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The internal and free energies of liquid metallic helium are calculated for wide ranges of
density and temperature, and the corresponding equation of state is obtained in the framework
of perturbation theory. The electron-ion interaction potential is selected as a small parameter,
and the calculations are carried out to the third order of smallness inclusive. Conduction
electrons are considered in the random phase approximation with regard for the exchange
interaction and correlations in the local field approximation. The hard-sphere model is used
for the nuclear subsystem, the sphere diameter being the only parameter of the theory. The
sphere diameter and the system density, at which helium transforms from the single- into
double-ionized state are evaluated by analyzing the effective pair interaction between helium
nuclei also in the third order of perturbation theory. The case of double-ionized helium atoms
is considered. The third-order correction turns out substantial in all examined cases. The
values obtained for thermodynamic parameters such as the density, temperature, and pressure
fall within the ranges typical of the central regions of giant planets, which allows us to suppose
the existence of metallic helium in the solar system.
K e yw o r d s: liquid metallic helium, thermodynamic parameters, giant planets.

1. Introduction

Progress in the experiments dealing with the shock
compression of substances allowed one to metallize
those of them that are gases in the normal state
[1, 2]. In particular, hydrogen and deuterium in the
metallic state were obtained and studied in details
in 1996–1999 [3–5], oxygen in 2001 [6], and nitrogen
in 2003 [7]. However, nobody has succeeded in ob-
taining helium in the metallic state experimentally
till now. Nevertheless, the theoretical study of the
process of probable helium metallization runs more
productively, although the total number of works de-
voted to this subject is rather small.

According to one of the first relevant works [8],
a pressure of 100 Mbar is required for helium met-
allization at low temperatures, which makes its ex-
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istence in the metallic state unreal even in the in-
ternal regions of giant planets in the solar system.
Within the quantum-mechanical method of molecu-
lar dynamics, the authors of work [9] obtained rather
an unexpected result that the metal–insulator tran-
sition can occur in liquid helium already at a density
of 1 g/cm3. In work [10], the quantum-mechanical
Monte-Carlo method was used to obtain the equation
of state for solid helium. The corresponding results
consist in that the metal–insulator transition has to
take place at a density of 21.3 g/cm3 and a pressure
of 25.7 Mbar. In work [11], the equation of state and
the coefficient of electroconductivity for helium were
calculated in the framework of the molecular dynam-
ics method and with the use of the density functional
method for the electron subsystem. The cited au-
thors claimed that the temperature is a crucial factor
for the helium electron structure. In particular, the
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energy gap disappears at a density of 13 g/cm3 at the
zero temperature and at 6.6 g/cm3 at a temperature
of 20,000 K. The latter values are quite reachable in
Jupiter’s internal region.

As follows from the aforesaid, the calculations of
various properties of metallic helium have been car-
ried out with the use of mathematical simulation
methods, and the results obtained are not in com-
plete agreement with one another. This work is one
of the first ones devoted to the application of analyti-
cal methods to studying the properties of metallic he-
lium, and its main aim is to study the corresponding
equation of state. The theory contains a single fit-
ting parameter, namely the diameter of solid spheres.
To determine it, the effective ion-ion pair interaction
will be analyzed by analogy with the cases of metallic
hydrogen and other simple metals [12–16].

2. Internal Energy

While studying metallic helium, let us take advan-
tage of the Hamiltonian [13, 17] used for the analy-
sis of simple liquid metals, which takes the electron-
electron interaction into account exactly. The inter-
nal energy of the metal can be obtained by averaging
the Hamiltonian over the Gibbs canonical ensemble

E = Ei + Eie. (1)

Here,

Ei = Ni
3

2
kBT +Ni

1

2V

∑
q

′
Vii(q)[Si(q)− 1] (2)

is the contribution of the nuclear subsystem. The
first term on the right-hand side of equality (2) is
the kinetic energy of nuclei, the second one corre-
sponds to the Coulomb energy of their interaction,
V is the system volume, Ni the number of nuclei,
Vii(q) = 4πz2e2/q2 is the Fourier transform of the
energy of Coulomb interaction between helium nu-
clei, z = 2, T is the absolute temperature, the prime
means the absence of the term with q = 0, and Si(q)
is the static structure factor of the nuclear subsystem.
In what follows, the structure factor calculated in the
hard-sphere model will be used for Si(q). For a given
concentration, it depends parametrically only on the
solid sphere diameter. At the temperatures consid-
ered below, the nuclear subsystem can be regarded
as classical.

The energy of the electron subsystem and the en-
ergy of interaction between the electron and nuclear
subsystems are convenient to be analyzed together.
Their sum, being the energy of the ground state of
the electron gas in the field of nuclei, can be expanded
in a series in the electron-nucleus interaction param-
eter [13]

Eie =
∞∑

n=0

En. (3)

Every term in this series, in turn, should be expanded
in a series in the electron-electron interaction param-
eter. The term of the zeroth order in the electron-
nucleus interaction, when using the Noziéres–Pines
interpolation formula [18, 19], looks like

E0 = Ne

(
1.105

rs
− 0.458

rs
− 0.058 + 0.016 ln rs

)
. (4)

Here, the Brueckner non-ideality parameter rs was
introduced, which equals the radius of a sphere, the
volume of which is equal to a volume per one electron,
and Ne is the number of electrons in the metal.

Owing to the electroneutrality of the system, the
first-order correction in the electron-electron interac-
tion to the ground-state energy of the electron gas in
metallic helium is absent. The terms of the second
and higher orders look like

En =
Ni

V n

∑
q1,...,qn

Γ(n)(q1, ...,qn)Vie(q1)...Vie(qn)×

×Si(q1, ...,qn)∆(q1 + ... + qn). (5)

Here, Vie(q) = 4πze2/q2 is the Fourier transform
of the Coulomb electron-nucleus interaction energy,
Si(q1, ...,qn) is the n-particle structure factor of the
nuclear subsystem; ∆(q1 + ... + qn) the Kronecker
symbol, and Γ(n)(q1, ...,qn) the electron n-pole fac-
tor [13]. The last expression is formally exact and,
hence, is unsuitable for specific calculations.

There are a number of techniques to approximately
calculate the electron three-pole factor [20–23] and
many-particle structure factors for the nuclear sub-
system [24]. For the electron double-pole factor, the
general result obtained by various authors reads

Γ(2)(q,−q) = −1

2

π(q)

ε(q)
. (6)
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Here, π(q) is the polarization function, and ε(q) is
the dielectric permittivity of the electron gas. In the
random phase approximation with regard for the ex-
change interaction and electron–electron correlations
in the local-field approximation, we have

ε(q) = 1 + [Vee(q) + U(q)]π0(q), (7)

where Vee(q) = 4πe2/q2 is the Fourier transform
of the Coulomb electron-electron interaction energy,
U(q) = −2πe2/(q2 + λk2F) is the potential energy of
exchange interaction and correlations in the electron
gas, λ ≈ 2 [25], and π0(q) is the polarization function
of the ideal electron gas.

The results obtained by different authors for the
electron three-pole factor are substantially different.
The result of our independent calculations [17] carried
out in the framework of the ideal electron gas model
coincides with that obtained in work [22]:

Γ(3)(q1,q2,q3) =
Λ
(3)
0 (q1,q2,q3)

ε(q1)ε(q2)ε(q3)
. (8)

Here, Λ(3)
0 (q1,q2,q3) is the electron three-pole factor

for a degenerate ideal electron gas. After changing
from summation to integration in a spherical coordi-
nate system, the terms of the second and third orders
in the electron-proton interaction are as follows:

E2 = −Ni
1

4π2

∞∫
0

π(q)

ε(q)
V 2
ie(q)Si(q)q

2dq, (9)

E3 = Ni
1

4π4

∞∫
0

dq1q
2
1

∞∫
0

dq2q
2
2F (q1, q2), (10)

F (q1, q2) =
2n+ 1

2

π∫
0

Λ
(3)
0 (q1,q2,−q1 − q2)

ε(q1)ε(q2)ε(|q1 − q2|)
×

×Vie(q1)Vie(q2)Vie(|q1 + q2|)Si(q1,q2,−q1 − q2)×

× sin(θ12)dθ12. (11)

For the three-particle structure factor, we use the ap-
proximation [24, 26, 27]

Si(q1,q2,q3) = Si(q1)Si(q2)Si(q3). (12)

The Helmholtz free energy is defined as

F = E − TS, (13)

where S is the entropy of the system. It is expressed
as a sum of electron and nuclear components. In the
case of degenerate electron gas, the electron compo-
nent can be neglected in comparison with the nuclear
one. The latter contribution, in the hard-sphere ap-
proximation [19, 28], looks like

S = S0i + Sii(η), (14)

where

S0i = NikB ln

[
e

ni

(
eMkBT

2π~2

)3/2
]

(15)

is the entropy of the ideal nuclear gas, M the nucleus
mass, ni the concentration of nuclei,

Sii(η) = NikB
3η2 − 4η

(1− η)
2 (16)

is the contribution associated with the interaction be-
tween nuclei, and η is the parameter of nuclear pack-
ing.

3. Effective Ion-Ion Pair Interaction

At first glance, the proposed theory contains a sin-
gle undetermined parameter, the diameter of hard
spheres. Knowing its dependence on the concen-
tration and the temperature, the corresponding de-
pendences of thermodynamic potentials can also be
found. In this work, in order to determine the re-
quired dependence for the hard-sphere diameter, we
use the approximation of effective pair interaction be-
tween nuclei. The expression for this interaction in-
cludes the direct Coulomb interaction between nuclei
and their interaction mediated through conduction
electrons. The former is repulsive, the latter attrac-
tive. The competition between those two components
may result in a formation of a potential well with a
characteristic minimum. From the dependence of this
interaction on the distance between nuclei, it is possi-
ble to determine the diameter of hard spheres for any
temperature and concentration [29].

The diameter of hard spheres σ is a minimum dis-
tance, at which the nuclei can approach one another
at a given temperature. It can be found from the con-
dition of equality of the kinetic and potential energies
of nuclei at their mutual approach,

Vef(σ) = 3kBT/2. (17)
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Analogously to the case of metallic hydrogen [12,
30, 31], the effective ion-ion pair interaction in liquid
metallic helium is considered in the framework of the
theory of perturbation in the electron-nucleus inter-
action. The quantity concerned can be expressed as
follows [13]:

Uef(R) =
∞∑

n=0

U
(n)
2 (R), (18)

where R is the distance between nuclei. If metal-
lic helium is formed by double-ionized helium atoms,
U

(0)
2 (R) = Vii(R) is the energy of Coulomb interac-

tion between nuclei. The term of the first order in the
electron-nucleus interaction potential U

(1)
2 (R) = 0,

the term of the second order is

U
(2)
2 (R) = − e2

2π2R

∞∫
0

V 2
ei(q)

π0(q)

ε(q)
sin(qR)qdq, (19)

and the term of the third order is

U
(3)
2 (R)=

3e2

4π4R

∞∫
0

dq1q1 sin(q1R)

∞∫
0

dq2q
2
2

q1+q2∫
|q1−q2|

dq3×

×Vie(q1)Vie(q2)Vie(q3)

ε(q1)ε(q2)ε(q3)
Λ
(3)
0 (q1, q2, q3). (20)

In Fig. 1, the plot of the dependence of the effec-
tive pair interaction between nuclei on the distance
between them is depicted. The potential is reckoned
in kelvins, and the distance in atomic units. The
potential has a profile typical of that for simple met-
als. The depth of the first potential well minimum
amounts to approximately 3000 K, which is enough
for liquid metallic helium to be stable at lower tem-
peratures and the given density. The position of the
first minimum corresponds to the equilibrium relative
arrangement of neighbor helium nuclei in the metal
phase. The term of the third order has much more
importance to the formation of this minimum than
the second-order term does. Such a situation is in-
herent to metallic hydrogen as well [15]. Note that,
nevertheless, the contribution of the third-order term
to the internal energy of the metal amounts only to
a few percent, being much smaller than the contribu-
tion of the second-order term.

The depth of the first minimum decreases at higher
densities and increases at lower ones. In addition, an-
other potential well starts to emerge at much shorter

Fig. 1. Potential of effective pair interaction between helium
nuclei at a density of 6.7 g/cm3

distances between the nuclei. Such a behavior of the
potential of proton-proton interaction is also observed
in metallic hydrogen. It is usually interpreted as the
beginning of the formation of the molecular hydrogen
phase [30, 31]. In the case of helium, we, probably,
also obtain a reconstruction of the electron subsys-
tem in the metal, which corresponds to the emergence
of single-ionized helium atoms. In our opinion, the
characteristic density that separates those two metal-
lic phases of liquid helium is a density of 5.3 g/cm3,
at which the depths of two indicated potential wells
become equal. The situation with metallic helium
is unique. We can calculate only the free energy of
double-ionized helium. That is why our analysis is
based on the effective pair interaction rather than, for
instance, the free energy in a vicinity of the transition
point. The formulas for the pair interaction do not
contain any free parameter and do not demand any
grave model assumptions. The analysis of any other
metallic helium parameter would require the both.

The results of our calculations testify that helium
can be in the metallic state in the central regions of
all giant planets in the solar system. Note that the
results obtained, while finding the hard sphere diam-
eter, should be regarded only as useful estimations.
The issue concerning the role of terms in the per-
turbation theory series higher than the third-order
one for the calculations of the effective pair nucleus-
nucleus interaction remains open. In particular, for
a temperature of 10,000 K and a helium density of
5.3 g/cm3, we obtain 2.101 a.u. for the diameter of
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Fig. 2. Dependences of the Helmholtz free energy on the den-
sity at T = 10000 K found in the second, F2(n, T ), and third,
F3(n, T ), orders of perturbation theory, and an estimation of
the total sum for F (n, T )

Fig. 3. Dependences of the pressure on the density at T =

= 10000 K found in the second, P2(n, T ), and third, P3(n, T ),
orders of perturbation theory, and an estimation of the total
sum for P (n, T )

hard spheres in the second order of perturbation the-
ory. If the third-order term is taken into considera-
tion, this value falls down to 1.778 a.u. The terms
of the fourth and higher orders cannot be taken into
account accurately. We may only suppose that in-
cluding the terms of higher orders into consideration
would result in a further reduction of the hard-sphere
diameter. If we additionally suppose that the rate
of those variations corresponds to the geometric pro-
gression, the value of hard-sphere diameter obtained

Fig. 4. Dependences of the pressure on the density calculated
in the third order of perturbation theory for various tempera-
tures

Fig. 5. The same as in Fig. 4, but for very high densities

in the second order of perturbation theory should be
multiplied by α = 0.5. In this case, it turns out close
to the diameter of the first Bohr orbit in a single-
ionized helium atom.

4. Discussion of Results

First of all, let us elucidate how eligible is the appli-
cation of perturbation theory in the electron-nucleus
interaction to the determination of the free energy.
In Fig. 2, the dependence of the free energy on the
density is exhibited. The free energy F (n, T ) was es-
timated, by assuming that the series of perturbation
theory for the structure-dependent part of the inter-
nal energy is a geometric progression with the com-

462 ISSN 2071-0186. Ukr. J. Phys. 2013. Vol. 58, No. 5



Thermodynamics of metallic helium

mon ratio equal to E3(n, T )/E2(n, T ). The energy
values are reckoned in atomic units, and the density
in g/cm3 units. One can see that the obtained esti-
mation is close to the values of energy calculated to
within the third-order terms of perturbation theory.

A similar behavior is inherent to the dependence
of the pressure on the density, which is illustrated in
Fig. 3. The pressure is reckoned in Mbar units and
the density in g/cm3 ones. As the density grows, the
convergence rate for the free energy and pressure se-
ries increases. At a density of 5.3 g/cm3, the pressure
amounts to about 18 Mbar. Provided that helium is
in the single-ionized state below this density, the indi-
cated pressure value may probably be the upper pres-
sure limit for helium in this state. The values of pres-
sure and density shown in Fig. 3 fall within the cor-
responding ranges that are characteristic of the inner
regions of such planets as the Jupiter [32]. This cir-
cumstance points at a possibility for metallic helium
to exist in the central regions of not only the Jupiter,
but also other exoplanets belonging to its group.

In Fig. 4, the pressure is plotted as a function of
the density at various temperatures. This dependence
grows monotonously, being almost linear in the con-
sidered intervals of densities and temperatures. The
pressure is reckoned in Mbar units, and the density
in g/cm3 ones.

Figure 5 demonstrates the dependence of the pres-
sure on the density for so high values of the latter that
the pressure no more depends on the structure of the
nuclear subsystem. At the end of the considered in-
terval, the results of summing up the series of pertur-
bation theory for the pressure including the terms of
the second or third order coincide to within three sig-
nificant digits, P2(50, 10000) = P3(50, 10000). The
relative magnitude of temperature corrections also
decreases. The behavior of the pressure becomes
more and more universal, which is mainly governed
by properties of the degenerate electron gas.

The reliability of the obtained results is also con-
firmed by the fact that the electrical resistivity of
metallic helium calculated similarly to that of metal-
lic hydrogen [15] falls within the interval of values
typical of simple bivalent liquid metals. Its temper-
ature dependence is also similar to that for metallic
hydrogen.

The results of our calculations provide quite rea-
sonable values, which may serve as a reference
point, while studying the thermodynamic properties

of single-ionized helium. In this case, the develop-
ing theory will inevitably contain more fitting pa-
rameters, so that experimental information associ-
ated with the metallic state of helium will be required
for their determination.
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ТЕРМОДИНАМIКА МЕТАЛIЧНОГО ГЕЛIЮ

Р е з ю м е

В роботi розраховано внутрiшню i вiльну енергiю, та рiв-
няння стану в рiдкому металiчному гелiї в широкому дiа-
пазонi густин i температур. Для всiх зазначених характе-

ристик металу використана теорiя збурень за потенцiалом
електрон-iонної взаємодiї iз врахуванням членiв до третьо-
го порядку включно. Для електронiв провiдностi викори-
стано наближення випадкових фаз при врахуваннi обмiн-
ної взаємодiї i кореляцiй в наближеннi локального поля.
Для ядерної пiдсистеми використана модель твердих сфер.
Дiаметр цих сфер є єдиним параметром теорiї. Оцiнку дi-
аметра i густини системи, за яких вiдбувається перехiд ге-
лiю з одноразово у дворазово iонiзований стан, виконано
на основi аналiзу парної ефективної взаємодiї мiж ядра-
ми гелiю. Для останньої також враховується член третього
порядку теорiї збурень В роботi розглянуто випадок дво-
разово iонiзованих атомiв гелiю. Роль поправки третього
порядку у всiх випадках виявилась суттєвою. Значення
термодинамiчних параметрiв: густини, температури i ти-
ску укладаються в дiапазон значень, характерних для цен-
тральних областей планет-гiгантiв. Це дозволяє припустити
iснування гелiю в металiчному станi в межах сонячної
системи.
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