
Long-Wave High-Frequency Oscillations

A.A. STUPKA
Oles Honchar Dnipropetrovsk National University
(72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine; e-mail: antonstupka@mail.ru)

LONG-WAVE HIGH-FREQUENCY
OSCILLATIONS IN IONIC CRYSTALS WITH TWO
ATOMS IN ELEMENTARY CELL

PACS 63.20.e; 71.36.+c;
72.30.+q

Long-wave high-frequency electromagnetic oscillations in an ionic crystal with two atoms in
an elementary cell have been considered in the framework of a self-consistent model for free
point charges in the electromagnetic field in a dielectric medium. The frequency of longitudinal
phonons is shown to equal the ionic plasma frequency divided by the square root of the high-
frequency dielectric permittivity. The standard dispersion law for the upper phonon-polariton
branch is obtained.
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As was shown in work [1] (see also work [2]), when
studying long-wave acoustic vibrations in solids, it is
of importance to take the electromagnetic interaction
into account. Optical vibrations also arise with the
participation of the electromagnetic interaction. Let
us consider long-wave vibrations in an ionic crystal
with two atoms in an elementary cell. It is known [3]
that both acoustic and optical vibrations are possible
in such an insulator, and the transverse optical vibra-
tions can generate polaritons due to the interaction
with an electromagnetic field. Optical vibrations are
high-frequency for ions, because the characteristic fre-
quency for the latter is the plasma ion frequency, so
that they may be considered as free charges. The elas-
tic forces are proportional to the gradients of displace-
ments, and this factor can be neglected in the long-
wave approximation. It is the more so for the thermal
motion of ions, because the velocity of their thermal
motion is lower than the speed of acoustic waves. The
vibration damping is also neglected. Since small ionic
vibrations in a non-magnetic medium are studied, the
nonlinear magnetic part of the Lorentz force can also
be omitted. In the formulated model, the linearized
equation of motion for ions looks like [4]

∂v+/∂t = ZeE/M+, (1)

∂v−/∂t = −ZeE/M−. (2)

Here, the subscript + or − corresponds to the charge
sign, M± are the masses of positively and negatively
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charged ions, and Ze is the charge. After the lin-
earization, the total time derivative coincides with
the partial one. The self-consistent electromagnetic
field should satisfy the Maxwell equations in an insu-
lator,

∂D/∂t = c rotB− 4πj, (3)

∂B/∂t = −c rotE. (4)

Here, the dielectric induction [5]

Dα = εαβEβ (5)

was introduced, which is connected linearly with the
electric field strength E in the approximation of
small oscillations. For simplicity, let us consider an
isotropic dispersionless insulator. Then the dielectric
permittivity tensor εαβ is reduced to a scalar. In the
used approximation, the current density of ions with
a definite sign is expressed in terms of the average
velocities as follows:

j± = ±Zen0v±, (6)

where n0 is the equilibrium concentration of ions.
While studying high-frequency field oscillations, it is
natural to use the high-frequency dielectric permit-
tivity ε∞, which describes the electron polarization.
Then the Maxwell equations for the self-consistent
electromagnetic field described by Eqs. (3) and (4)
look like

∂ε∞E/∂t = c rotB− 4πZen0 (v+ − v−), (7)
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∂B/∂t = −c rotE. (8)

We obtained a closed system of equations (1), (2),
(7), and (8) for the coupled high-frequency long-wave
ionic lattice vibrations and self-consistent electromag-
netic field oscillations. Now, we should differentiate
Eq. (7) with respect to the time and substitute the
time derivatives from Eqs. (1), (2) and (8) to obtain

∂2ε∞E/∂t2 = −c2 rotrotE− 4πZ2e2n0E/M, (9)

where the reduced mass of a crystal cellM = M+M−
M++M−

was introduced. Equation (9) is the wave equation for
the electric field strength. It is convenient to change
in it to Fourier components following the rule

E (x, t) = ∫ d3kdωE (k, ω) eikx−iωt/(2π)4. (10)

Let us divide the field into the potential and vortex
parts. Then, from Eq. (9), we obtain the following
linear homogeneous algebraic equations:

−ω2ε∞E⊥ = −c2k2E⊥ − 4πZ2e2n0E⊥/M, (11)

−ω2ε∞E‖ = −4πZ2e2n0E‖/M. (12)

From Eq. (11), we obtain the dispersion law for high-
frequency phonon-polaritons,

ω2 = c2k2/ε∞ + 4πZ2e2n0/ε∞M. (13)

This expression transforms into the photon branch at
large k. This solution coincides with the well-known
one (see, e.g., [3, Eq. (12.8)]). Low-frequency phonon-
polaritons go beyond the scope of our approximation.
Equation (12) gives us the frequency of longitudinal
oscillations,

ω2
L = 4πZ2e2n0/ε∞M, (14)

which are related to longitudinal phonons. To com-
pare the obtained result with the tabulated value

Longitudinal optical frequencies
of some ionic crystals

Crystal ρ, g·cm−3 ε∞ ωtabl
L , 1013 s−1 ωL, 1013 s−1

LiH 0.78 3.6 21 18.1
LiF 2.64 1.9 12 10.5
LiCl 2.07 2.7 7.5 5.72
NaF 2.79 1.7 7.8 6.28
MgO 3.58 2.95 14 11.5

ωtabl
L for the frequency, it is convenient to change

in expression (14) from the concentration of ions of
the same sign to the crystal density ρ by the formula
n0
M = ρ

M+M−
. Then, we can write down that

ωL = 1.70156Z
√

ρ

ε∞M+M−
10−9 s−1. (15)

For comparison, let us use the data from Table 5.1
of book [6] for the dielectric permittivity at optical
frequencies, ε∞, and the value of longitudinal vibra-
tion frequency, ωtabl

L . The densities of relevant ionic
crystals were taken from work [7]. One can see from
Table that the values obtained by formula (15) are in
good agreement with the known data [6]. Certainly,
for ions with large radii, the model of point charges
is not so good.

Hence, we have shown that the upper branches
of phonon-polaritons and longitudinal phonons are
plasma oscillations [4, 8] in a medium.
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ВИСОКОЧАСТОТНI ДОВГОХВИЛЬОВI
КОЛИВАННЯ В IОННИХ КРИСТАЛАХ З ДВОМА
АТОМАМИ В ЕЛЕМЕНТАРНIЙ КОМIРЦI

Р е з ю м е

Розглянуто довгохвильовi високочастотнi електромагнiтнi
коливання в iонному кристалi з двома атомами в елемен-
тарнiй комiрцi. Використано модель вiльних точкових за-
рядiв у самоузгодженому електромагнiтному полi у дiеле-
ктричному середовищi. Показано шляхом порiвняння з та-
бличними даними, що частота поздовжнiх фононiв є вiдно-
шенням iонної плазмової частоти до кореня з високочасто-
тної дiелектричної проникностi. Також отримано стандар-
тний закон дисперсiї верхньої гiлки фонон-поляритонiв.
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