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SATURATION OF MAGNETIC
FILMS WITH SPIN-POLARIZED CURRENT
IN THE PRESENCE OF A MAGNETIC FIELD
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05.45.-a, 72.25.Ba,
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The influence of a perpendicular magnetic field on the process of transversal saturation of
ferromagnetic films with spin-polarized current is studied theoretically. It is shown that the
saturation current 𝐽𝑠 is decreased (increased) in the case of the codirected (oppositely directed)
magnetic field and the current. There exists a critical current 𝐽𝑐 > 𝐽𝑠, which provides a
“rigid” saturation – the saturated state is stable with respect to the transverse magnetic field
of any amplitude and direction. The influence of a magnetic field on the vortex-antivortex
crystals, which appear in a pre-saturated regime, is studied numerically. All analytical results
are verified using micromagnetic simulations.
K e yw o r d s: spin-polarized current, magnetic films, magnetic field.

1. Introduction

The influence of a spin-polarized current on planar
magnetic systems is of high applied and academic
interest now. It is so mainly due to the possibil-
ity to handle the magnetization states of magnetic
nanoparticles (nanomagnets) without using the ex-
ternal magnetic fields of complex space-time configu-
rations. That provides new opportunities in the con-
struction of purely current controlled devices [1], e.g.,
magnetic disk drivers or Magnetic Random Access
Memory (MRAM) [2, 3].

A convenient way to provide the influence of a spin-
polarized current on the magnetic film is to use a pil-
lar structure which was firstly proposed in Ref. [4].
The simplest pillar structure consists of two ferro-
magnetic layers (polarizer and sample) and nonmag-
netic spacer between them, see Fig. 1. When the
electrical current passes through the polarizer, the
conduction electrons become partially spin-polarized
in the direction that is determined by the polarizer
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magnetization. The polarizer is usually made of a
hard ferromagnetic material, whose magnetization is
kept fixed. The spacer, being very thin (few nanome-
ters), does not change the spin polarization of the
current electrons, but it prevents the exchange inter-
action between the polarizer and the sample. Thus,
the spin-polarized electrons transfer the spin-torque
from the polarizer to the sample, which can result
in the dynamics of the sample magnetization. The
spin-torque influence can be described phenomeno-
logically by adding the Slonczewski–Berger term to
the Landau–Lifshitz equation [5–7].

Recently, we studied the influence of a strong spin-
current on the magnetic films [8, 9]. It was shown
that the strong spin-polarized current can saturate
the magnetic film, and the value of saturation current
density 𝐽𝑠 increases with the film thickness. We also
demonstrated that, in the pre-saturated regime, sta-
ble vortex-antivortex lattices (VAL) appear. As was
recently shown [10, 11], the external magnetic field
can drastically modify magnetic system’s dynamics
induced by the spin-torque. The aim of this paper
is to study the influence of a perpendicular magnetic
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field on the process of film saturation with the spin-
current. For this purpose, we modify the linear the-
ory of instability of the saturated state developed in
Ref. [9] to the case of the presence of a magnetic field
and a uniaxial anisotropy. This will enable us to ob-
tain the dependence of the saturation current 𝐽𝑠 on
the field amplitude. We will demonstrate that, in
the linear approximation, the actions of a perpendic-
ular magnetic field and a uniaxial anisotropy on the
stability of the saturated state are equivalent. Using
micromagnetic simulations, we study how the prop-
erties of the VAL, which appear it the pre-saturated
regime, depend on the value of the applied field.

2. Theory of Saturated State Stability

Let us consider a ferromagnetic film with thickness ℎ
and lateral size 𝐿 ≫ ℎ. We use a discrete model
of magnetic media considering a three-dimensional
cubic lattice of magnetic moments M𝜈 with lattice
spacing 𝑎 ≪ ℎ, where 𝜈 = 𝑎(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) is a three-
dimensional index with 𝜈𝑥, 𝜈𝑦, 𝜈𝑧 ∈ Z (here and be-
low, all Greek indices are three-dimensional and the
Latin indices are two-dimensional). We assume also
that ℎ is small enough to ensure the magnetization
uniformity along the thickness. In this case, one can
use the two-dimensional discrete Landau–Lifshitz–
Slonczewski equation [5–7],

ṁn = mn × 𝜕ℰ
𝜕mn

− κ
mn × [mn × ẑ]

1 + (mn · ẑ)
, (1)

to describe the magnetization dynamics under the in-
fluence of a spin-polarized current, which flows per-
pendicularly to the magnetic plane along the ẑ-axis
(see Fig. 1). It is also assumed that the current flow
and its spin-polarization are of the same direction in
Eq. (1). The two-dimensional index n = 𝑎(𝑛𝑥, 𝑛𝑦)
with 𝑛𝑥, 𝑛𝑦 ∈ Z enumerates the normalized magnetic
moments mn = Mn/|Mn| within the film plane. The
overdot indicates the derivative with respect to the
rescaled time in units of (4𝜋𝛾𝑀𝑠)

−1, 𝛾 is the gy-
romagnetic ratio, 𝑀𝑠 is the saturation magnetiza-
tion, and ℰ = 𝐸/(4𝜋𝑀2

𝑠 𝑎
3𝒩𝑧) is the dimensionless

magnetic energy, where 𝒩𝑧 = ℎ/𝑎 is the number of
magnetic moments along the thickness. The normal-
ized current density is presented by the parameter
κ = 𝜂𝐽/𝐽0 , where 𝜂 is the degree of spin polariza-
tion, 𝐽 is the current density, and 𝐽0 = 4𝜋𝑀2

𝑠 |𝑒|ℎ/~
with 𝑒 being the electron charge, and ~ being Planck’s
constant.

Sample

J

ẑ

Polarizer

Spacer

Fig. 1. The simplest pillar heterostructure consists of two
ferromagnetic layers: the polarizer and the sample, and one
nonmagnetic layer between them (spacer). Black (larger) ar-
row shows the direction of a current, which flow through the
heterostructure, and the white (smaller) arrow shows the mag-
netization direction of the polarizer

Equation (1) is written for the case where the
conductance of the sample is much lower than the
conductance of the spacer, which corresponds to
a high level of spin accumulation at the nonmag-
net–ferromagnet interfaces. The mismatch between
the spacer and ferromagnet resistances is tradition-
ally described by the Λ-parameter [7, 12]. But as was
shown in Ref. [9], the parameter Λ is not included
in the linearized problem and, therefore, has no in-
fluence on the saturation process. That is why we
do not include Λ into our model assuming Λ ≫ 1.
We also omitted a damping in the equation of mo-
tion (1), because, as was shown earlier [9], the spin-
current provides an effective damping which is much
larger than the natural damping.

We consider a magnetic system, the total energy
𝐸 = 𝐸ex + 𝐸d + 𝐸z + 𝐸an of which consists of four
parts: exchange, dipole-dipole, Zeeman, and magne-
tocrystalline anisotropy contributions. The exchange
energy up to a constant has the form

𝐸ex = −𝒮2𝒩𝑧𝒥0

∑︁
n,ñ

mn ·mn+ñ, (2)

where ñ enumerates the nearest neighbors within the
film plane of the n-th atom, 𝒮 is the value of spin of a
ferromagnetic atom, and 𝒥0 > 0 denotes the exchange
integral between the nearest atoms.

The energy of dipole-dipole interaction is

𝐸d =
𝑀2

𝑠 𝑎
6

2
×

×
∑︁
𝜈 ̸=𝜆

[︂
(m𝜈 ·m𝜆)

𝑟3𝜆𝜈

− 3
(m𝜈 · r𝜆𝜈) (m𝜆 · r𝜆𝜈)

𝑟5𝜆𝜈

]︂
, (3)
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where r𝜆𝜈 = 𝜆 − 𝜈, with 𝜆 and 𝜈 being the three-
dimensional indices.

The Zeeman energy describes the interaction of the
magnetic film with the external perpendicular mag-
netic field B = 𝐵ẑ, and it reads

𝐸z = −𝐵𝑀𝑠𝑎
3𝒩𝑧

∑︁
n

𝑚𝑧
n. (4)

Finally, we introduce the energy of uniaxial
anisotropy, whose axis is oriented perpendicularly to
the film plane:

𝐸an = −𝐾
2
𝑎3𝒩𝑧

∑︁
n

(𝑚𝑧
n)

2, (5)

where 𝐾 is the anisotropy coefficient, which can be
positive (easy-axis) or negative (easy-plane).

By introducing the complex variable [9]

𝜓n =
𝑚𝑥

n + 𝑖𝑚𝑦
n√

1 +𝑚𝑧
n

, (6)

we can write Eq. (1) in the form

𝑖�̇�n = − 𝜕ℰ
𝜕𝜓*

n

− 𝑖
𝜕ℱ
𝜕𝜓*

n

, (7)

where the function

ℱ =
κ
2

∑︁
n

|𝜓n|2 (8)

represents an action of the spin-polarized current.
For the future analysis, it is convenient to pass

to the wave-vector representation, using the two-
dimensional discrete Fourier transformation:

𝜓n =
1√︀
𝒩𝑥𝑦

∑︁
k

𝜓k𝑒
𝑖k·n, (9a)

𝜓k =
1√︀
𝒩𝑥𝑦

∑︁
n

𝜓n𝑒
−𝑖k·n (9b)

with the orthogonality condition∑︁
n

𝑒𝑖(k−k′)·n = 𝒩𝑥𝑦Δ(k− k′), (10)

where 𝒩𝑥𝑦 = 𝐿2/𝑎2 is the total number of atoms
within the film plane, k = (𝑘𝑥, 𝑘𝑦) ≡ 2𝜋

𝐿 (𝑙𝑥, 𝑙𝑦) is the
two-dimensional discrete wave vector, 𝑙𝑥, 𝑙𝑦 ∈ Z, and
Δ(k) is the Kronecker delta.

Applying (9) to Eq. (7), we obtain the equation of
motion in the reciprocal space:

−𝑖 ˙̂𝜓k =
𝜕ℰ
𝜕𝜓*

k

+ 𝑖
𝜕ℱ
𝜕𝜓*

k

. (11)

Since we are studying the stability of the saturated
state, we can linearize the equation of motion (11) in
a vicinity of the solution 𝑚𝑧

n = 1, which is equivalent
to |𝜓n| = 0 and |𝜓k| = 0. To obtain the energy func-
tional ℰ in the “𝜓”-representation, we expand com-
ponents of the magnetization vector into series in the
way similar to the representation in terms of the Bose
operators [13]:

𝑚𝑥
n =

𝜓n + 𝜓*
n√

2
+𝒪(|𝜓n|3),

𝑚𝑦
n =

𝜓n − 𝜓*
n

𝑖
√
2

+𝒪(|𝜓n|3),

𝑚𝑧
n = 1− |𝜓�⃗�|2.

(12)

Substituting (12) into the energy components (2)–
(5) and applying the Fourier transformation (9), (10),
we can write the dimensionless energy functional in
the form

ℰ = ℰex + ℰd + ℰz + ℰan. (13a)

Here, the exchange contribution reads [9]

ℰex = ℓ2
∑︁
k

|𝜓k|2𝑘2 +𝒪(|𝜓k|4), (13b)

where ℓ =
√︀

𝒮2𝒥0𝑐/(4𝜋𝑀2
𝑠 𝑎) is the exchange length,

with 𝑐 = 4 being the number of nearest neighbors
within the film plane. The energy of dipole-dipole
interaction has the form [9]

ℰd =
∑︁
k

[︂
𝑔(𝑘ℎ)

2
− 1

]︂
|𝜓k|2+

+
𝑔(𝑘ℎ)

4

[︂
(𝑘𝑥 − 𝑖𝑘𝑦)2

𝑘2
𝜓k𝜓−k + c.c.

]︂
+𝒪(|𝜓k|4), (13c)

where 𝑔(𝑥) ≡ (𝑥 + 𝑒−𝑥 − 1)/𝑥. The Zeeman energy
takes the form

ℰz = 𝛽
∑︁
𝑘

|𝜓k|2, (13d)
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where 𝛽 = 𝐵/(4𝜋𝑀𝑠) is the dimensionless magnetic
field in units of the saturation field. The anisotropy
energy can be written as

ℰan = 𝛼
∑︁
𝑘

|𝜓k|2 +𝒪(|𝜓k|4), (13e)

where 𝛼 = 𝐾/(4𝜋𝑀2
𝑠 ) is the dimensionless anisotropy

coefficient.
Details of the derivation of contributions 13b and

13c in the wave-vector space can be found in Ap-
pendix A of Ref. [9].

The current-action function ℱ in the wave space
has the simple form

ℱ =
κ
2

∑︁
k

|𝜓k|2. (14)

Substituting (13) and (14) in (11), we obtain the
set of linear equations for the complex amplitudes 𝜓k

and 𝜓*
−k:

−𝑖 ˙̂𝜓k =

[︂
𝑘2ℓ2 − 1 +

𝑔(ℎ𝑘)

2
+ 𝑏+ 𝑖

κ
2

]︂
𝜓k+

+
𝑔(ℎ𝑘)

2

(𝑘𝑥 + 𝑖𝑘𝑦)2

𝑘2
𝜓*
−k,

𝑖
˙̂
𝜓*
−k =

[︂
𝑘2ℓ2 − 1 +

𝑔(ℎ𝑘)

2
+ 𝑏− 𝑖

κ
2

]︂
𝜓*
−k+

+
𝑔(ℎ𝑘)

2

(𝑘𝑥 − 𝑖𝑘𝑦)2

𝑘2
𝜓k,

(15)

where 𝑏 = 𝛼+ 𝛽.
Looking for the solutions of Eq. (15) in the form

𝜓k = Ψ+𝑒
𝑧(𝑘)𝑡, 𝜓*

−k = Ψ−𝑒
𝑧(𝑘)𝑡, (16)

where Ψ± are time independent amplitudes,
we obtain the following condition for the rate
constant 𝑧(𝑘):

𝑧(𝑘) = −κ
2
± κ̃(𝑘). (17)

Here, the function κ̃(𝑘) is given by

κ̃(𝑘) =
√︀
(1− 𝑘2ℓ2− 𝑏) (𝑘2ℓ2 + 𝑔(ℎ𝑘)− 1 + 𝑏). (18a)

With regard for Eq. (17), we can conclude that if
the function κ̃(𝑘) is complex-valued, then the sat-
urated state of the film is stable. If the value of
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kl

ϰ

b =

b =

b =

Fig. 2. (Color online) Influence of the parameter 𝑏 on the
instability domains (filled regions) of the transversally satu-
rated permalloy (ℓ = 5.3 nm) film with the thickness ℎ = 20

nm. The instability domains are determined by condition (19).
Points at the maxima determine the saturation current κ𝑠 for
the given 𝑏

- 4 - 3 - 2 - 1 1
b

0.2

0.4

0.6

0.8

1.0
ϰ

1

2

s

Fig. 3. (Color online) Dependence of the saturation current κ𝑠

on the magnetic field. Solid line corresponds to the analytical
solution obtained from (18) and the results of micromagnetic
simulations (see the text) are shown by markers. Dashed lines
correspond to asymptotic (20b) and dot-dashed lines show the
asymptotics (20a). Dependences 1 and 2 correspond to differ-
ent thicknesses: ℎ = 20 nm and ℎ = 10 nm, respectively

the function κ̃(𝑘) is real, then we have two differ-
ent cases: for strong currents when κ > 2κ̃, we have
Re 𝑧(𝑘) < 0. Therefore, the stationary state of the
system is the saturated state with 𝑚𝑧 = 1. However,
for smaller currents κ < 2κ̃, the instability of the
saturated state develops. The function 2κ̃(𝑘) for dif-
ferent values of the parameter 𝑏 is shown in Fig. 2.
One can see that κ̃(𝑘) is a nonmonotonic function,
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b

2

4

6

8
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12

aS l/

A

B

A B

Fig. 4. (Color online) Dependence of the period of VAL, which appears in the pre-saturated regime, on the applied field. The
data obtained using the micromagnetic modelling (see the text) are shown by markers, dark disks correspond to the VAL, whereas
the dashed circles represents the fluid-like state of the vortex-antivortex system (see Ref. [8, 9]). The solid line corresponds to
the dependence 2𝜋/𝐾0 obtained from (18b). The insets A and B show the magnetization distribution in VAL for the cases of
negative and positive fields, respectively. The upper parts of the insets show the 𝑚𝑧-component distribution: with decreasing
the value of 𝑚𝑧 , the contour line becomes thinner. When 𝑚𝑧 is close to the minimum value, the contours become dashed. The
magnetization distribution within the film plane is shown by arrows in the bottom parts of the insets; disks and diamonds show
the centers of vortices and antivortices, respectively. The size of the inset area is 50 × 50 nm. The data were obtained for the
current density 𝐽 = 38× 1012 A/m2

which reaches its maximum value κ̃𝑐 at 𝑘 = 𝐾0:

dκ̃(𝑘)
d𝑘

= 0, κ̃𝑐 = max
𝑘

κ̃(𝑘) ≡ κ̃(𝐾0). (18b)

Thus, the value κ̃𝑐 determines the lowest current, at
which the saturated state remains stable, namely the
saturation current:

κ𝑠 = 2κ̃𝑐 ⇒ 𝐽𝑠 = 2
𝐽0
𝜂
κ̃𝑐. (18c)

The instability domains, which are determined by
condition
κ̃ ∈ R, and κ < κ𝑠, (19)

are shown in Fig. 2 as filled regions. Maximum values
of the shown dependences determine the saturation
current κ𝑠 for the given value of the 𝑏-parameter. The
dependence κ𝑠(𝑏) is shown in Fig. 3

One can see that, for 𝑏 > 1, the magnetic film is
perpendicularly saturated without current. For ex-
ample, this case can be realized for a magnetically
soft film (𝛼 = 0), when the external field exceeds the
saturation value 𝛽 > 1. The analysis of (18) enables
us to obtain the following asymptotic behavior:

κ𝑠 ≈ 2

√︂
ℎ

ℓ

(︂
1− 𝑏

3

)︂3/4

, 𝑏 / 1, (20a)

κ𝑠 ≈ 1− ℓ

ℎ
√︀
|𝑏|
, 𝑏→ −∞. (20b)

According to (20b), the saturation current is a quan-
tity bounded from above: κ𝑠 < 1 for any values of
parameters. This means that, for currents κ > 1,
the perpendicularly saturated magnetic film remains
stable for any values of magnetic field and uniaxial
anisotropy constant. In other words, if the current
κ > 1 is applied, then the magnetization reversal is
not possible with a perpendicular magnetic field of
any (even infinitely large) amplitude. We call this
phenomenon “rigid saturation”.

The critical current κ𝑐 = 1 has the dimensional
form
𝐽𝑐 =

4𝜋𝑀2
𝑠 |𝑒|ℎ
~𝜂

. (21)

Thus, the current 𝐽𝑐 is determined only by material
parameters (saturation magnetization) and the film
thickness. For the case of a permalloy film with the
thickness ℎ = 20 nm and the rate of spin polarization
𝜂 = 0.4, expression (21) yields 𝐽𝑐 = 70.6×1012 A/m

2.
Thus, we determine the physical meaning of 𝐽0

as the minimal current density, which provides the
rigid saturation (for the case of the full spin-polariza-
tion 𝜂 = 1).
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To verify our analytical results, we used full-
scale OOMMF [14] micromagnetic simulations. This
modeling was performed with material parameters
of permalloy as follows: the saturation magnetiza-
tion 𝑀𝑆 = 8.6× 105 A/m, and the exchange constant
𝐴 = 1.3× ×10−11 J/m. These values of parame-
ters correspond to the exchange length ℓ = 5.3 nm
and the saturation field for an infinite film 𝐵𝑠 =
= 1.081 T. Since the external field and the anisotropy
are included into the problem in equivalent ways, see
Eqs. (13d), (5), (15), and (18a). In the simulations,
we restrict ourselves only to the case with a magnetic
field, neglecting the anisotropy (𝛼 = 0). Not being
able to simulate the unbounded film, we chose two
nanodisks with the diameter 𝐷 = 350 nm and the
thicknesses ℎ = 20 nm and ℎ = 10 nm, and the mesh
size was 3× 3× ℎ nm. In the absence of a magnetic
field and a current, the ground magnetic state of nan-
odisks of the mentioned sizes is related to the vortex
distribution of the magnetization (see Fig. 1). To
these nanodisks, we simultaneously apply an exter-
nal magnetic field of the form 𝐵(𝑡) = 𝐵0(1− 𝑒−𝑡/Δ𝑡)
and the spin polarized current 𝐽(𝑡) = 𝑡Δ𝐽/Δ𝑡, where
Δ𝑡 = 1 ns, Δ𝐽 = 1011 A/m

2 with the rate of spin
polarization 𝜂 = 0.4. The gradual increase of the
field and the current allows us to avoid an intense
magnon dynamics. The amplitude of the magnetic
field was varied in the interval 𝐵0 ∈ [−4, 0.95] T with
the step Δ𝐵0 = 0.05 T. The current was increased
until the saturation was achieved. As a criterion of
saturation, we used the relation 𝑀𝑧/𝑀𝑠 > 0.999999,
where 𝑀𝑧 is the total magnetization along the ẑ-axis.
The resulting dependence 𝐽𝑠(𝐵) in the dimension-
less form is shown in Fig. 3 by markers. Note a good
agreement between the theoretical prediction and the
numerical experiment. The reason for a slight dis-
crepancy in the region 𝑏 / 1 is that the saturation
field for a finite-size nanodisk 𝐵′

𝑠 is slightly smaller
than 𝐵𝑠.1

It is known [8, 9] that the VAL usually appears in
pre-saturated regime of the ferromagnetic film, see
insets of Fig. 4. Here, we study numerically how the
perpendicular magnetic field changes the properties of
VAL. We obtained that the positive field (the field di-
rection coincides with the current direction) increases
the constant of VAL 𝑎𝑆 , whereas the negative field
(opposite to the current) decreases 𝑎𝑆 . The resulting
dependence 𝑎𝑆(𝑏) is presented in Fig. 4. As is seen,
the lattice constant 𝑎𝑆(𝑏) is very close to the value

�̄�𝑆 = 2𝜋/𝐾0, where 𝐾0 is the wave vector of unstable
magnons for the case κ / κ𝑠, see (18b). Assuming
that the mismatch between 𝑎𝑆 and �̄�𝑆 remains small
for all values of parameters, one can use (18) to obtain
the following asymptotic behavior: 𝑎𝑆 ∼ 1/(1−𝑏) for
𝑏 / 1 and 𝑎𝑆 ∼ 1/

√︀
|𝑏| for 𝑏→ −∞.

3. Conclusions

The perpendicular magnetic field drastically changes
the process of saturation of magnetic films with spin-
polarized current. It is shown that the saturation
current 𝐽𝑠 is decreased (increased) in the case of a
codirected (oppositely directed) magnetic field and
a current. There exists the critical current 𝐽𝑐 > 𝐽𝑠,
which provides the “rigid” saturation, namely the sat-
urated state that is stable with respect to the trans-
verse magnetic field of any amplitude and direction.
The critical current 𝐽𝑐 is determined only by mate-
rial parameters (saturation magnetization) and the
film thickness. The actions of a perpendicular mag-
netic field and a uniaxial anisotropy on the stability
of the saturated state are equivalent. The magnetic
field changes the constant of a vortex-antivortex lat-
tice 𝑎𝑆 , which appears in the pre-saturated regime:
𝑎𝑆 infinitely increases if the field approaches the satu-
ration value, and 𝑎𝑆 decreases if the field is increased
in the opposite direction. For large opposite fields,
the fluid-like dynamics of a vortex-antivortex sys-
tem is observed instead of the static vortex-antivortex
lattice.
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НАСИЧЕННЯ МАГНIТНИХ ПЛIВОК
СПIН-ПОЛЯРИЗОВАНИМ СТРУМОМ
В ПРИСУТНОСТI МАГНIТНОГО ПОЛЯ

Р е з ю м е

Теоретично дослiджено вплив поперечного магнiтного поля
на процес насичення феромагнiтної плiвки пiд дiєю спiн-
поляризованого струму. Показано, що струм насичення 𝐽𝑠
зменшується (збiльшується) у випадку однаково (протиле-
жно) напрямлених струму i магнiтного поля. Iснує крити-
чний струм 𝐽𝑐 > 𝐽𝑠, який забезпечує “жорстке” насичен-
ня – насичений стан є стiйким по вiдношенню до зовнi-
шнього магнiтного поля з довiльними амплiтудою та на-
прямком. Чисельно дослiджено вплив магнiтного поля на
вихор-антивихровi кристали, що виникають в режимi ква-
зiнасичення. Усi отриманi аналiтичнi результати перевiренi
за допомогою мiкромагнiтних моделювань.
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