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CHARGED PARTICLE
PSEUDORAPIDITY DISTRIBUTIONS
FOR Pb–Pb AND Au–Au COLLISIONS
USING NEURAL NETWORK MODELPACS 02.70.-c, 07.05.Tp

The artificial neural network (ANN) approach is used to model the Pb–Pb and Au–Au collisions
on the basis of the Levenberg–Marquardt learning algorithm. We simulate the rapidity distribu-
tion for 𝜋− and 𝜅± produced in Pb–Pb collisions at different energies and the pseudorapidity
distribution of charged particles in Au–Au collisions. Our functions obtained within the ANN
model show a very good agreement with the experimental data for both types of collisions, which
indicates that the trained network takes on the optimal generalization performance. Thus, the
ANN model can be widely applied to the modeling of heavy-ion collisions.
K e yw o r d s: charged particles, neural network, pseudorapidity distribution, Pb–Pb and Au–
Au collisions, simulation.

1. Introduction

High-energy nucleon-nucleon and nucleus-nucleus col-
lisions are an excellent tool to study nuclear mat-
ter [1]. The quark-gluon plasma (quark matter)
predicted by various theories has been studied in
high-energy nucleus-nucleus collisions. On the other
hand, some properties obtained from nuclear reac-
tions have been explained by the knowledge of cur-
rent physics. The multiparticle production is an
important experimental phenomenon in high-energy
nucleus-nucleus collisions. One can use multiplicity,
pseudorapidity (rapidity), transverse energy, etc., to
describe the characteristics of multiparticle produc-
tion [2]. In the investigation of multiparticle produc-
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tion, the pseudorapidity distributions of charged par-
ticles (𝑑𝑁ch/𝑑𝜂) produced in heavy ion collisions are
a powerful tool to describe the global properties of
the collision system, where 𝑁ch is the charged multi-
plicity, the pseudorapidity is defined by the formula
[𝜂 = − ln[tan(𝜃/2)], and 𝜃 is the emission angle of
the concerned charged particle. The pseudorapidity
distributions have been measured in a wide range of
energies at the GSI, AGS, SPS, and RHIC acceler-
ators [3, 4]. Many models have been introduced in
the field of high-energy heavy-ion collisions such as
the one-dimensional string model [5], fireball model
[6], multisource ideal gas model (and its predeces-
sor, the thermalized cylinder model) [7–13], quark-
gluon string model (QGSM) [14–18], string percola-
tion model [19], heavy-ion jet interaction generator
model (HIJING) [20–22], relativistic transport model
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Fig. 1. Biological neuron versus artificial neurons

(ART) [23], ZPC parton cascade model [24], color
glass condensate model (CGC) [25], relativistic quan-
tum molecular dynamic model (RQMD) [26–29], hy-
drodynamic model [30, 31 and relativistic cascade
model (ARC)[32–34]. In parallel to theoretical ap-
proaches based on different views, the development
in the artificial intelligence (AI) field has indicated
the strong presence of neural networks in high-energy
physics [35–38].

Neural networks are composed of simple intercon-
nected computational elements operating in parallel.
These artificial neural networks (ANN) are obtained
so that a particular inputs leads to a specific target
output. Trained neural networks are able to perform
complex functions in various fields of application in-
cluding the pattern recognition, modeling, identifica-
tion, classifications, speech, and vision and control
systems [35–38].

Our present work uses ANN to model the nucleus-
nucleus (A-A) collision features at high energies and
proposes to calculate the rapidity distributions for
𝜋−, K+, and K− productions in central Pb–Pb colli-
sions at CERN SPS energies [39–41] and pseudorapid-
ity distributions of charged particles for various c.m.
energies in Au–Au central collisions at

√
𝑠 = 19.6–

200 GeV (PHOBOS experiments) [1, 42–44].
The ANN model has been applied successfully to

explore heavy ion collisions from CERN-SPS energies
(𝐸lab = 20 − 160𝐴 GeV) up to the full BNL-RHIC
energy (

√
𝑠𝑁𝑁 = 200 GeV).

The paper is organized in three sections. Section 2
introduces the artificial neural network (ANN) model,
and Section 3 describes the manner of modeling and
simulating the A-A collisions (Pb–Pb and Au–Au).
The following sections provide the results, discussion,
and conclusion.

2. Artificial Neural Networks (ANNs)

Artificial Neural Network is a general mathematical
computing paradigm that models the operations of bi-
ological neural systems. ANNs are a powerful general-
purpose technique, and they have been widely applied
to a variety of physical problems. In some fields such
as high energy physics, they are the most widely ap-
plied computational intelligence technique.

ANNs are electrical analogues of the biological neu-
ral networks. Biological nerve cells, called neurons,
receive signals from neighboring neurons or recep-
tors through dendrites, process the received electrical
pulses at the cell body and transmit signals through a
large thick nerve fiber, called an axon (see Fig. 1). In
a similar way, the electrical model of a typical biolog-
ical neuron consists of a linear activator followed by
a nonlinear inhibiting function. The linear activation
function yields the sum of weighted input excitations,
while the nonlinear inhibiting function attempts to
culture the signal levels of the sum [45].

ANN is a collection of such electrical neurons con-
nected in various topologies. The most common ap-
plication of an ANN is that to machine learning. In
a learning problem, the weights and/or nonlineari-
ties in an ANN undergo an adaptation (or learning)
cycle. The adaptation cycle is required for updat-
ing the parameters of the network, until a state of
equilibrium is reached. ANN supports both super-
vised and unsupervised types of machine learning.
ANNs can be considered as simplified mathematical
model soft brain-like systems, and they function as
parallel-distributed computing networks. However,
in contrast to conventional computers, which are pro-
grammed to perform a specific task, most neural net-
works must be taught or trained. They can learn
new associations, new functional dependences, and
new patterns. Neural networks obviate the need to
use complex mathematically explicit formulas, com-
puter models, and impractical and costly physical
models.

2.1. The mathematical model

When creating a function model of the biological
neuron, there are three basic components of impor-
tance. First, the synapses of the neuron are mod-
eled as weights. The strength of the connection be-
tween an input and a neuron is noted by the value
of weight. Negative weight values reflect inhibitory
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connections, while positive values designate excita-
tory connections. The next two components model
the actual activity within the neuron cell. An adder
sums up all the inputs modified by their respec-
tive weights. This activity is referred to as a lin-
ear combination. Finally, an activation function con-
trols the amplitude of the neuron. An acceptable
range of outputs is usually between 0 and 1 or –
1 and 1. Mathematically, this process is described
in Fig. 2.

From this model, the interval activity of a neuron
can be shown to be

𝑌𝑘 = 𝑓

(︃
𝑚∑︁
𝑗=1

𝑊𝑘𝑗 + 𝑏𝑘

)︃
. (1)

The output of the neuron, 𝑌𝑘, would be, therefore,
the outcome of some activation on the value of 𝜈𝑘.
The hidden neurons (neurons of hidden layers) and
the weight factors of the links between them play a
critical role during the learning processing. In the
case of supervised training, the numerical values of
weight factors change according to the training data
sets, in order to minimize the difference between the
actual outputs and the target values. Thus, the re-
lationship between causal factors and the response
is mapped during the learning process. The trans-
fer function of processing nodes is used to deter-
mine the output value of the node based on the total
net input from nodes in the prior layer. The most
widely used transfer functions are a sigmoid and tan
sigmoid function, which are shown in the following
relations [48]:

𝑌s =
1

1 + 𝑒−𝑥
, (2)

𝑌tans =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. (3)

3. Modeling the Nucleus-Nucleus
Rapidity Distributions Using ANN

The objective of this study is the modeling of the
rapidity distributions of charged particles produced
from nucleus-nucleus (A-A) collisions. In particu-
lar, we will model the rapidity distributions of 𝜋−,
K+ and K− mesons produced in central Pb–Pb col-
lisions and the pseudorapidity distributions of Au–
Au collisions at various energies. The feed forward

Fig. 2. Architecture of a typical artificial neural network
[46, 47]

Fig. 3. Generic block diagram for charged particles produced
in A-A collisions based on the ANN model

neural networks are used to build the models of ra-
pidity distributions for charged particles produced in
A-A collisions. The proposed ANN models of rapid-
ity distributions have three layers: input layer (with
tree inputs), output layer (with one output), and one
hidden layer. The inputs involve the center of mass
energy (

√
𝑠), mass number of the projectile nucleus

(A), and the rapidity (𝑦) or the pseudorapidity distri-
butions (𝜂). The output is the rapidity distribution
𝑑𝑁/𝑑𝑦 of 𝜋− and 𝜅± mesons for Pb–Pb collisions and
the pseudorapidity distributions for Au–Au collisions
(𝑑𝑁/𝑑𝜂). The function of the hidden layer is to in-
tervene between the external input and the network
output in some useful manner. The general configura-
tion (input, output, and hidden layer) of the proposed
ANN model is shown in Fig. 3. Using this input–
output arrangement, different network configurations
were tried to achieve a good mean square error (MSE)
and a good performance for the network. In order to
achieve these goals, the proposed feed forward neural
network was trained using the Levenberg–Marquardt
(LM) learning algorithm [49–51].

Neural network training is usually formulated as
a nonlinear optimization problem. The LM method
is a modification of the classic Newton algorithm for
finding the optimum solution to a minimization prob-
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Fig. 4. Flow-chart of the Levenberg–Marquardt optimization
method for the neural-network training

lem. This method minimizes the error function 𝐸
(the squares of residuals, i.e. the squares of the dif-
ferences between the desired outputs and the outputs
of the network) by modifying the network weights 𝑤
and biases 𝑏. This optimization technique is more
powerful than the gradient descent technique and the
back-propagation with momentum. It also prevents
the network from the falling into local minima. The
only disadvantage with this algorithm is the need
for a larger memory and a greater number of hid-
den neurons. This algorithm adapts the parameters
𝜃 = {𝑤𝑗𝑖, 𝑏𝑗} with the use of the following expres-
sions:

𝜃𝑘+1 = 𝜃𝑘 − (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝐽𝑇

𝑘 𝐸𝑘, (4)

𝐸𝑘 =

𝑁∑︁
𝑖=1

(𝑑𝑖 − 𝑦𝑖)
2, (5)

where 𝑁 denotes the sample number of the learning
process, 𝑑𝑖 is the expected value for the cost estima-
tion, 𝑦𝑖 is the actual value, 𝐽 represents the Jaco-

bian matrix of the error vector 𝐸(𝜃) assessed in 𝜃;
𝐽𝑇 is the transposed matrix of 𝐽 ; 𝐼 is the identity
matrix that has the same dimension with the approx-
imated Hessian matrix 𝐽𝑇𝐽 ; 𝐽𝑇𝐸(𝜃) is the gradient
of the error function 𝐸 with respect to the weight
and the bias parameters 𝜃 = {𝑏𝑗 , 𝑤𝑗𝑖}; and the ad-
justing parameter 𝜇 (damping factor) is increased or
reduced along each learning iteration to guide the op-
timization process (𝜇 = 0.001 as the initial learn-
ing parameter). When the scalar 𝜇 is very large, the
Levenberg–Marquardt method approximates the gra-
dient descent method. However, when 𝜇 is small, it is
the same as the Gauss–Newton method. This method
switches between the gradient descent and the Gauss–
Newton techniques. The advantage of this method is
in that it converges faster around the minimum and
gives more accurate results.

This adjustment for 𝜇 is done by using the adjust-
ment factor 𝛽. If 𝜇 needs to increase, it is multiplied
by 𝛽. If it needs to decrease, then it is divided by
𝛽 (𝛽 = 0.1 as the decrement factor, and 𝛽 = 10 as
the increment factor). The process is repeated un-
til the error decreases. When this happens, the cur-
rent iteration ends. Therefore, the training process
using the Levenberg–Marquardt algorithm could be
designed as follows:

1. With the initial biases and weights (randomly
generated), compute the Jacobian 𝐽 and the er-
ror gradient 𝐽𝑇𝐸(𝜃) and approximate the Hessian
matrix 𝐽𝑇𝐽 .

2. Do an update as directed by Eq. (4) to adjust
weights.

3. With the new weights, evaluate the total error.
4. If the error has not decreased, discard the new

weights, increase 𝜇 using 𝛽, and go to step 2, else
decrease 𝜇 using 𝛽, and stop.

5. Go to step 2 with the new weights until the
current total error is smaller than the required value.

The flow-chart of the above procedure is shown
in Fig. 4.

The Levenberg–Marquardt optimization method
for the neural-network training is described in [50,
51] with more details.

3.1. Rapidity distributions for the 𝜋−

production in central Pb–Pb collisions

The proposed neural network model of rapidity dis-
tributions for 𝜋− produced in central Pb–Pb colli-
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Fig. 5. Training procedure of the ANN model

Fig. 6. Rapidity distribution of 𝜋− in Pb–Pb collisions at
SPS energies from 20 to 158𝐴 GeV (7% most central collisions
for 20–80𝐴 GeV, 5% most central collisions for 158𝐴 GeV)
measured by the NA49 collaboration. [(∘) – experimental data,
(-) – ANN]

sions at (20, 30, 40, 80, and 160𝐴 GeV) has three
inputs (𝐴, 𝑦,

√
𝑠), one output(𝑑𝑁/𝑑𝑦), and two hid-

den layers (one layer consists of 7 neurons, and the
second consists of 5 neurons). The transfer func-
tions of the first layer and two hidden layers were
chosen to be a tan sigmoid, while the output was cho-
sen to be a pure line. The number of epochs = 72.
In this case, the center-of-mass energies of 20, 30,
40, and 160𝐴 GeV are used to train the neural
network model.

The training procedure is shown in Fig. 5. The
plot shows the mean squared error of the network
starting at a large value and decreasing to a smaller

Fig. 7. Training procedure of the ANN model with the best
validation performance of 0.09468

Fig. 8. Training procedure of the ANN model with the best
validation performance of 0.049009

value. It shows that the network is learning. The
plot has three lines, because the input and target
vectors are randomly divided into three sets. 80%
of the vectors are used to train the network, and
20% of the vectors are used to validate how well
the network is generalized. Training on the train-
ing vectors continues as long the training reduces
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Fig. 9. Rapidity distribution of 𝐾+ produced in central Pb–Pb collisions at SPS energies from (20 to 158)𝐴 GeV (7% most central
collisions for 20–80𝐴 GeV and 5% most central collisions for 158𝐴 GeV measured by NA49 collaboration. [(∘) – experimental
data, (-) – ANN model]

the network’s error by the validation vector. Af-
ter the network memorizes the training set, train-
ing is stopped. This technique automatically avoids
the problem of overfitting, which plagues many op-
timization and learning algorithms. Finally, the last
20% of the vectors provide an independent test of the
network generalization to data that the network has
never seen.

Figure 6 presents the rapidity distribution of 𝜋−

produced in central Pb–Pb collisions (7% at 20–
80𝐴 GeV), (5% at 158𝐴 GeV) at SPS energies (exper-
imental data), and the calculated results (solid lines)
obtained with the use of the ANN model. The calcu-
lated results are in good agreement with the experi-
mental data [39–41].

The rapidity distribution of 𝜋− produced in cen-
tral Pb–Pb collisions which obtained from the ANN
model is

𝑑𝑁/𝑑𝑦 = 𝑊 (3, 2)𝑌tans{𝑊 (2, 1)𝑌tans×

×[𝑊 (1, 1)𝑃 + 𝑏(1)] + 𝑏(2)}+ 𝑏(3).] (6)

Here, 𝑃 is the input which is (𝐴, 𝑦,𝐸beam), 𝑊 (3, 2) –
linked weight between the second hidden layer and
the output, 𝑊 (2, 1) – linked weight between the first
and second hidden layers, 𝑊 (1, 1) – linked weights

between the input layer and the first hidden layer,
𝑏(1) is the bias of the first hidden layer, 𝑏(2) is the
bias of the second hidden layer, and 𝑏(3) is the bias of
the output layer. The weights and biases in relation
(6) are given in Appendix A.

3.2. Rapidity distribution of 𝜅±

produced at different energies
in central Pb–Pb collisions

The proposed neural network model of the rapidity
distribution of 𝜅± produced in central Pb-Pb colli-
sions (20, 30, 40, 80, and 160𝐴 GeV) have three in-
puts (𝐴, 𝑦,

√
𝑠), one output (𝑑𝑁/𝑑𝑦), and two hid-

den layers, which consist of 9 and 5 neurons, respec-
tively. The configuration of the proposed ANN model
is shown in Fig. 3. The transfer functions of the first
layer and two hidden layers were chosen to be tan
sigmoid, while that for the output layer was chosen
to be a pure line. The number of epochs was 22 and
10 for 𝜅±. In this case, the energies of 20, 30, 40,
80, and 160𝐴 GeV were used to train the neural net-
work with performances of 0.094 and 0.049 for 𝜅± (see
Figs. 7 and 8). The results in Figs. 7 and 8 are rea-
sonable because of the following considerations: the
final mean-squared error is small, the test set error
and the validation set error have similar character-
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istics, and no significant overfitting has occurred by
the 28- and 17-th iterations.

The rapidity distributions 𝑑𝑁/𝑑𝑦 of 𝜅± produced
in central Pb–Pb collisions (7% at 20–80𝐴 GeV and
5% at 158𝐴 GeV) at SPS energies are simulated. The
comparison between 𝑑𝑁/𝑑𝑦 calculated by employing
the ANN Model and the corresponding experimental
data is shown in Figs. 9 and 10. The calculated results
are in good agreement with the experimental data
[39–41].

The obtained function describes the rapidity dis-
tributions of 𝜅± produced in central collisions as in
Eq. (6), but different in weights and biases. The
weights and biases in Eq. (6) for 𝜅± produced in Pb–
Pb collisions are given in Appendices B and C.

3.3. Pseudorapidity distributions
of charged particles in Au–Au collisions

The proposed neural network model of the pseudo-
rapidity distributions of Au–Au collisions at RHIC
energies from 19.6 to 200 GeV performed by the
PHOBOS collaboration [30, 31, 32, 39] has three in-
puts (𝐴, 𝜂,

√
𝑠), one output (𝑑𝑁/𝑑𝜂), and two hid-

den layers (they consist of 9 and 8 neurons, respec-
tively). The configuration of the proposed ANN
model is shown in Fig. 3. The transfer func-
tions of the first and second hidden layers were
chosen to be tan sigmoid, while that for the out-
put layer was chosen to be a pure line. The
feed forward neural network back propagation is
used to the modeling. The number of epochs is
42. In this case, the energies of 19.6, 62.4, 130,
and 200 GeV were used to train the neural net-
work. Training was terminated after 16 iterations as
in Fig. 11.

The following function describes the pseudorapid-
ity distributions of charged particles for Au–Au colli-
sions:

𝑑𝑁/𝑑𝜂 = 𝑊 (3, 2)𝑌tans{𝑊 (2, 1)𝑌tans×

×[𝑊 (1, 1)𝐵 + 𝑏(1)] + 𝑏(2)}+ 𝑏(3). (7)

Here, 𝐵 is the input which is (𝐴, 𝜂,
√
𝑠), 𝑊 (1, 1) –

linked weights between the input layer and the first
hidden layer, 𝑊 (2, 1) – linked weights between two
hidden layers, 𝑊 (3, 2) – linked weights between the
second layer and the output layer, 𝑏(1) is the bias of
the first hidden layer, 𝑏(2) is the bias of the second
layer, and 𝑏() is the bias of the output layer.

Fig. 10. Rapidity distributions of 𝐾− produced in central
Pb–Pb collisions at SPS energies from (20 to 158)𝐴 GeV, (7%
most central collisions for 20–80𝐴 GeV and 5% most central
collisions for 158𝐴 GeV) measured by NA49 collaborations.
[(∘) – experimental data, (-) – ANN model]

Fig. 11. Training procedure of the ANN model with the best
validation performance of 12.1

Fig. 12. Pseudorapidity distributions of charged particles for
Au–Au collisions at RHIC energies from 19.6 to 200 GeV per-
formed by the PHOBOS collaborations. [(∘) – experimental
data, (-) – ANN model]
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The weights and biases in Eq. (7) are given in Ap-
pendix D.

The simulation results based on the ANN approach
to modeling the pseudorapidity distribution (𝑑𝑁/𝑑𝜂)
of charged particles in Au–Au collisions at different
energies (from 19.6 to 200 GeV) are given in Fig. 12.
It can be seen from these figures that the trained ANN
model shows the exact fitting with experimental data
[1, 42–44]. The match is still good, indicating that
the designed neural network is robust.

4. Discussion and Conclusion

We developed a neural network approach to simu-
late and to predict the rapidity distribution (𝑑𝑁/𝑑𝑦)
of 𝜋− and 𝜅± for Pb–Pb collisions at various ener-
gies. The ANN model also allowed us to simulate
the pseudorapidity distribution (𝑑𝑁/𝑑𝜂) of charged
particles for Au–Au at various energies. Within this
model, we have obtained a formula describing these
collisions. Some different configurations of a net-
work structure were investigated. A network struc-
ture with hidden layers and different neurons for
(𝜋− and 𝜅±) for Pb–Pb and Au–Au collisions has
given the best mean square error. The weights
and biases used for the designed network are pre-
sented in the appendix. A very good agreement be-
tween the predicted values from the trained neural
network and the validating data is achieved, which
indicates that the trained network takes on opti-
mal generalization performance. This also demon-
strates how a typical data fitting technique based
on neural networks can find the basic pattern in-
formation implied in a great number of experimen-
tal data, extract useful rules, and then apply these
rules to obtain reasonable forecasting results. The
results of the ANN model have showed a good
agreement with the experimental data. The re-
sults demonstrate the feasibility of such technique
in extracting the collision features and prove its
efficiency.

Thus, we conclude that the ANN model based
on the LM learning technique is able to perfectly
model and simulate the pseudorapidity distribution
(𝑑𝑁/𝑑𝜂) of charged particles for A-A at various
energies.

The authors would like to thank the anonymous ref-
erees for their valuable comments and suggestions.

APPENDIX A

Weights and biases for the rapidity distribution of 𝜋− in central
Pb–Pb collisions:

𝑊 (1, 1) =

⎡⎢⎢⎢⎢⎣
2.0651 3.0749
2.9074 −2.2949
−3.1145 −2.0049
−2.7102 2.5249
3.5910 −0.9081
3.3609 1.5570
−2.4075 −2.8149

⎤⎥⎥⎥⎥⎦,

𝑊 (2, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4992
−0.7003
0.3404
0.8429
0.1122
0.8653
0.8815
0.9431
0.7609
0.3467
0.1378
0.7072

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑊 (3, 2) =

⎡⎢⎣
0.9289
−0.7013
0.1944
−0.0697
−0.1773

⎤⎥⎦,

𝑏(1) =

⎡⎢⎢⎢⎢⎣
−3.7041
−2.4694
1.2347

0
1.2347
2.4694
−3.7041

⎤⎥⎥⎥⎥⎦, 𝑏(2) =

⎡⎢⎣
−1.7619
−0.8809

0
0.8809
1.7619

⎤⎥⎦,
𝑏(3) = [0.7610].

APPENDIX B

Weights and biases for the rapidity distribution of K+ in cen-
tral Pb–Pb collisions:

𝑊 (1, 1) =

⎡⎢⎢⎢⎢⎣
1.2636 3.4819
2.3892 2.8305
−3.6687 −0.5103
3.6139 −0.8123
−1.2393 3.4906
−2.5993 −2.6389
2.6320 −2.6063

⎤⎥⎥⎥⎥⎦,

𝑊 (2, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1599
0.9119
0.0703
−0.0485
0.7800
−0.8176
−0.9814
−0.1894
−0.9780
0.7995
−0.6799
0.6038

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑊 (3, 2) =

⎡⎢⎣
−0.9581
−0.5805
0.3548
−0.0937
−0.0136

⎤⎥⎦,

𝑏(1) =

⎡⎢⎢⎢⎣
−3.7041
−2.4694

0
−1.2347
−2.4694
3.7041

⎤⎥⎥⎥⎦, 𝑏(2) =

⎡⎢⎣
1.7619
0.8809

0
−0.8809
−1.7619

⎤⎥⎦,
𝑏(3) = [0.2946].

APPENDIX C

Weights and biases for the rapidity distribution of K− in cen-
tral Pb–Pb collisions:

𝑊 (1, 1) =

⎡⎢⎢⎢⎢⎣
0.4326 −3.6787
−2.9881 −2.1889
2.5329 −2.7026
1.3343 −3.4554
−1.8419 −3.2136
0.5857 −3.6574
−0.7891 −3.6190

⎤⎥⎥⎥⎥⎦,
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𝑊 (2, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7866
0.7814
−0.5045
0.8909
0.6273
0.4526
0.4779
1.0262
−0.3017
−0.2217
0.1735

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑊 (3, 2) =

⎡⎢⎣
0.2512
0.5605
−0.8377
0.8588
0.5514

⎤⎥⎦,

𝑏(1) =

⎡⎢⎢⎢⎢⎣
−3.7041
2.4694
−1.2347

0
−1.2347
2.4694
−3.7041

⎤⎥⎥⎥⎥⎦, 𝑏(2) =

⎡⎢⎣
−1.7619
−0.8809

0
0.8809
−1.7619

⎤⎥⎦,
𝑏(3) = [−0.0264].

APPENDIX D

Weights and biases for the pseudorapidity distributions of
charged particles for Au–Au collisions:

𝑊 (1, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3.4789 2.3531
4.1881 −0.3165
3.6527 −2.0731
4.1892 0.3013
−3.5147 2.2994
3.7969 1.7953
−1.2371 4.0137
0.5973 4.1573
−4.1071 0.8787

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑊 (2, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1431
−0.7690
0.7460
−0.7315
−0.0260
−0.0402
0.0115
−0.6249
−1.0075
0.4611
−0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑊 (3, 2) =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5000
−0.2233
−0.4120
0.7965
−0.2280
−0.9758
−0.7327
0.2649

⎤⎥⎥⎥⎥⎥⎥⎦,

𝑏(1) =

⎡⎢⎢⎢⎢⎢⎢⎣

−4.2000
−3.1500
−2.1000
−1.0500

0
1.0500
−2.1000
3.1500

⎤⎥⎥⎥⎥⎥⎥⎦, 𝑏(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.7639
−1.2599
0.7560
0.2520
0.2520
0.7560
1.2599
−1.7639
−1.0603

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑏(3) = [0.1032].
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М.I. Ель-Бакрi, Ель-Саєд А. Ель-Дашан,
Е.Ф. Абд Ель-Хамiд

РОЗПОДIЛ ПСЕВДОШВИДКОСТЕЙ
ЗАРЯДЖЕНИХ ЧАСТИНОК У Pb–Pb I Au–Au
ЗIТКНЕННЯХ ЗА МОДЕЛЛЮ НЕЙРОННИХ МЕРЕЖ

Р е з ю м е

Моделюються Pb–Pb i Au–Au зiткнення в методi штучних
нейронних мереж (ШНС) на основi навчального алгоритму
Левенберга–Маркардта. Розраховано розподiл швидкостей
для 𝜋− i 𝜅±, народжених у Pb–Pb зiткненнях при рiзних
енергiях i розподiлу псевдошвидкостей заряджених части-
нок у Au–Au зiткненнях. Функцiї, отриманi у ШНС мо-
делi, дають дуже гарне узгодження з експериментом для
обох типiв зiткнень. Це свiдчить про те, що навчена мере-
жа дає оптимальнi загальнi характеристики, а ШНС мо-
дель може знайти широке застосування для опису зiткнень
важких iонiв.
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