casimir en-
ergy for physical systems divided into classes: the
difference in the vacuum energies of any two systems
within the same class should be finite, then the fi-
nite Casimir energy has the universal interpretation
as a vacuum energy with respect to the vacuum en-
ergy of a certain reference system which is common
for the whole class. Following this proposition, we de-
fine a class of physical systems corresponding to the
charged massive scalar field which is quantized out-
side an impenetrable tube with the magnetic flux of
different values; the case of zero flux can be chosen as
the reference system. As we shall show, the Casimir
energy for this class is unambiguous and finite.

The temporal component of the energy-momentum
tensor for a quantized charged scalar field Ψ(x) in the
flat space-time is given by the expression

T00(x) =
1

2

[
∂0Ψ

†, ∂0Ψ
]
+
− 1

4

[
∂20Ψ

†,Ψ
]
+
−

−1

4

[
Ψ†, ∂20Ψ

]
+
−
(
ξ − 1

4

)
∇2
[
Ψ†,Ψ

]
+
, (1)
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where ∇ is the covariant spatial derivative involv-
ing both affine and bundle connections, and the field
operator in the case of a static background takes
the form

Ψ(x0,x) =
∑∫
λ

1√
2Eλ

×

×
[
e−iEλx

0

ψλ(x) aλ + eiEλx
0

ψ−λ(x) b
†
λ

]
; (2)

a†λ and aλ (b†λ and bλ) are the scalar particle (an-
tiparticle) creation and destruction operators satisfy-
ing commutation relations; the wave functions ψλ(x)
form a complete set of solutions to the stationary
Klein–Gordon equation(
−∇2 +m2

)
ψλ(x) = E2

λψ(x), (3)

m is the mass of the scalar particle; λ is the set of
parameters (quantum numbers) specifying the state;
Eλ = E−λ > 0 is the energy of the state; sym-
bol

∑∫
λ

denotes the summation over discrete and in-
tegration (with a certain measure) over continuous
values of λ.

As is known for a long time [14–16], the energy-
momentum tensor depends on the parameter ξ which
couples Ψ to the scalar curvature of space-time even
in the case of a vanishing curvature (see (1)); the con-
formal invariance is achieved in the limit of vanishing
mass (m = 0) at ξ = (d − 1)(4d)−1, where d is the
spatial dimension. Consequently, the density of the
induced vacuum energy, which is given formally by
expression

ε = ⟨vac|T00(x)|vac⟩ =
∑∫
λ

Eλψ
∗
λ(x)ψλ(x)−

− (ξ − 1/4)∇2
∑∫
λ

E−1
λ ψ∗

λ(x)ψλ(x), (4)

depends on ξ as well. This poses a question: Can the
physically measurable effects (e.g., the Casimir force)
be dependent on ξ?

In the present paper, we consider a static back-
ground in the form of a cylindrically symmetric mag-
netic flux tube of finite transverse size. Hence, the
covariant derivative is ∇ = ∂ − ieV with the vector
potential possessing only one nonvanishing compo-
nent given by

Vφ = Φ/2π (5)

outside the tube. Here, Φ is the value of magnetic
flux, and φ is the angle in the polar (r, φ) coordi-
nates on a plane, which is transverse to the tube.
The Dirichlet boundary condition at the edge of the
tube (r = r0) is imposed on the scalar field:

ψλ|r=r0
= 0, (6)

i.e., the quantum matter is assumed to be perfectly
reflected from the thence impenetrable flux tube.

As we shall see, the vacuum energy induced outside
the flux tube on a plane, which is transverse to the
tube, gives rise to a macroscopic force acting at the
increase of the tube radius if the magnetic flux is held
steady. Although the induced vacuum energy density
is ξ-dependent, the Casimir force will be shown to be
independent of ξ.

2. Vacuum Energy Density

The solution to (3) outside the magnetic flux tube
can be obtained in terms of the cylindrical functions.
The formal expression (4) for the vacuum energy den-
sity has to be renormalized by subtracting the con-
tribution corresponding to the zero flux. Restricting
ourselves to a plane orthogonal to the tube, we obtain
(for details, see [17])

εren=
1

2π

{ ∞∫
0

dk k(k2 +m2)1/2[S(kr, kr0)−

−S(kr, kr0)|Φ=0]− (ξ−1/4)△
∞∫
0

dk k(k2+m2)−1/2×

× [S(kr, kr0)− S(kr, kr0)|Φ=0]

}
, (7)

where

S(kr, kr0) =
∑
n∈Z

{[Y|n−eΦ/2π|(kr0)J|n−eΦ/2π|(kr)−

− J|n−eΦ/2π|(kr0)Y|n−eΦ/2π|(kr)]
2/

/(Y 2
|n−eΦ/2π|(kr0) + J2

|n−eΦ/2π|(kr0))}, (8)

Z is the set of integer numbers, Jµ(u) and Yµ(u) are
the Bessel functions of order µ of the first and second
kinds, and △ = ∂2r + r−1∂r is the radial part of the
Laplacian operator on the plane.

Owing to the infinite range of the summation, the
last expression is periodic in the flux Φ with a period
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Fig. 1. Behavior of the α+(x0, x) (positive) and the α−(x0, x)

(negative) functions for the case of x0 = 10−3. The variable x

(x > x0) is along the abscissa axis

equal to 2πe−1, i.e. the London flux quantum (we use
units c = ~ = 1). Our further analysis concerns the
case of Φ = (2n+ 1)πe−1, when each of the integrals
in (7) is the most distinct from zero. Introducing the
function [18]

G(kr, kr0)=S(kr, kr0)|Φ=πe−1−S(kr, kr0)|Φ=0, (9)

we rewrite (7) in the dimensionless form

r3εren=α+(mr0,mr)−(ξ−1/4)r3△α−(mr0,mr)

r
,

(10)
where

α±(mr0,mr)=
1

2π

∞∫
0

dz z

[
z2+

(mr0
λ

)2]±1/2

G(z, λz)

(11)
and λ = r0/r (λ ∈ [0, 1]).

We follow the technique of numerical calculations
developed in [17, 18] with some modifications. No-
tably, we perform the direct integration over consec-
utive periods of theG(z, λz) function using the Euler–
Maclaurin integration formula [19]. This results in a
sufficient decrease of the computation time.

Thereafter, we calculate the α+ and α− functions
for the case of mr0 = 10−3 at a set of different dis-
tances from the axis of the tube. This allows us to ob-
tain coefficients of the interpolation function, which
is approximated in the form

α±(x0, x) =
[
±e−2xx1∓1/2

]
×

×

[(
x− x0
x

)2
P±
3 (x− x0)

x3

]
Q±

3 (x
2)

R±
3 (x

2)
, x > x0, (12)

where x = mr, x0 = mr0, and P±
n (y), Q±

n (y), and
R±

n (y) are polynomials in y of the n-th order with
the x0-dependent coefficients. The first factor in the
square brackets in (12) describes the large-distance
behavior in the case of the zero-radius tube (singu-
lar thread), second factor is the asymptotics at small
distances from the tube edge, and the last factor is
the intermediate part. Since the flux tube is impen-
etrable, the α± functions vanish at x ≤ x0. The be-
havior of the dimensionless α± functions is presented
in Fig. 1.

For the α+ function, we estimate the relative error
of the obtained result as 0.1%. It should be noted
that nearly 95% of the integral value is obtained by
the direct calculation, and only nearly 5% is the con-
tribution from the interpolation. The integration in
the case of the α− function is performed more quickly
and with a higher accuracy, as compared with the case
of the α+ function, because the former tends to zero
more rapidly at large distances. In this case, the con-
tribution from the interpolation can be estimated as
10−3% of the total value.

We define the function [17]

α̃−(x0, x) = r3△α−(x0, x)

r
=

= α−(x0, x)− x
∂α−(x0, x)

∂x
+ x2

∂2α−(x0, x)

∂x2
(13)

and present its behavior in Fig. 2.
We construct the dimensionless vacuum energy

density at various values of the coupling to the space-
time curvature scalar (ξ),

r3εren = α+(x0, x)− (ξ − 1/4)α̃−(x0, x), (14)

and present its behavior for mr0 = 10−3 in Fig. 3.
The behavior of the induced vacuum energy den-

sity, as the radius of the tube tends to zero, is of
primary interest. To do a numerical calculation at
x0 < 10−3 needs a significant computational time and
is a rather complicated task. Nevertheless, we can
make some general conclusions regarding the case of
small x0.

It seems plausible that this case with a decrease of
the tube radius becomes more similar to the case of
the tube of zero radius (singular thread) (see, e.g.,
Fig. 4). However, there are some peculiarities in the
behavior in a vicinity of the tube. To discuss them,
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Fig. 2. Behavior of the α̃−(x0, x) function for x0 = 10−3. The region in a rectangle on the left figure is seen in the scaled-up
form on the right figure. The variable x (x > x0) is along the abscissa axis

Fig. 3. Dimensionless vacuum energy density r3εren(x0, x) at different values of coupling to the space-time curvature scalar for
x0 = 10−3. The region in a rectangle on the left figure is seen in the scaled-up form on the right figure. The variable x (x > x0)

is along the abscissa axis

let us first recall the exact expressions corresponding
to the case of the singular magnetic thread (see [20]):

α+(0, x)=
x3

3π2

{
π

2
− 2xK0(2x)−K1(2x)+

K2(2x)

2x
−

−πx [K0(2x)L1(2x) +K1(2x)L0(2x)]
}
, (15)

α−(0, x)=
x

π2

{π
2
− 2xK0(2x)−K1(2x)−

−πx [K0(2x)L1(2x) +K1(2x)L0(2x)]
}
, (16)

α−(0, x)=− x

π2
[2xK0(2x) +K1(2x)], (17)

where Kν(u) and Lν(u) are the Macdonald and the
modified Struve functions of order ν. Consequently,
in a vicinity of a thread, one gets

α+(0, x) =
1− 3x2

12π2
, x≪ 1 (18)

α−(0, x) = −1− πx+(3− 2γ − 2 lnx)x2

2π2
+O(x3),

x≪ 1, (19)

α̃−(0, x)=− 1

2π2
+
1 + 2γ + 2 lnx

2π2
x2+O(x3), x≪ 1,

(20)

where γ is the Euler constant. Using the latter re-
lations, we get the asymptotics of the renormalized
vacuum energy density at small distances from the
singular magnetic thread as

r3εsingren =
1

12π2
− x2

4π2
−
(
ξ − 1

4

)
×

×
(
− 1

2π2
+
1 + 2γ + 2 lnx

2π2
x2
)
+O(x3), x≪ 1. (21)

In contrast to (18) and (19), the α±(x0, x) func-
tions in the case of nonzero radius vanish quadrati-
cally in a vicinity of the tube (see [17]):

α±(x0, x)|x→x0
∼ O

[
(x− x0)

2
]
. (22)

To be more precise, we assume the asymptotics in the
form, cf. (12),

α±(x0, x) = ± (x− x0)
2

x2
f±(x0, x). (23)
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Fig. 4. Constituents of the dimensionless vacuum energy density: a) α+, b) α−, c) α̃− for the case of x0 = 10−2 (dotted line),
10−3 (dashed line). The region in a rectangle on the c-figure is seen in the scaled-up form on the d-figure. The behavior of the
corresponding functions for the case of a singular magnetic thread is presented by solid lines. The variable x (x > 0) is along the
abscissa axis

Then we obtain

α̃−(x0, x) = −(x− x0)
2 ∂

2

∂x2
f−(x0, x)+

+

(
1− 6

x0
x

+ 5
x20
x2

)
x
∂

∂x
f−(x0, x)−

−
(
1− 8

x0
x

+ 9
x20
x2

)
f−(x0, x), (24)

with α̃−(x0, x0) = −2f−(x0, x0).
The f±(x0, x) functions are adjusted as

f+(0, x) =
1− 3x2

12π2
, x≪ 1, (25)

f−(0, x)=
1− πx+ (3− 2γ − 2 lnx)x2

2π2
, x≪ 1; (26)

consequently, we get

α̃−(x0, x)

∣∣∣∣x0 → 0
x → x0

= − 1

2π2
+

1 + 2γ + 2 lnx

2π2
x2+

+
4− πx

π2x
x0+

−9 + 4πx− 7x2 + 2γx2 + 2x2 lnx

2π2x2
x20.

(27)

The asymptotic behavior of the α± and α̃− func-
tions with the use of (23)–(27) is presented in Fig. 5

in the case of a sufficiently small value of x0. As one
can see, this behavior is quite similar to that for the
case of x0 = 10−3 (compare with Figs. 2 and 4). It
should be noted that the f±(x0, x) functions depend
strongly on x0.

3. Total Vacuum Energy
and the Casimir Force

The total vacuum energy, which is induced on a plane
outside the magnetic flux tube of finite radius, is

E ≡
2π∫
0

dφ

∞∫
r0

εrenrdr = 2πm×

×

 ∞∫
x0

α+(x0, x)

x2
dx−

(
ξ− 1

4

) ∞∫
x0

α̃−(x0, x)

x2
dx

. (28)

In view of the relation

∞∫
x0

α̃−(x0, x)

x2
dx=

[
α−(x0, x)

x
− ∂α−(x0, x)

∂x

]∣∣∣∣
x=x0

,

(29)
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x0 3/2 1 1/2 10−1 10−2 10−3

E/(2πm) 5.013× 10−12 6.944× 10−10 2.068× 10−7 1.65× 10−4 0.0106 0.1486

Fig. 5. Expected behavior of the constituents of the dimen-
sionless vacuum energy density at small distances from the
tube: a) α+, b) α−, c) α̃− for the case of x0 = 10−9 (solid
line). The behavior of the corresponding functions for the case
of a singular magnetic thread is presented by the dashed lines.
The variable x (x > x0) is along the abscissa axis

which follows from (13) and relations (23) and (26),
we conclude that the vacuum energy is indepen-
dent of the coupling to the space-time curvature
scalar (ξ):

E = 2πm

∞∫
x0

α+(x0, x)

x2
dx. (30)

This is in contrast to the case of a singular magnetic
thread, when the total induced vacuum energy is di-
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Fig. 6. Total vacuum energy as a function of the tube radius
in the range 10−3 < x0 < 3/2. The variable x0 is along the
abscissa axis, the value of ln E

2πm
is along the ordinate axis.

Solid line interpolates the dots that have been calculated

Fig. 7. Casimir force as a function of the tube radius. The
variable x0 is along the abscissa axis, the value of the dimen-
sionless Casimir force F (x0)

2πm2 is along the ordinate axis

vergent and ξ-dependent (see [20]):

Esing≡
2π∫
0

dφ

∞∫
0

εsingren rdr ∼ 4m

(
ξ − 1

12

)∫
0

dx

x2
. (31)

It is curious that the vacuum energy in this case is
finite at ξ = 1/12, being equal to

Esing
∣∣
ξ=1/12

=
2m

3π

∞∫
0

{
π

2
−
(
2x+

1

2x

)
K0(2x)−

−K1(2x)− πx [K0(2x)L1(2x) +K1(2x)L0(2x)]

}
×

×x dx = −0.01989× 2πm. (32)
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Although the vacuum energy E (30) is finite, its
absolute value grows infinitely, as x0 tends to zero
(see (23) and (25)):

E|x0→0 = m

[
1

18πx0
− x0

π
lnx0 +O(x30)

]
, (33)

which is in accordance with the divergence of the vac-
uum energy in the case of a singular magnetic thread.
To be more precise, relation (29) fails to yield zero in
the case x0 = 0. Therefore, the divergence of the vac-
uum energy in the latter case becomes ξ-dependent.

We present the values of vacuum energy E (30) for
several values of the tube radius in the Table.

These results are also given in Fig. 6 on logarithmic
scale, where the dots corresponding to the data in
the table are joined with the help of the interpolation
function,

η(x0) = ln
E

2πm
, (34)

which can be taken in the form

η(x0) = a0 +
∑
i

aix
bi
0 −

(
1 +

∑
j

cjx
dj

0

)
lnx0. (35)

Here, bi and dj are the positive adjustable constants.
To change the radius of a magnetic flux tube, one

has to apply a work that is equal to the change of
the total vacuum energy which is induced outside the
tube. In the case of an infinitely small change of the
radius, we have

∆E = 2πp r0∆r0, (36)

where p can be interpreted as the vacuum pressure,
which acts from the exterior to the interior of the tube

p(x0) =
1

2πr0

dE

dr0
= m3 e

η(x0)

x0

dη(x0)

dx0
. (37)

This results in the Casimir force acting from the in-
terior to the exterior of the tube:

F (x0) = −2πr0p(x0) = −2πm2eη(x0)
dη(x0)

dx0
. (38)

The behavior of the Casimir force is presented
in Fig. 7.

As one can see, the Casimir force tends to increase
the radius of the tube and to minimize the induced
vacuum energy of the quantized scalar field. Cer-
tainly, our conclusion is obtained under the assump-
tion that the magnetic flux inside the impenetrable
tube remains invariable with a variation of the tube
radius.

4. Summary

In the present paper, we consider the vacuum po-
larization effects that are induced in a scalar matter
by imposing a perfectly reflecting (Dirichlet) bound-
ary condition at the edge of an impenetrable finite-
radius tube, which carries magnetic flux lines inside
itself. Restricting ourselves to a plane, which is or-
thogonal to the tube, we define the induced vacuum
energy density (see (7) and (8)) and analyze numer-
ically its behavior as a function of the distance from
the tube for the magnetic flux equal to half of the
London flux quantum (Φ = πe−1), the tube radius
equal to r0 = 10−3m−1, and different values of the
coupling to the space-time curvature scalar (ξ) (see
Fig. 3). The emergence of the energy density, as well
as of other components of the energy-momentum ten-
sor, in the vacuum can lead to various semiclassical
gravitational effects, which were estimated under the
neglect of the tube radius in [21].

The present paper summarizes and extends our
previous study in [17, 18], and this allows us to draw
conclusions about the behavior of the total induced
vacuum energy, i.e. the density integrated over the
whole plane, and the Casimir force as functions of the
tube radius. We find that the total induced vacuum
energy is finite and independent of ξ, as long as the
tube radius is taken into account. Although the val-
ues of total induced vacuum energy are negligible for
r0 ∼ m−1 (see also [18]) being of order 10−10 × 2πm,
they are of order 10−1 × 2πm for r0 ∼ 10−3m−1,
see the Table and Fig. 6. The induced vacuum en-
ergy gives rise to the Casimir force which is directed
from the exterior to the interior of the tube. The
force acts at an increase of the tube radius and a de-
crease of the induced vacuum energy, if the magnetic
flux is held constant1. The force takes considerable
values at small values of the tube radius and actu-
ally disappears otherwise: it is, e.g., 102 × 2πm2 at
r0 ∼ 10−3m−1 and 10−3 × 2πm2 at r0 ∼ 10−1m−1.
The behavior of the force as a function of the tube
radius is illustrated by Fig. 7.

1 As to the energy stored inside the tube, it is the purely clas-
sical energy of the magnetic field. Its behavior at an increase
of the tube radius as the magnetic flux is held constant can
be different depending on the details of the magnetic field
configuration. Mild assumptions as to the smoothness of
the configuration yield that the energy is either constant or
decreasing at most as ∼ r−2

0 .
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It should be noted that the Casimir force in our
case is caused by the boundary conditions imposed at
the boundary enclosing a magnetic flux. The force is
periodic in the flux value with a period equal to the
London flux quantum, attaining its maximal value
at Φ = (2n + 1)πe−1 and vanishing at Φ = 2nπe−1

(n ∈ Z).
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СИЛА КАЗИМIРА, ЩО IНДУКУЄТЬСЯ
НА ПЛОЩИНI НЕПРОНИКЛИВОЮ МАГНIТНОЮ
ТРУБКОЮ СКIНЧЕННОГО РАДIУСА

Р е з ю м е

Розглядається задача поляризацiї вакууму масивного заря-
дженого скалярного поля матерiї на площинi, перпендику-
лярно до якої проходить непрониклива для поля матерiї
трубка скiнченного радiуса з магнiтним потоком всерединi.
На поверхнi трубки на поле матерiї накладається гранична
умова типу Дiрiхле. Показано, що ефекти поляризацiї ваку-
уму поля матерiї приводять до появи макроскопiчної сили,
що намагається збiльшити радiус трубки. Розрахунок про-
ведений в припущеннi збереження магнiтного потоку все-
рединi трубки.
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