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FLUXON SCATTERING ON A STRIPE-LIKE IMPURITY
IN A TWO-DIMENSIONAL JOSEPHSON JUNCTIONPACS 05.45.Yv, 74.50.+r

The interaction of a soliton (fluxon) with a stripe-like inhomogeneity in a two-dimensional
Josephson junction is studied. The radiation emitted due to the fluxon scattering on the
impurity is calculated. The total radiation energy shows a distinct resonant dependence as a
function of the fluxon velocity. The current-voltage characteristic of such a junction with a
fluxon trapped in it is calculated. The signature of the emitted radiation on the current-voltage
dependence is analyzed.
K e yw o r d s: fluxon scattering, stripe-like impurity, two-dimensional Josephson junction.

1. Introduction

Nonlinear wave phenomena are ubiquitous in the Na-
ture. Among them, solitons (stable spatially local-
ized waves that travel with constant shape and ve-
locity) take a special place. The existence of a soli-
ton in magnets, liquid crystals, optical fibers, molec-
ular chains, and large Josephson junctions (LJJs) is
demonstrated. Solitons in LJJs have the physical
meaning of magnetic flux quanta, are also known as
fluxons, and are described by the well-known sine-
Gordon (SG) equation. The fluxon dynamics in LJJs
continues to be a subject of the strong theoretical and
experimental interest during the last three decades
[1–3]. The convenient way to prepare a junction with
the required properties is to install various inhomo-
geneities into it.

Up to now, the substantial theoretical work has
been devoted to the study of the fluxon motion in
one-dimensional (1D) LJJs with point-like impurities.
In the pioneering paper [4], the main results for the
dc-driven and damped soliton interaction with an im-
purity are presented. The radiation emitted during
the fluxon-impurity interaction has been computed
for the individual impurity [5], multiple randomly dis-
tributed impurities [6], and the periodic impurity ar-
ray [7]. Experimental results on the fluxon scattering
on impurities are reported in Refs. [7, 8]. The scat-
tering of a kink on point impurities in the unbiased
and non-damped SG model has been studied in Refs.
[9, 10]. The absence of dissipation makes the soliton-
impurity interaction more complex and strongly de-
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pendent on the initial conditions. But in the case of
the fluxon dynamics in a LJJ, the presence of the dis-
sipation is unavoidable. As is shown in Ref. [4], the
soliton either passes the impurity or gets trapped by
it, depending on the value of bias current. Spatially
inhomogeneous Josephson systems with trapped flux-
ons have been discussed as prospective applications,
such as fluxon-based information devices [11].

While it is common to consider 1D LJJs, they are
always two-dimensional (2D) in reality in the sense
that they have a finite width in the direction per-
pendicular to the fluxon propagation direction. If the
junction is quite narrow, the 1D approximation is jus-
tifiable. However, it might not be so. Therefore, the
presence of the transverse degree of freedom may play
an important role. Up to now, most of the research
has been focused on the various isotropic 2D struc-
tures like oscillons, skyrmions, and ring kinks [12–
15]. It is worth mentioning also the case of window
junctions [16, 17] that studies the point or rectangu-
lar Josephson junctions embedded in a larger two-
dimensional superconducting sample. This situation
can be viewed as the opposite to the case of the super-
conducting or insulating impurity embedded in the
large Josephson junction, which will be discussed in
this paper.

The solitonic front propagation in 2D nonlinear me-
dia has been studied in the number of papers. For
the lattice acoustic soliton front interaction with mass
impurities [18], it has been shown that the front can
bypass the point impurity, while a 1D lattice soliton
gets reflected from it. Moreover, the soliton front can
overcome even the impurity of the infinite mass. The
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fluxon front scattering on a 𝛿-like point impurity has
been investigated in [19] for the case of an infinite 2D
sample. Waves traveling along the 2D sine-Gordon
(SG) solitonic front have been investigated in [20].

The motivation of this work is twofold. First of
all, it is of interest to investigate the 2D fluxon dy-
namics in the presence of spatial inhomogeneities,
when the junction width is finite. We expect that the
fluxon transmission in this case will be significantly
enhanced comparing to the pure 1D case. Next, since
the impurities have finite sizes in the real systems
[8], we are interested in finding how the fluxon in
the 2D LJJ interacts with a stripe-like impurity elon-
gated in the direction perpendicular to the direction
of the fluxon propagation. In particular, we are go-
ing to study the dependence of the fluxon trapping
and transmission processes on the junction parame-
ters and to calculate the energy density of the radia-
tion emitted during the fluxon scattering process.

This paper is organized as follows. In the next sec-
tion, the model is described. Section 3 is devoted
to the studies of the radiation emitted due to the
fluxon-impurity interaction. In Section 4, we study
the fluxon transmission through an impurity as a
function of the dc bias. The next section utilizes the
results of the previous two sections and is devoted to
the current-voltage characteristics of the junction. In
the last section, the discussion and conclusions are
presented.

2. The Model

We consider a 2D large Josephson junction subjected
to an external time-independent bias. The main dy-
namical variable is a difference between the phases
𝜃2(𝑥, 𝑦; 𝑡) − 𝜃1(𝑥, 𝑦; 𝑡) = 𝜑(𝑥, 𝑦; 𝑡) of the macroscopic
wave functions of the superconducting layers of the
junction. The time evolution of the phase difference
is governed by the perturbed sine-Gordon (SG) equa-
tion

𝜕2𝑡 𝜑−Δ𝜑+ [1 + 𝑓(𝑥, 𝑦)] sin𝜑 = −𝛼𝜑𝑡 − 𝛾, (1)

where Δ𝜑 = (𝜕2𝑥 + 𝜕2𝑦)𝜑 . In this dimensionless equa-
tion, the spatial variables 𝑥 and 𝑦 are normalized to
the Josephson penetration depth 𝜆𝐽 , and the tempo-
ral variable 𝑡 is normalized to the inverse Josephson
plasma frequency 𝜔−1

𝐽 [1, 2]. The bias current 𝛾 is
normalized to the critical Josephson current of the
junction, and 𝛼 is the dimensionless dissipation pa-

rameter. The function 𝑓(𝑥, 𝑦) describes the spatial
inhomogeneity. We consider a stripe-like microshort
(i.e., the region of the locally enhanced density of
the critical superconducting current) of width 𝑑 and
strength 𝜇 > 0, which is stretched along the 𝑦 direc-
tion:
𝑓(𝑥, 𝑦) = 𝜇𝛿(𝑥)

[︂
𝜃

(︂
𝑦 +

𝑑

2

)︂
+ 𝜃

(︂
𝑑

2
− 𝑦

)︂
− 1

]︂
. (2)

Here, 𝜃(𝑥) is the Heaviside function.
In the unperturbed case, the SG equation possesses

the soliton solution of the form

𝜑0(𝑥, 𝑡) = 4 arctan

[︂
exp

(︂
𝑄

𝑥− 𝑣𝑡

(1− 𝑣2)1/2

)︂]︂
, (3)

where 𝑣 is the soliton velocity, and 𝑄 = ±1 is the
topological charge. Without loss of generality, we re-
strict ourselves to the case 𝑄 = 1. The boundary
conditions will be discussed in the next sections.

3. Generation of Radiation
by the Fluxon-Impurity Interaction

Fluxon scattering on an obstacle naturally results
in the emission of radiation. Assuming the dissipa-
tion and the dc bias to be negligible, we consider
the radiation emitted by the fluxon that interacts
with the stripe impurity (2). The radiation emis-
sion studies for the respective 1D problem are based
on the inverse-scattering transform [5, 7, 10]. How-
ever, we are going to modify the approach developed
in Ref. [19].

The solution of the perturbed SG equation (1) is
presented as a superposition of the exact soliton so-
lution 𝜑0(𝑥, 𝑡) [see Eq. (3)] with 𝑄 = 1 and the
radiation on its background: 𝜑(𝑥, 𝑦, 𝑡) = 𝜑0(𝑥, 𝑡)+
+𝜓(𝑥, 𝑦, 𝑡), |𝜓| ≪ 1. After substituting this ansatz
into the SG equation (1) and transferring to the
frame of reference [𝜉 = (1 − 𝑣2)−1/2(𝑥 − 𝑣𝑡), 𝑦, 𝜏 =
= (1 − 𝑣2)−1/2(𝑡 − 𝑣𝑥)] that moves with the fluxon
velocity 𝑣, one obtains the linearized equation for the
radiated waves:

[𝜕2𝜏 + �̂�]𝜓 = −𝐹 (𝜉, 𝑦, 𝜏) sin[𝜑0(𝜉)], (4)

�̂� ≡ −(𝜕2𝜉 + 𝜕2𝑦) + cos[𝜑0(𝜉)], (5)

𝐹 (𝜉, 𝑦, 𝜏) = 𝜇(1− 𝑣2)1/2𝛿(𝜉 + 𝑣𝜏)

[︂
𝜃

(︂
𝑦 +

𝑑

2

)︂
+

+𝜃

(︂
𝑑

2
− 𝑦

)︂
− 1

]︂
. (6)
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The soliton solution in the moving frame is given by
𝜑0(𝜉) = 4 arctan(exp 𝜉). With the help of the eigen-
functions (for the corresponding 1D problem, see Ref.
[21]) of the operator �̂� on the infinite plane,

𝜙(𝜉, 𝑦; 𝑞𝜉, 𝑞𝑦) =
𝑒𝑖(𝑞𝜉𝜉+𝑞𝑦𝑦)

(2𝜋)3/2
𝑞𝜉 + 𝑖 tanh 𝜉

(1 + 𝑞2𝜉 )
1/2

, (7)

the solution of (4) can be represented in the form

𝜓(𝜉, 𝑦, 𝜏) =

=

+∞∫︁
−∞

+∞∫︁
−∞

𝑎(𝑞𝜉, 𝑞𝑦; 𝜏)𝜙(𝜉, 𝑦; 𝑞𝜉, 𝑞𝑦) 𝑑𝑞𝜉 𝑑𝑞𝑦. (8)

Here, 𝑞𝜉 and 𝑞𝑦 are the respective components of the
radiation wave vector, and the radiation amplitude
𝑎(𝑞𝜉, 𝑞𝑦; 𝜏) is yet to be found. It is more convenient to
use another function (see also Ref. [19]), 𝑏(𝑞𝜉, 𝑞𝑦; 𝜏)

.
=

.
= (𝜕𝜏𝑎 − 𝑖�̄�𝑎) exp (𝑖�̄�𝜏), where �̄� = (1 + 𝑞2𝜉 + 𝑞2𝑦)

1/2

is the radiated wave frequency in the moving frame.
The calculation of 𝑏(𝑞𝜉, 𝑞𝑦; 𝜏) is given in Appendix.
We are interested in the final values of the emitted ra-
diation, 𝐵(𝑞𝜉, 𝑞𝑦) = 𝑏(𝑞𝜉, 𝑞𝑦; 𝜏 → +∞). It is assumed
that there was no radiation before the fluxon inter-
acted with the impurity. Therefore, finding the final
radiation amplitude reduces to the simple integration:
𝐵(𝑞𝑥, 𝑞𝑦) =

∫︀ +∞
−∞ 𝜕𝜏 𝑏(𝑞𝑥, 𝑞𝑦; 𝜏)𝑑𝜏 . The expression for

the derivative 𝜕𝜏 𝑏 is given by Eq. (23) in Appendix.
This integral can be easily calculated. The total emit-
ted energy density reads ℰ(𝑞𝜉, 𝑞𝑦) ≃ 4𝜋−1|𝐵(𝑞𝜉, 𝑞𝑦)|2
(see Ref. [19] for details). Thus, the final expression
for the energy density is

ℰ(𝑞𝜉, 𝑞𝑦) =
8𝜇2

𝑞2𝑦
sin2

(︂
𝑞𝑦𝑑

2

)︂
sech2

[︁ 𝜋
2𝑣

(𝑞𝜉𝑣 + �̄�)
]︁
×

× (1− 𝑣2)

𝑣6

[︁
�̄�2 −

(︁
1 + 𝑞2𝜉

)︁
𝑣2
]︁2

1 + 𝑞2𝜉
. (9)

We have to return back to the laboratory frame of
reference. This means that the wave-vector compo-
nents and the radiation frequency must undergo the
following transformation:

𝑞𝑥 =
𝑞𝜉 + 𝑣�̄�√
1− 𝑣2

, 𝜔 =
𝑣𝑞𝜉 + �̄�√
1− 𝑣2

, 𝜔 = (1+𝑞2𝑥+𝑞
2
𝑦)

1/2.

(10)

The 𝑞𝑦 component remains unchanged. As a result,
we obtain the energy density in the laboratory frame
of reference:

ℰ(𝑞𝑥, 𝑞𝑦) =
8𝜇2

𝑞2𝑦
sin2

(︂
𝑞𝑦𝑑

2

)︂
sech2

[︁𝜋𝜔
2𝑣

(1− 𝑣2)1/2
]︁
×

× (1− 𝑣2)2

𝑣6

[︁
(𝜔 − 𝑣𝑞𝑥)

2
+ (𝑣𝑞𝑦)

2
]︁2

(𝜔 − 𝑣𝑞𝑥)
2 − (1− 𝑣2)𝑞2𝑦

. (11)

The energy density function for the stripe impu-
rity is symmetric with respect to the transforma-
tions 𝑞𝑦 → −𝑞𝑦 and 𝑞𝑥 → −𝑞𝑥, 𝑣 → −𝑣. There-
fore, it is sufficient to study it for the velocities in
the interval 0 ≤ 𝑣 < 1. Its shape for different val-
ues of soliton velocity is given in Fig. 1. It should
be noted that this dependence has no singularities
for all −∞ < 𝑞𝑥,𝑦 < +∞, because its divisor is al-
ways positive, as can easily be seen from Eq. (9).
The main peak of the ℰ(𝑞𝑥, 𝑞𝑦) dependence lies on
the 𝑞𝑦 = 0 axis. In the limit 𝑣 → 0, the depen-
dence becomes almost isotropic and strongly local-
ized around the main peak, which moves toward the
origin, as 𝑣 is decreased. The increase in 𝑣 leads to
the squeezing of the main peak in the 𝑞𝑦 direction
and its elongation in the 𝑞𝑥 direction. The maximum
of ℰ(𝑞𝑥, 𝑞𝑦) moves toward the negative values of 𝑞𝑥.
The secondary peaks that exist due to the presence
of the sin term in Eq. (11) become noticeable, when
𝑣 → 1 (see Fig. 1, c). The functional dependence of
the energy density function for the stripe impurity
differs from the same dependence for the point im-
purity 𝑓(𝑥, 𝑦) = 𝜇*𝛿(𝑥)𝛿(𝑦) studied in Ref. [19] (see
Eq. (2.16) of that paper) only by the presence of the
term sin2 (𝑞𝑦𝑑/2)/𝑞

2
𝑦. This term, however, changes

drastically the properties of the energy distribution.
For example, in the limit 𝑣 → 1 (1− 𝑣2 ≪ 1), the en-
ergy density function for the point impurity becomes
almost isotropic except the narrow dip of the width
∼ (1 − 𝑣2)1/2 along the 𝑞𝑥 axis. At the same time,
the energy density function for the stripe impurity be-
comes strongly anisotropic in this limit, as has been
discussed above.

Even more drastically, the anisotropy of the energy
density function influences the total emitted energy

𝐸 =

+∞∫︁
−∞

+∞∫︁
−∞

ℰ(𝑞𝑥, 𝑞𝑦) 𝑑𝑞𝑥𝑑𝑞𝑦. (12)
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a b c
Fig. 1. (Color online) Profile of the energy density ℰ(𝑞𝑥, 𝑞𝑦) [see Eq. (11)] for 𝑑 = 5 and 𝑣 = 0.3 (a), 𝑣 = 0.7 (b), 𝑣 = 0.99 (c)

Fig. 2. Dependence of the normalized emitted energy on the
fluxon velocity. Panel (a) corresponds to the case of the stripe
impurity (2) at 𝑑 = 1 (curve 1), 𝑑 = 5 (curve 2) and 𝑑 = 10

(curve 3). Panel (b) corresponds to the point-impurity case
𝑓(𝑥, 𝑦) = 𝜇*𝛿(𝑥)𝛿(𝑦) [see the text for details]. The inset shows
the details of the 𝑣 → 1 limit

This integral cannot be computed analytically.
Therefore, we have used numerical methods. The en-
ergy vs the soliton velocity is shown in Fig. 2. In panel
(a), the normalized emitted energy 𝐸/𝜇2 is shown as
a function of the impurity width 𝑑. The dependences
have a well-defined maximum and tend to zero in the
limiting cases 𝑣 → 0 and 𝑣 → 1. In the respective
1D problem (e.g., the 1D SG equation) with a 𝛿-like
point impurity, the 𝐸(𝑣) curve is qualitatively the
same [5]. Moreover, the energy density for the 1D
case [5] is easily restored, if we formally put 𝑞𝑦 = 0 in
(11). In the zero-velocity limit, the fluxon approaches
the impurity with the infinitely small kinetic energy.
Therefore, the emitted energy should also be infinitely
small. It can be easily shown that, in the 0 < 𝑣 ≪ 1
limit, the energy grows as 𝐸(𝑣) ∼ exp(−𝜋/𝑣). In
the opposite case as 𝑣 → 1, the fluxon width tends
to zero, so the interaction time will tend to zero as

well. As a result, the emitted energy also tends to
zero. Thus, there should exist a velocity, for which
the energy radiation attains the maximal value. The
position of the maximum decreases, as the impurity
width increases. This can be explained by the fact
that collision with a wider impurity causes the more
energy to be emitted. Therefore, a less kinetic energy
and, consequently, a smaller velocity are needed in
order to reach the maximal radiation. In the limit
𝑑→ 0, the maximum of the 𝐸(𝑣) curve becomes less
pronounced and moves toward the value 𝑣 = 1 (and
eventually disappears, when 𝑑 = 0), while the total
emitted energy tends to zero. This is natural, because
the impurity becomes infinitely narrow, while its am-
plitude remains finite. The soliton energy, however,
is proportional to the junction width and is infinitely
large for the infinite sample.

In order to restore the point-impurity case, the im-
purity strength should be redefined as 𝜇* = 𝑑𝜇. As a
result, in the limit 𝑑 → 0, the impurity function (2)
behaves itself as 𝑓(𝑥, 𝑦) → 𝜇*𝛿(𝑥)𝛿(𝑦), and the en-
ergy density function (11) turns into Eq. (2.16) of Ref.
[19]. The total emitted energy in the point-impurity
case as a function of the fluxon velocity is shown in
Fig. 2, b. The 𝐸(𝑣) dependence is a monotonically
increasing function that tends to a finite value, as
𝑣 → 1 (see the inset). Thus, we have obtained the
limiting case where the stripe impurity becomes the
point impurity, and the maximum of the energy de-
pendence shifts toward 𝑣 = 1 and eventually disap-
pears for 𝑑 = 0.

4. Fluxon Transmission through an Impurity

Now, we consider a more specific situation of a large
but finite junction with length 𝐿 ≫ 1 and width
𝑤 < 𝐿 in the presence of the dissipation and a dc bias
[𝛼 > 0, 𝛾 ̸= 0 in Eq. (1)]. The boundary conditions
along the 𝑦 direction are chosen in the von Neumann
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Fig. 3. (Colour online) Contour plot of the time evolution of the Josephson phase derivative −𝜕𝑡𝜑 in the junction with
𝐿 = 70, 𝑤 = 10, 𝜇 = 0.5, 𝑑 = 3, 𝛼 = 0.1, 𝛾 = 0.03 [(a)–(f)] and 𝛼 = 0.01, 𝛾 = 0.0035 [(g)–(l)]. The impurity is placed in the
middle of the junction at 𝑥 = 𝐿/2 = 35

form: 𝜕𝑦𝜑 (𝑥,−𝑤/2, 𝑡) = 𝜕𝑦𝜑 (𝑥,𝑤/2, 𝑡) = 0. These
boundary conditions are based on the well-known re-
lation 𝜕𝑦𝜑 ∝ −𝐻𝑥 [1] and mean the absence of the 𝑥-
component (𝐻𝑥) of the external magnetic field. The
boundary conditions along the 𝑥 axis are periodic:
𝜑(𝑥+ 𝐿, 𝑦; 𝑡) = 𝜑(𝑥, 𝑦; 𝑡) + 2𝜋.

First of all, in order to get an idea of the
character of the fluxon dynamics, the numerical
integration of the 2D SG equation (1) has been
carried out. The Josephson phase and its space
derivatives are discretized in the following way:
𝜑(𝑥, 𝑦; 𝑡) → 𝜑(𝑚ℎ, 𝑛ℎ; 𝑡) ≡ 𝜑𝑚𝑛(𝑡), Δ𝜑 ≃ ℎ−2×
× (𝜑𝑚+1,𝑛 + 𝜑𝑚,𝑛+1 + 𝜑𝑚−1,𝑛 + 𝜑𝑚,𝑛−1 − 4𝜑𝑚𝑛)+
+𝒪(ℎ−4), while the 𝛿-function is approximated by
the Kronecker 𝛿-symbol. The resulting system of
ODEs with boundary conditions was integrated
with the use of the 4th order Runge—Kutta scheme.
Details of the fluxon interaction with the stripe
impurity are given in Fig. 3. It is important to
mention that the dissipation in Eq. (1) is crucial, and
the soliton interaction with impurities differs from
the dissipationless case where the complex resonant
behavior occurs [10]. Far away from the impurity,

the fluxon exists as only one attractor of the system
with the equilibrium velocity (see Ref. [4])

𝑣∞ =

[︃
1 +

(︂
4𝛼

𝜋𝛾

)︂2]︃−1/2

, (13)

which is predefined by the damping parameter and
the external bias. Therefore, contrary to the non-
dissipative case, the transmission consists of only two
possible scenarios: passage and trapping.

For the sake of better visualization, the derivative
−𝜕𝑡𝜑 is plotted on the 𝑥𝑦 plane at the different time
moments and for two different dissipation values: 𝛼 =
= 0.1 and 𝛼 = 0.01. The fluxon shape experiences
certain changes, while it interacts with the obsta-
cle, namely the redistribution of the Josephson phase
along the fluxon line in the 𝑦 direction. A certain
bending of the fluxon shape in the same direction can
be observed as well. These distortions eventually die
out after some time. For 𝛼 = 0.1, this happens quite
soon after the passage through the impurity. For a
smaller dissipation (𝛼 = 0.01, as shown in Figs. 3, g–
l), the oscillations of the Josephson phase along the 𝑦
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direction seem to survive for a much longer time, com-
parable with the fluxon propagation time along the
junction. The numerical simulations for thinner junc-
tions, 𝑤 < 10 (not shown in the paper), demonstrate
that these shape distortions are considerably weaker.
Moreover, no significant radiation was observed as a
result of the fluxon-impurity interaction, because the
fluxon velocity in this case is around 𝑣∞ ∼ 0.2. As
Fig. 2 suggests, the emitted radiation in this veloc-
ity range is negligibly small. Thus, when studying the
2D fluxon interaction with impurities, one can assume
with a high degree of certainty that the fluxon is an al-
most hard rod at least if 𝑤 ∼ 𝒪(1) and 𝛼 & 0.1. Due
to the finiteness of the junction in the 𝑦 direction and
the von Neumann boundary conditions, the straight
soliton front is the energetically most favourable so-
lution, and, thus, it is not possible to observe the
arc-like solitons reported in [19].

Similarly to the fluxon propagation in the 1D LJJ
[4, 5, 7], there must exist two characteristic values of
the bias current, the critical current 𝛾c, and the re-
trapping current 𝛾thr, 𝛾c > 𝛾thr. If 𝛾 > 𝛾c, the pinning
on the impurity is not possible, and there exists only
one attractor that corresponds to the fluxon propa-
gation. This happens because the bias current is too
strong for the fluxon to get trapped on the impurity.
In the interval 𝛾thr < 𝛾 < 𝛾c, two attractors coexist:
one corresponds to the fluxon being pinned on the
impurity and another one to the fluxon propagation.
If 𝛾 < 𝛾thr, the only possible regime is the fluxon pin-
ning on the impurity. Thus, the retrapping current is
the minimal bias current, for which the fluxon prop-
agation is still possible. By varying 𝛾, one observes
the hysteresis: when the bias is increased from 𝛾 = 0
to 𝛾 = 𝛾c, the fluxon stays pinned and begins to move
if 𝛾 > 𝛾c; it continues to move, when the bias is now
slowly decreased, and gets trapped back on the im-
purity at 𝛾 = 𝛾thr. The value of 𝛾𝑐 = 4𝜇/(3

√
3𝜋) is

defined only by the properties of the impurity, does
not depend on 𝛼 (because the fixed point that corre-
sponds to the trapped fluxon ceases to exist if 𝛾 > 𝛾c),
and can be obtained directly from the 1D analog.
Contrary, for the retrapping current, the dimension-
ality of the junction and its width are crucial.

Far from the impurity, the fluxon kinetic energy is
proportional to the junction width and equals 𝐸𝑘 =
= 8𝑤[(1−𝑣2∞)−1/2−1]. In the non-relativistic fluxon
case (|𝑣∞| ≪ 1), one gets 𝑣∞ ≃ 𝜋𝛾/(4𝛼). We can
use the point-particle ansatz, where the fluxon center-

of-mass coordinate 𝑋(𝑦, 𝑡) is substituted instead of
the 𝑣𝑡 term in the exact solution (3) of the unper-
turbed SG equation. The substitution of this ansatz
in Eq. (1) yields the Newtonian equation of motion
for the fluxon center of mass. Our aim here is to
determine the retrapping current. Thus, the non-
relativistic limit, where no significant radiation is ex-
pected, can be used. Therefore, there is no radiation
term in the above ansatz.

Since the fluxons under consideration are extended
objects in the 𝑦 direction, the equation for the center-
of-mass dynamics, as well as the impurity potential,
should depend on 𝑦. With regard for the numerical
simulations, we consider the fluxon as an absolutely
rigid rod. Therefore, the fluxon center-of-mass dy-
namics can be effectively projected on the 𝑥 axis, and
the respective equation of motion can be written as

𝑚�̈� +𝑚𝛼�̇� + 𝜕𝑋𝑈(𝑋) = 0,

𝑈(𝑋) = −2𝜋𝛾𝑋+𝑈0(𝑋) = −2𝜋𝛾𝑋+
2𝜇

cosh2𝑋
, (14)

where 𝑚 is the fluxon mass, and the center-of-mass
coordinate 𝑋 depends only on the time. The poten-
tial 𝑈(𝑋) has a minimum at 𝑋min ≃ − ln(𝜇/𝛾)/2
and a maximum 𝑋max > 𝑋min, 𝑋max ≃ −𝜋𝛾/(2𝜇).
Because of the bias 𝛾, the potential is asymmetric
with respect to the minimum, and the fluxon slows
down, when approaching the impurity (see Figs. 3, b–
e, where the fluxon spends a lot of time in a neighbor-
hood of the impurity at 𝑥 = 𝐿/2) but quickly acceler-
ates back to the equilibrium velocity after passing it.

In the pure 1D case, the fluxon mass 𝑚 = 8. In
order to project the problem on the 1D picture, it
is necessary to rescale the mass. Indeed, within the
collective-coordinate approach, the fluxon is consid-
ered to be a rigid rod sliding down in the potential
𝑈(𝑋) that does not depend on the impurity width
𝑑. However, only the central part of this rod with
−𝑑/2 < 𝑦 < 𝑑/2 interacts with the impurity, while
the “tails” of the rod at 𝑑/2 < |𝑦| < 𝑤/2 do not. This
is taken into account if the fluxon mass is defined
as 𝑚 = 8𝑤/𝑑. When the impurity length stretches
across the whole junction, i.e. 𝑑 = 𝑤, the prob-
lem becomes completely independent of the 𝑦 direc-
tion, and, consequently, the mass equals 𝑚 = 8.
These considerations are approximate, because the
fluxon bending on the boundaries of the impurity
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has been neglected. Thus, within the kinematic ap-
proach, the retrapping current can be found as a
root of the energy balance equation 𝐸𝑘 = 2𝜇, where
𝐸𝑘 = 𝑚[(1− 𝑣2∞)−1/2 − 1] ≃ 4𝑤𝑣2∞/𝑑+𝒪(𝑣4∞) is the
fluxon kinetic energy. In the non-relativistic case, one
gets 𝛾𝑡ℎ𝑟 ≃ (𝛼/𝜋)

√︀
8𝜇𝑑/𝑤. The correction of the or-

der 𝒪(𝛼2) can be taken into account with the help
of the method developed in [5]. Its modification for
the 2D case is straightforward, so only the principal
points are mentioned here. The corrected energy bal-
ance relation equates the fluxon energy at 𝑋 = −∞
and its losses due to the dissipation, Δ𝐸, with the
maximal height of the potential barrier 𝑈(𝑋):

𝑚
(︁𝜋𝛾
2𝛼

)︁2

+Δ𝐸 = 𝑈(𝑋max). (15)

As a result of the dissipation, the fluxon loses the
energy:

Δ𝐸 =
8𝛼𝑤

𝑑

𝑋max∫︁
−∞

(𝑣∞ − �̇�)𝑑𝑋 ≃ 4𝛼 ln 2 (2𝜇𝑤/𝑑)1/2.

(16)
Here, �̇�(𝑡) ≃ −(𝜇𝑑/2𝑤)1/2(1+tanh𝑋) is an approx-
imate solution of Eqs. (14). Inserting this correction
term Δ𝐸 into the improved energy balance equation
(15) and keeping the terms up to the order 𝒪(𝛼2),
one gets the final formula for the retrapping current:

𝛾thr ≃
𝛼

𝜋

[︃(︂
8𝜇𝑑

𝑤

)︂1/2

− 4𝛼 ln 2

]︃
. (17)

From this expression, one can clearly see that if only
the 𝒪(𝛼) term is taken into account, the retrapping
current disappears as 𝑤 → ∞. Thus, in the infinitely
wide junction, a fluxon always passes the impurity.
The second term in Eq. (17) does not depend on 𝑤,
and, therefore, it may lead to the erroneous conclu-
sion that 𝛾𝑡ℎ𝑟 does not tend to zero, as 𝑤 → ∞.
However, it should be noted that this term has been
derived under the assumption of 𝑤 being finite.

The numerical simulations confirm that the retrap-
ping current decays with the growth of the junction
width (as shown in Fig. 4). Expression (17) ap-
pears to be in good agreement with the numerical
data. Similarly to the point impurity case, the dis-
crepancy between the analytical and numerical re-
sults increases at larger 𝑤. In the limit 𝑑/𝑤 → 1,
the effective 1D picture is restored because the impu-
rity stripe crosses the whole junction in the 𝑦 direc-
tion. Thus, the retrapping current attains the value

Fig. 4. Retrapping current as a function of the junction width
𝑤 for 𝛼 = 0.1, 𝜇 = 0.5, 𝑑 = 1 (1 and �) and 𝑑 = 2 (2 and ∘).
Markers correspond to the numerical results and solid lines
correspond to the approximation (17). Thick horizontal line
corresponds to the retrapping current on the point microshort
in the pure 1D case

𝛾thr = 𝛼(
√
8𝜇 − 4𝛼 ln 2)/𝜋 for the 1D soliton case

(shown by the thick horizontal line in Fig. 4, b). Thus,
we observe that if the stripe impurity constitutes, for
example, about 1/3 of the junction width, the retrap-
ping current is about 40% less than the respective 1D
value. In the case of the 2D point impurity problem,
the strength 𝜇 should be redefined as 𝜇* = 𝜇𝑑, and
the retrapping current will be still defined as that in
Eq. (17).

The following simple argument that explains the
enhanced fluxon transmission across the obstacle of
width 𝑑 in a 2D LJJ can be formulated. The im-
purity can be described as a localized potential bar-
rier. Only the central part (|𝑦| & 𝑑/2) of the fluxon
initially homogeneous in the 𝑦 direction takes part
in the interaction process, while the marginal areas
𝑑/2 . |𝑦| ≤ 𝑤/2 do not. Thus, if the energy in the
tails is sufficient enough to overcome the barrier, the
fluxon will pass. If 𝑤 → ∞, the energy in the non-
interacting part of the fluxon tends to infinity, and,
consequently, it will overcome any localized obstacle.

5. The Current-Voltage Characteristics

With the help of the results obtained in the previous
sections, we can now proceed with the construction of
the current-voltage characteristics (CVCs) of a finite-
size LJJ (𝐿,𝑤 ≫ 1) with one fluxon trapped in it.
The considerations below apply both to an annular
junction [22] (an additional constraint 𝐿≫ 𝑤 should
be applied in order to justify the neglecting of the
curvature effects) or to a linear one [23]. For the
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Fig. 5. Current-voltage characteristics for the LJJ with 𝐿 =

20, 𝑤 = 10, 𝜇 = 0.5. Panel (a) corresponds to the parameter
values 𝛼 = 0.01, 𝑑 = 3 (curve 1), and 𝑑 = 5 (curve 2) while
panel (b) corresponds to the values 𝑑 = 5, 𝛼 = 0.1 (curve
1), 𝛼 = 0.01 (curve 2) and 𝛼 = 0.001 (curve 3). The thin
unmarked curves correspond to the homogeneous case 𝜇 = 0

for the respective values of 𝛼

annular junction, the boundary conditions (b.c.) are
given in the previous section, while, for the linear
junction, the periodic b.c. should be replaced by the
von Neumann conditions 𝜕𝑥𝜑(±𝐿/2, 𝑦, 𝑡) = 0.

If the fluxon is moving in the LJJ, it generates the
voltage drop, which equals 𝑉 = 2𝜋𝑣/𝐿 after the av-
eraging over large times, where 𝑣 is its average ve-
locity. The total power (energy per time unit) pro-
duced by the dc bias 𝑃tot = 𝑉 𝛾𝐿𝑤 should balance
the dissipative loss 𝑃diss and the radiative loss 𝑃rad:
𝑃tot = 𝑃diss + 𝑃rad. The radiative loss power has
been computed in Ref. [4] for a 1D junction. In
the 2D case, it equals 𝑃diss = 8𝛼𝑤𝑣2/

√
1− 𝑣2. The

radiative power loss on large times equals 𝑃rad =
= 𝐸(𝑣)/𝑇 = 𝐸(𝑣)𝑣/𝐿, where 𝑇 = 𝐿/𝑣 is the time in-
terval between two consecutive fluxon-impurity scat-
tering events, and 𝐸(𝑣) is the radiation energy emit-
ted during such an event. This energy is given by
Eqs. (11)–(12) 1. As a result, the power balance equa-

1 We make two assumptions. First of all, the radiated en-
ergy has been defined for the infinite junction. For a finite
junction, the continuous spectrum (11) should be replaced
by a discrete one. However, if the junction is large enough,
this difference is negligible. Secondly, this energy has been
calculated in the dissipationless case (𝛼 = 0). Nevertheless,
most of the energy is emitted during the finite time of the
fluxon-impurity interaction, and if 𝛼 ≪ 1, the dissipation
of the emitted waves is very small. Especially, this is true,
when 𝑣 is not small, and the interaction time is 𝒪(𝑣−1).

tion yields the CVC

𝛾 =
1

2𝜋

⎧⎨⎩4𝛼𝐿𝑉

𝜋

[︃
1−

(︂
𝐿𝑉

2𝜋

)︂2]︃−1/2

+
𝐸(𝐿𝑉/2𝜋)

𝐿𝑤

⎫⎬⎭, (18)

where 𝑉 = 2𝜋𝑣/𝐿 is the average voltage drop across
the junction. This expression is defined in the interval
𝛾thr < 𝛾 < ∞, where 𝛾thr is given by Eq. (17). We
note that, in experiments, one of the quantities (𝛾 or
𝑉 ) is controlled, and another one is measured.

In Fig. 5, CVCs (18) are plotted. It appears
that these curves depend strongly on the junction
parameters. The thin unmarked lines are the CVCs
for a spatially homogeneous junction (𝜇 = 0), which
have been obtained from Eq. (18), when the second
term is absent. In such a case, the equilibrium
fluxon velocity 𝑣∞ is recovered easily. The emitted
radiation results in a deviation of the CVC from
the homogeneous limit. This deviation is noticeable
for the intermediate values of the voltage (fluxon
velocity) but decreases in the limits 𝑉 → 0 and
𝑉 → 2𝜋/𝐿 (𝑣 → 1). The deviation from the homo-
geneous limit increases if the impurity width 𝑑 is
increased or when the junction area 𝐿𝑤 is decreased.
It also can be increased if the dissipation is decreased
(see Fig. 5, b). For very small values of 𝛼, the CVC
can even have a local maximum. This behavior of
CVCs occurs, because while the first term in (18) is
a monotonically increasing function of 𝑉 , the second
(“radiative”) term has a clear maximum as shown in
Fig. 2. The proper parameter choice can result in the
domination of the second term and the appearance
of a local maximum. It should be noted, however,
that the realistic dissipation values lie in the interval
𝛼 ∼ 0.01 − 0.1; thus, observation of this maxima is
rather unlikely. The abrupt ending of the CVCs is
due to the fact that, for the bias 𝛾 < 𝛾thr, the fluxon
is always trapped by the impurity and, consequently,
it produces the zero voltage drop. Finally, the
critical current 𝛾c = 4𝜇/(𝜋3

√
3) ≃ 0.1225 for 𝜇 = 0.5

corresponds to the rather large fluxon velocities,
which are close to the ultrarelativistic limit 𝑣 → 1.

6. Conclusion

We have shown that the two-dimensional fluxon pas-
sage across microshorts is significantly enhanced in
comparison with that in the purely one-dimensional
case. The retrapping threshold current decays with
the junction width approximately as 𝑤−1/2, accord-
ing to the kinematic approach. The numerical sim-
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ulations support this dependence, while the discrep-
ancy between the numerical simulations and the an-
alytical calculations is explained by the fact that, for
𝑤 ≫ 1, the fluxon cannot be longer considered as a
completely rigid object, and its deformation in the 𝑦
direction should be taken into account.

The energy of the radiation emitted during the
fluxon-impurity scattering process shows a clear res-
onant behavior as a function of the fluxon velocity
𝑣. There exists an optimal velocity, for which the
radiated energy is maximal, and, at the same time,
this energy decreases to zero in the limits 𝑣 → 0
and 𝑣 → 1. Such a dependence was observed for
the purely 1D fluxon scattering problem on the 𝛿-like
point impurity [5, 6]. On the other hand, our result
is in the sharp contrast with the 2D fluxon scatter-
ing on the 𝛿-like point impurity [19] (described as
𝑓(𝑥, 𝑦) = 𝜇*𝛿(𝑥)𝛿(𝑦) in the SG equation), where the
emitted energy grows in the monotonic way from the
zero value at 𝑣 = 0 to some constant at 𝑣 = 1. Thus,
in our opinion, the stripe-like approximation of the
impurity appears to be more realistic.

We have constructed the current-voltage character-
istics (CVCs) of the large but finite junctions with the
stripe impurity. The role of the emitted radiation can
be easily spotted on such a CVC as a deviation from
the CVC of a homogeneous junction. These charac-
teristics can be measured experimentally.

One of the authors (Y.Z.) acknowledges the finan-
cial support from the Ukrainian State Grant for Fun-
damental Research No. 0112U000056.

APPENDIX

In this appendix, we present the details of the calculation of
the emitted radiation.

Representation (8) is substituted into the linearized equa-
tion of motion (4). As a result, we obtain

+∞∫︁
−∞

+∞∫︁
−∞

[︀
𝜕2
𝜏𝑎+ �̄�2𝑎

]︀
𝜙(𝜉, 𝑦; 𝑞𝜉, 𝑞𝑦)𝑑𝑞𝜉𝑑𝑞𝑦 =

= 2𝐹 (𝜉, 𝑦, 𝜏) tanh 𝜉 cosh−1 𝜉, (19)

�̄� = (1 + 𝑞2𝜉 + 𝑞2𝑦)
1/2

. (20)

The function 𝐹 (𝜉, 𝑦, 𝜏) is given by Eq. (6). It is more conve-
nient to work with another radiation amplitude,

𝑏(𝑞𝜉, 𝑞𝑦 ; 𝜏)
.
= (𝜕𝜏𝑎− 𝑖�̄�𝑎)𝑒𝑖�̄�𝜏 , (21)

that satisfies 𝜕𝜏 𝑏 = 𝑒𝑖�̄�𝜏
(︀
𝜕2
𝜏 + �̄�2

)︀
𝑎. We multiply both the

sides of Eq. (19) by 𝜙*(𝜉, 𝑦; 𝑞′𝜉, 𝑞
′
𝑦) and integrate them as

∫︀+∞
−∞

∫︀+∞
−∞ 𝑑𝜉𝑑𝑦. Using the orthogonality condition

+∞∫︁
−∞

+∞∫︁
−∞

𝜙*(𝜉, 𝑦; 𝑞𝜉, 𝑞𝑦)𝜙(𝜉, 𝑦; 𝑞
′
𝜉, 𝑞

′
𝑦) 𝑑𝜉𝑑𝑦 =

= 𝛿(𝑞𝜉 − 𝑞′𝜉) 𝛿(𝑞𝑦 − 𝑞′𝑦) (22)

and making some calculations, we obtain

𝜕𝜏 𝑏 =
𝑒𝑖�̄�𝜏

√
2𝜋

+∞∫︁
−∞

+∞∫︁
−∞

𝐹 (𝜉, 𝜏, 𝑦)𝑒−𝑖(𝑞𝜉𝜉+𝑞𝑦𝑦)×

×
tanh 𝜉

cosh 𝜉

𝑞𝜉 − 𝑖 tanh 𝜉

(1 + 𝑞2𝜉 )
1/2

𝑑𝜉 𝑑𝑦 =

= −
4𝜇

(2𝜋)1/2

(︃
1− 𝑣2

1 + 𝑞2𝜉

)︃1/2
sin (𝑞𝑦𝑑/2)

𝑞𝑦
𝑒𝑖(�̄�+𝑞𝜉𝑣)𝜏×

×
tanh 𝑣𝜏

cosh 𝑣𝜏
(𝑞𝜉 + 𝑖 tanh 𝑣𝜏). (23)
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РОЗСIЯННЯ ФЛЮКСОНА
НА ПОЛОСОПОДIБНIЙ ДОМIШЦI У ДВОВИМIРНОМУ
ДЖОЗЕФСОНIВСЬКОМУ ПЕРЕХОДI

Р е з ю м е

Дослiджено взаємодiю солiтона (флюксона) з полосоподi-
бною неоднорiднiстю у двовимiрному джозефсонiвському
переходi. Розраховано випромiнення, викликане розсiюван-
ням флюксона на домiшцi. Повна випромiнена енергiя має
чiтко виражену резонансну залежнiсть вiд швидкостi флю-
ксона. Знайдено чисельно та аналiтично струм закрiплення
на домiшцi як функцiю ширини переходу. Oбчислювальнi
данi добре узгоджуються з аналiтичними передбаченнями.
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