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The Einstein equations with the stress-energy tensor in the form of a diagonal matrix with mu-
tually proportional components are studied in the static cylindrically symmetric case. Several
known exact solutions fall into this case (static electric field, some perfect fluid solutions, and
solution with the cosmological constant). Coefficients of proportionality in the stress-energy
tensor serve as parameters that allow studying a more general case (as well as obtaining new
solutions for particular values of these coefficients). The initial system of equations is sim-
plified and transformed into a system of two first-order ordinary differential equations. An
exact solution is found for a broad set of parameters. The equilibrium points of the system
of equations are considered, and the qualitative behavior of the solutions near the hyperbolic
equilibrium points is studied.
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1. Introduction

The Einstein equations are considered in the case of
cylindrical symmetry without rotation together with
a stress-energy tensor Tµν in the form of a diagonal
matrix with mutually proportional diagonal elements

Tµν =

lp 0 0 0
0 −p 0 0
0 0 −mp 0
0 0 0 −np

, (1)

where p is an unknown function, and l, m, and n are
some constants (not necessary discrete).

We chose such form of the stress-energy tensor,
because several typical cases fall into this category,
namely: the vacuum solution, solution with a static
electric field, stationary perfect fluid with the equa-
tion of state ε = αp, and the case of the cosmological
constant. Therefore, all these cases can be studied
simultaneously.
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The static cylindrically symmetric case has been
studied in numerous works. The vacuum solution
can be found in [1]. A number of solutions have
been obtained in the case of the electromagnetic
field [2–5].

The case of the perfect fluid has been reduced
to the second-order linear differential equation in
[7]. Starting with the metric tensor in different
forms and making various assumptions, several dif-
ferent solutions have been obtained in [7–11]. In the
case of a perfect fluid with the equation of state
ε = αp, the general solution has been found in
[13]. A stationary rotating perfect fluid has been
studied in [12].

The static cylindrically symmetric case with the
cosmological constant has been studied in [14]. A
nonlinear conformally invariant scalar field has been
considered in [15].

The embedding of the cylindrically symmetric con-
figurations in the external spacetime gained attention
in recent years [16–18]. For a discussion of the cylin-
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drically symmetric cosmological solution, see [19], the
collapse of a cylindrically symmetric configurations of
matter has been studied in several works (see, e.g.,
[20] and references therein).

The study of the gravitomagnetic effects under
cylindrical symmetry and their possible connection
to the astrophysical phenomena can be found in [21].

The investigation of cylindrically symmetric grav-
itational waves and related effects has a long his-
tory, starting from the work of Einstein and Rosen.
The modern interest in them arises from the gravi-
tation quantization and the problem of the energy of
a gravitational field. The literature on these ques-
tions is extensive, but we point only to one particular
work [22].

We reduce the Einstein equations to the system
of two first-order differential equations and find the
general solution for a quite general set of parameters
that characterize the stress-energy tensor (in all cases
with n = −1). In the case of a static electric field
(l = −1, m = −1, n = −1), this solution reduces to
that obtained by Raychaudhuri (see [5, 6]).

In the other cases, the system of equations can be
studied at least qualitatively. The general review of
the qualitative analysis of dynamical systems can be
found in [30], and work [25] is particularly devoted to
the qualitative analysis of a system of two equations.

Every solution of the system of first-order differ-
ential equations (in general, nonlinear ones) can be
thought as a curve in the phase space of the system.
Knowing the structure of the phase space, one can
describe the behavior of all solutions (including the
solutions with basically different behavior) for all ini-
tial conditions. Since the structure of the phase space
is largely determined by the equilibrium points of the
system, one can extract information about the be-
havior of the solutions without knowing their explicit

Different typical cases and corresponding
values of the parameters in the stress-energy tensor,
where k = 1

2
(l + m + n + 1); the vacuum case

can be obtained by setting l = 0, m = 0, n = 0,

and k = 0, bypassing the definition of k

l m n k

Static electric field −1 −1 −1 −1

Stationary perfect fluid α 1 1 3+α
2

Cosmological constant −1 1 1 1

form. The case where the system consists of only two
equations is practically the simplest one, has the ad-
vantage to be easily visualized and, thus, is the most
desirable.

In [23, 24], the qualitative analysis had been ap-
plied to the Einstein equations in the case of the
spherical symmetry together with the stress-energy
tensor with mutually proportional components. The
stress-energy tensor had been parametrized by two
parameters – different values of these parameters cor-
respond to different fields: scalar field, perfect fluid,
etc. Then, the Einstein equations had been reduced
to the autonomous system of two ordinary differen-
tial equations, and the phase space of this system had
been studied in detail. It had been shown that differ-
ent metrics, corresponding to the different values of
parameters in the stress-energy tensor, demonstrate
the same qualitative behavior. The sets of parameters
that give rise to the metrics with similar qualitative
behavior had been identified.

Qualitative analysis has been used to study space-
time singularities in the presence of scalar fields [26].
The example of the qualitative analysis of cosmo-
logical models (in the Brans–Dicke theory) can be
found in [27].

We now find the equilibrium points of the system
of equations. It turns out that the system has a non-
hyperbolic equilibrium point and, if a certain relation
holds between parameters l, m, and n (k2 = m(n+1)
with k = 1

2 (l+m+ n+ 1), see below), acquires a set
of hyperbolic equilibrium points. We determine their
type in what follows.

2. Derivation of a System of Equations

We use the signature (+,−,−,−) and the system of
geometric units, in which c = G = 1. The Einstein
equations are written in the following form:

Rµν −
1
2
δµνR = 8πTµν . (2)

We begin with the cylindrically symmetric static met-
ric [28]

ds2 =e2Udt2−e2K−2U (dρ2 + dz2)−W 2e−2Udϕ2. (3)

In accord with the usual convention, ρ is the “radial”
coordinate, and the coordinate “z” runs along the axis
of symmetry. Since we consider a static case, the
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unknown functions U , K, and W depend only on ρ.
The Einstein equations for the metric (3) are

e2U−2K

(
2U ′′+2U ′

W ′

W
−U ′2−K ′′−W

′′

W

)
=8πlp, (4)

e2U−2K

(
U ′2 −K ′W

′

W

)
= −8πp, (5)

−e2U−2K
(
K ′′ + U ′2

)
= −8πmp, (6)

−e2U−2K

(
U ′2 −K ′W

′

W
+
W ′′

W

)
= −8πnp. (7)

Derivatives with respect to ρ are denoted by primes.
We multiply each equation by e2K−2U and denote

Π = 8πpe2K−2U . Then, multiplying the two last equa-
tions by –1, we obtain

2U ′′ + 2U ′
W ′

W
− U ′2 −K ′′ − W ′′

W
= lΠ, (8)

U ′2 −K ′W
′

W
= −Π, (9)

K ′′ + U ′2 = mΠ, (10)

U ′2 −K ′W
′

W
+
W ′′

W
= nΠ. (11)

Subtracting Eq. (9) from Eq. (11), we have

2U ′′ + 2U ′
W ′

W
− U ′2 −K ′′ − W ′′

W
= lΠ, (12)

U ′2 −K ′W
′

W
= −Π, (13)

K ′′ + U ′2 = mΠ, (14)

W ′′

W
= (n+ 1)Π. (15)

In view of Eqs. (14) and (15), we simplify (12) to the
form

2U ′′ + 2U ′
W ′

W
= (l +m+ n+ 1)Π, (16)

U ′2 −K ′W
′

W
= −Π, (17)

K ′′ + U ′2 = mΠ, (18)

W ′′

W
= (n+ 1)Π. (19)

We note that, in fact, this whole system consists of
only derivatives of some functions. At first, we denote

U ′ = Ω, K ′ = Φ. If we also denote W ′

W = Ψ, then
W ′′

W = Ψ′ + Ψ2. So, we obtain

2Ω′ + 2ΩΨ = (l +m+ n+ 1)Π, (20)

Ω2 − ΦΨ = −Π, (21)

Φ′ + Ω2 = mΠ, (22)

Ψ′ + Ψ2 = (n+ 1)Π. (23)

Let us use the second of these equations to get rid
of Π in the other equations:

2Ω′ + 2ΩΨ = (l +m+ n+ 1)(ΦΨ− Ω2), (24)

Φ′ + Ω2 = m(ΦΨ− Ω2), (25)

Ψ′ + Ψ2 = (n+ 1)(ΦΨ− Ω2). (26)

Thus, denoting k = 1
2 (l + m + n + 1), we finally

arrive at a usable system of equations

Ω′ = −ΩΨ + k(ΦΨ− Ω2), (27)

Φ′ = −Ω2 +m(ΦΨ− Ω2), (28)

Ψ′ = −Ψ2 + (n+ 1)(ΦΨ− Ω2). (29)

The function Π related to the “pressure” p as Π =
8πpe2K−2U can be calculated from the solution of the
system as Π = ΦΨ− Ω2.

3. Reduction to a System
of Two Equations

System (27) can be integrated once in two slightly
different ways.

Consider the substitution

Ω = kF, (30)

Φ = G+mF, (31)

Ψ = H + (n+ 1)F, (32)

where F , G, and H are some new unknown functions.
The inverse transformation is

F =
1
k

Ω, (33)
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G = Φ− m

k
Ω, (34)

H = Ψ− n+ 1
k

Ω. (35)

Using it in system (27) leads to the following sys-
tem for F , G, and H:

F ′ = (m(n+ 1)− k2)F 2 +mFH+

+(G− F )(H + (n+ 1)F ), (36)

G′ = (m(n+ 1)− k2)F 2 +mFH, (37)

H ′ = −H(H + (n+ 1)F ). (38)

Let us subtract Eq. (37) from (36):

(F −G)′ = (G− F )(H + (n+ 1)F ), (39)

H ′ = −H(H + (n+ 1)F ). (40)

We obtain immediately the integrable system

(F −G)′

F −G
= −(H + (n+ 1)F ), (41)

H ′

H
= −(H + (n+ 1)F ) (42)

or

(F −G)′

F −G
=
H ′

H
. (43)

Then

F −G = CHH, (44)

where CH is a constant of integration.
Thus, system (36)–(38) reduces to

F ′ = −k2F 2 + (mF − CHH)(H + (n+ 1)F ), (45)

H ′ = −H(H + (n+ 1)F ). (46)

There is a different version of substitution
(30)–(32):

Ω = F + kH, (47)

Φ = G+mH, (48)

Ψ = (n+ 1)H. (49)

With the inverse transformation

F = Ω− k

n+ 1
Ψ, (50)

G = Φ− m

n+ 1
Ψ, (51)

H =
1

n+ 1
Ψ. (52)

Repeat the same steps as in the case of (30)–(32). All
transformations are alike, and we obtain the system

F ′ = −(n+ 1)FH, (53)

H ′=−CF (n+1)FH+m(n+1)H2−(F+kH)2 (54)

together with the result of integration

CFF = G−H, (55)

where CF is a constant of integration in the case of
substitution (47)–(49).

4. A Special Case of the System of Three
Equations: k = 0, n = −1

The first substitution works in all cases where k 6= 0,
and the second works if n 6= −1. It leaves the case,
in which k = 0 and n = −1. In this case, the system
of equations can be integrated explicitly.

Setting k = 0 and n = −1 in (27) gives us the
system

Ω′ = −ΩΨ, (56)

Φ′ = −Ω2 +m(ΦΨ− Ω2), (57)

Ψ′ = −Ψ2. (58)

The definition of k implies that l = −m, and we
deal with a stress-energy tensor of the form Tµν =
= diag(−mp,−p,−mp, p).

Integrating the third equation, we have

Ψ =
1

ρ+ C1
, (59)

where C1 is a constant of integration.
The constant C1 only affects the position of the

axis of symmetry with regards to the coordinate ρ (it
is not fixed by metric (3) that we chose). Hence, we
may set C1 = 0, so Ψ = 1

ρ .
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Integrating the rest of equations, we obtain

Ω =
C2

ρ
, (60)

Φ =
C2

2

ρ
+ C3ρ

m, (61)

Ψ =
1
ρ
, (62)

where C2 and C3 are constants of integration.
Integrating once more, we obtain the functions di-

rectly related to the components of the metric tensor:

U = ln(C4ρ
C2), (63)

K = ln(C5ρ
C2

2 ) +
C3

m+ 1
ρm, (64)

W = C6ρ, (65)

and C4, C5, and C6 are three more constants of
integration.

5. Solution for k 6= 0, n = −1

System (27) can be completely integrated in quite a
general case where n = −1 (and the stress-energy
tensor is Tµν = diag(lp,−p,−mp, p)). As we will see
below, this is the case with W = ρ.

It is much harder to obtain the explicit expressions
for components of the metric tensor in this case. That
is why, in order to completely describe the reduction
of the problem to the system of only two differential
equations, we have left the values k = 0 and n = −1
as a separate case.

We will use the first substitution (30)–(32) and the
system that it produces (45)–(46) (the second substi-
tution does not work in this case).

Again, we will introduce several constants of inte-
gration. All of them will be denoted according to the
usual notation as C1, C2, and so forth.

So, we set n = −1 in (45)–(46) and obtain

F ′ = −k2F 2 +H(mF − CHH), (66)

H ′ = −H2. (67)

Integrating the second equation, we have H = 1
ρ+C1

.
As in the previous case, we can set C1 = 0, so

H =
1
ρ
. (68)

Then we are going to rearrange the right-hand side
of the first equation, so we have

(
kF − m

2kH
)2 in it

and

F ′ = −k2F 2 +H(mF − CHH) =

= −k2F 2 +mFH − CHH2 =

= −k2F 2 + 2kF
m

2k
H −

(m
2k

)2
H2+

+
(m

2k

)2
H2 − CHH2 =

= −
(
kF − m

2k
H
)2

+
((m

2k

)2
− CH

)
H2. (69)

Now, we want to get
(
kF − m

2kH
)′ on the left-hand

side. Thus, we multiply the equation by k and then
add −m

2kH
′ to it:(

kF − m

2k
H
)′

= −k
(
kF − m

2k
H
)2

+

+ k

((m
2k

)2
− CH

)
H2 − m

2k
H ′. (70)

Using the second equation H ′ = −H2, we obtain
−m

2kH
′ = m

2kH
2 and(

kF − m

2k
H
)′

= −k
(
kF − m

2k
H
)2

+

+
[
k

((m
2k

)2
− CH

)
+
m

2k

]
H2. (71)

Then we denote P = kF − m
2kH and a = k

((
m
2k

)2−
−CH

)
+ m

2k and insert H = 1
ρ :

P ′ = −kP 2 +
a

ρ2
. (72)

To solve it, we use the standard substitution Q = ρP ,
which allows us to separate variables:

ρQ′ = −kQ2 +Q+ a = −k
(
Q2 − 1

k
Q− a

k

)
=

= −k
(
Q2 − 2Q

1
2k

+
1

4k2
− 1

4k2
− a

k

)
=

= −k

((
Q− 1

2k

)2

− 1 + 4ak
4k2

)
. (73)
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We denote u = Q − 1
2k . Then 1+4ak

4k2 can be both

positive and negative. Denoting b =
√
|1+4ak|

2k , we
have two cases in view of the sign of 1 + 4ak:

du

u2 ∓ b2
= −kdρ

ρ
. (74)

Both are easy to integrate.
Hence, we use two different substitutions, depend-

ing on the sign of 1 + 4ak. In the case of the mi-
nus sign, we consider two substitutions depending on
whether u2 < b2 or u2 > b2:

u = b tanh v, 1 + 4ak > 0, u2 < b2, (75)

u = b coth v, 1 + 4ak > 0, u2 > b2, (76)

u = b tan v, 1 + 4ak < 0, (77)

which gives us the following integrals (integrals in the
cases where u2 < b2 or u2 > b2 are the same):

−1
b

∫
dv = −k

∫
dρ

ρ
− 1
b

lnC2,

1 + 4ak > 0, u2 < b2, (78)

−1
b

∫
dv = −k

∫
dρ

ρ
− 1
b

lnC2,

1 + 4ak > 0, u2 > b2, (79)

1
b

∫
dv = −k

∫
dρ

ρ
− 1
b

lnC2, 1 + 4ak < 0, (80)

where we have chosen the constant of integration to
be 1

b lnC2 in order to simplify our formulas.
Then

v = ln
(
C2ρ

kb
)
, 1 + 4ak > 0, u2 < b2, (81)

v = ln
(
C2ρ

kb
)
, 1 + 4ak > 0, u2 > b2, (82)

v = ln
(
C2ρ

−kb), 1 + 4ak < 0. (83)

Thus,

u = b tanh ln
(
C2ρ

kb
)
, 1 + 4ak > 0, u2 < b2, (84)

u = b coth ln
(
C2ρ

kb
)
, 1 + 4ak > 0, u2 > b2, (85)

u = b tan ln
(
C2ρ

−kb), 1 + 4ak < 0. (86)

Using tanh(lnx) = x2−1
x2+1 and coth(lnx) = x2+1

x2−1 , we
have

u = b
C2

2ρ
2kb − 1

C2
2ρ

2kb + 1
, 1 + 4ak > 0, u2 < b2, (87)

u = b
C2

2ρ
2kb + 1

C2
2ρ

2kb − 1
, 1 + 4ak > 0, u2 > b2, (88)

u = b tan ln
(
C2ρ

−kb) , 1 + 4ak < 0. (89)

We now collect all the substitutions and roll back to
the original function F : F = 1

k

(
m
2k

1
ρ + 1

ρ

(
u+ 1

2k

))
=

1
ρ

(
m+1
2k2 + 1

ku
)
. The condition u2 < b2 transforms

into F < 1
kρ

(
m+1
2k + b

)
. Thus, together with H = 1

ρ ,
we have

F =
1
ρ

(
m+ 1
2k2

+
b

k

C2
2ρ

2kb − 1
C2

2ρ
2kb + 1

)
,

1 + 4ak > 0, F <
1
kρ

(
m+ 1

2k
+ b

)
, (90)

F =
1
ρ

(
m+ 1
2k2

+
b

k

C2
2ρ

2kb + 1
C2

2ρ
2kb − 1

)
,

1 + 4ak > 0, F >
1
kρ

(
m+ 1

2k
+ b

)
, (91)

F =
1
ρ

(
m+ 1
2k2

+
b

k
tan ln

(
C2ρ

−kb)),
1 + 4ak < 0, (92)

H =
1
ρ
. (93)

Now we will tidy up our notation. Recall that a =
k
((

m
2k

)2 − CH)+ m
2k . Then

1 + 4ak = 1 +m2 − 4k2CH + 2m =

= (m+ 1)2 − 4k2CH , (94)

so the condition 1+4ak > 0 reads (m+1)2 > 4k2CH .
We denote

β =
√
|1 + 4ak| =

√
|(m+ 1)2 − 4k2CH |,

so b = β
2k . Then we have

F =
1

2k2ρ

(
m+ 1 + β

C2
2ρ
β − 1

C2
2ρ
β + 1

)
,

(m+ 1)2 > 4k2CH , F <
m+ 1 + β

2k2ρ
, (95)
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F =
1

2k2ρ

(
m+ 1 + β

C2
2ρ
β + 1

C2
2ρ
β − 1

)
,

(m+ 1)2 > 4k2CH , F >
m+ 1 + β

2k2ρ
, (96)

F =
1

2k2ρ

(
m+ 1 + β tan ln

(
C2ρ

− β
2

))
,

(m+ 1)2 < 4k2CH , (97)

H =
1
ρ
, (98)

β =
√
|(m+ 1)2 − 4k2CH |. (99)

The choice between the first two solutions depends
on the initial condition (in ρ) for F , which can be ex-
pressed through the constant of integration C2 (basi-
cally, take the initial condition F (ρ0) at some point
ρ0 and compare it with m+1+β

2k2ρ0
). These two solutions

can be combined in a single formula. Denote C2
2 = a1

a2
.

Then, in both these solutions, a1 and a2 should have
the same sign. However, these solutions differ only by
the sign in front of C2

2 . So, if we allow a1 and a2 to
have different signs, then we embrace both solutions
simultaneously. We have

F =
1

2k2ρ

(
m+ 1 + β

a1ρ
β − a2

a1ρβ + a2

)
,

(m+ 1)2 > 4k2CH , (100)

F =
1

2k2ρ

(
m+ 1 + β tan ln

(
C2ρ

− β
2

))
,

(m+ 1)2 < 4k2CH , (101)

H =
1
ρ
, (102)

β =
√
|(m+ 1)2 − 4k2CH |. (103)

Using the original substitution (30)–(32) and (44),
we obtain

Ω = kF, (104)

Φ = (m+ 1)F − CHH, (105)

Ψ = H. (106)

Then, remembering that Ω = U ′, Φ = K ′, and Ψ =
= W ′/W and gathering all together, we obtain

U =
∫

1
2kρ

(
m+ 1 + β

a1ρ
β − a2

a1ρβ + a2

)
dρ+ C3, (107)

K =
∫

1
2k2ρ

(
(m+ 1)2 − 2k2CH+

+(m+ 1)β
a1ρ

β − a2

a1ρβ + a2

)
dρ+ C4, (108)

W = C5ρ, (109)

(m+ 1)2 > 4k2CH , (110)

β =
√
|(m+ 1)2 − 4k2CH |, (111)

and C3, C4, and C5 are constants of integration.
For (m+ 1)2 > 4k2CH , we have

U =
∫

1
2kρ

(
m+ 1 + β tan ln

(
C2ρ

− β
2

))
dρ+C3, (112)

K =
∫

1
2k2ρ

(
(m+ 1)2 − 2k2CH +

+(m+ 1)β tan ln
(
C2ρ

− β
2

))
dρ+ C4, (113)

W = C5ρ, (114)

(m+ 1)2 < 4k2CH , (115)

β =
√
|(m+ 1)2 − 4k2CH |. (116)

The case (m + 1)2 > 4k2CH can be integrated to
the end. We have to calculate the integral∫

β

2kρ
a1ρ

β − a2

a1ρβ + a2
dρ. (117)

We rewrite it as∫
β

2kρ
a1ρ

β/2 − a2ρ
−β/2

a1ρβ/2 + a2ρ−β/2
dρ =

=
∫

β

2k
a1ρ

β/2−1 − a2ρ
−β/2−1

a1ρβ/2 + a2ρ−β/2
dρ (118)

and note that the function in the numerator is the
derivative of the function in the denominator:

d

dρ

(
a1ρ

β/2+a2ρ
−β/2

)
=
β

2

(
a1ρ

β/2−1−a2ρ
−β/2−1

)
.

(119)
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Eventually, we have

U=
m+ 1

2k
ln ρ+

1
k

ln
(
a1ρ

β/2+a2ρ
−β/2

)
+C3, (120)

K =
(m+ 1)2 − 2k2CH

2k2
ln ρ+

+
m+ 1
k2

ln
(
a1ρ

β/2 + a2ρ
−β/2

)
+ C4, (121)

W = C5ρ, (122)

(m+ 1)2 > 4k2CH , (123)

β =
√
|(m+ 1)2 − 4k2CH |. (124)

The constants of integration C3 and C5 can be set
to 0 and 1, respectively, by the choice of the coordi-
nates t and ϕ.

6. Equilibrium Points of the System
of Equations and the Energy Conditions

Here, we are going to find the equilibrium points of
the systems of equations (45), (46) and (53), (54) and
to study those of them, which are hyperbolic.

We start with system (45), (46). The equilibrium
points of a system of ordinary first-order differential
equations are points, in which all first derivatives of
the unknown functions equal zero. Setting F ′ and H ′
equal to zero in (45), (46), we have

−k2F 2 + (mF − CHH)(H + (n+ 1)F ) = 0, (125)

−H(H + (n+ 1)F ) = 0. (126)

In this section, F and H will denote temporarily
the equilibrium points of the system.

Solving this system, we find the following points:
First and foremost, the equilibrium point at F = 0,
H = 0. If k, m, and n satisfy the condition k2 =
= m(n + 1), then there is a whole additional set of
equilibrium points parametrized as F = µ, H = 0,
or, in other words, it is the axis F in the phase plane
of the system.

It turns out that, about the point F = 0, H = 0,
all eigenvalues of the linearization of the system (Ja-
cobian matrix) equal zero, so this point is not hy-
perbolic, and the behavior of the solutions near this
point can be complicated.

Fig. 1. Phase portraits of system (45), (46) in the case of a
static electric field (l = −1, m = −1, n = −1, k = −1) for
CH = −1/4

Fig. 2. Phase portraits of system (45), (46) in the case of a
static electric field (l = −1, m = −1, n = −1, k = −1) for
CH = 1/4

In the case of the points F = µ, H = 0, eigenvalues
λ(F,H) (eigenvalue λ at an equilibrium point (F,H))
are λ1(F,H) = 0, λ2(F,H) = −µ(n+ +1). The first
zero eigenvalue indicates that we deal with a line of
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Fig. 3. Perfect fluid: l = 1, m = 1, n = 1, k = 2, CH = −1/4

Fig. 4. Cosmological constant: l = −1, m = 1, n = 1, k = 1,
CH = −1/4

equilibrium points. The values of the second eigen-
value indicate that a solution either approaches the
corresponding point (negative values) or moves away
from it (positive values), at least far away from the
point F = 0, H = 0.

The set of equilibrium points of system (53), (54)
is similar to that of the first system. The equilibrium
points are F = 0, H = 0, and, if k2 = m(n + 1),

Fig. 5. Phase portrait of the system for k = −2, m = −2,
n = −3, CH = −1/4. Note the equilibrium points along the
axis F

Fig. 6. Phase portrait of the system that differs only in k from
the case in Fig. 5: k = −3, m = −2, n = −3, CH = −1/4

also a set F = 0, H = µ (note that, in this case, it
is the axis H).

The point F = 0, H = 0 has the zero eigenvalues of
the corresponding Jacobian matrix. The eigenvalues
on the axis H are the same λ1(F,H) = 0, λ2(F,H) =
= −µ(n+ 1).

As we can see, if k2 = m(n + 1), then the system
of equations acquires a new set of equilibrium points,
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so it is of interest to get at least a superficial idea of
the behavior of the system in that case. In order to
do this, we will consider several phase portraits of the
system, which are computed numerically.

At first, we are going to look at phase portraits
in the well-known cases: static electric field, perfect
fluid, and solution with cosmological constant.

In order to do this, we also have to specify the
constant of integration CH . If we write down system
(45), (46) in the case of a static electric field (l =
= −1, m = −1, n = −1, k = −1), then CH must
be negative. For example, CH = −1/4 corresponds
to the Mukherjee solution [29]. In Figs. 1 and 2, we
present two cases for CH = −1/4 and CH = 1/4.

The next pair of phase portraits (Figs. 3 and 4) is
the perfect fluid (l = 1, m = 1, n = 1, k = 2) and
the system with the cosmological constant (l = −1,
m = 1, n = 1, k = 1); CH = −1/4 in both cases.

Figures 5 and 6 show the case where k2 = m(n+
+1) (k = −2, m = −2, n = −3, CH = −1/4) in
comparison with a case that differs from the former
only in k (k = −3, m = −2, n = −3, CH = −1/4).

The energy conditions [31] pose some restrictions
on the physically sensible values of parameters l, m,
and n. In our case, they lead to the following set of
inequalities:

lp ≥ 0, (127)

|lp| ≥ |p|, (128)

|lp| ≥ |mp|, (129)

|lp| ≥ |np|. (130)

Dividing by |p|, we have

lp ≥ 0, (131)

|l| ≥ |1|, (132)

|l| ≥ |m|, (133)

|l| ≥ |n|. (134)

The first inequality simply sets the sign of l de-
pending on the sign of p.
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С.Б. Григорьєв, А.Б. Леонов

РIВНЯННЯ ЕЙНШТЕЙНА У ВИПАДКУ
СТАТИЧНОЇ ЦИЛIНДРИЧНОЇ СИМЕТРIЇ
ТА ДIАГОНАЛЬНИЙ ТЕНЗОР ЕНЕРГIЇ-IМПУЛЬСУ
IЗ ВЗАЄМНО ПРОПОРЦIЙНИМИ КОМПОНЕНТАМИ

Р е з ю м е

Розглядаються рiвняння Ейнштейна у випадку статичної
цилiндричної симетрiї. Вибраний тензор енергiї-iмпульсу
має вигляд дiагональної матрицi з взаємно пропорцiйними
компонентами. Декiлька вiдомих точних розв’язкiв задо-
вольняють такi умови (розв’язок зi статичним електричним

полем, частина розв’язкiв з iдеальною рiдиною, розв’язок
з космологiчною сталою). Коефiцiєнти пропорцiйностi мiж
компонентами тензора енергiї-iмпульсу виступають параме-
трами, що дозволяють вивчати бiльш загальний випадок
(а також знаходити новi точнi розв’язки для окремих зна-
чень коефiцiєнтiв). Роздiлення змiнних дозволяє привести
систему рiвнянь до спрощеної системи з двох звичайних ди-
ференцiальних рiвнянь першого порядку. Знайдено точний
розв’язок системи для широкого дiапазону значень коефiцi-
єнтiв. Вивчено точки рiвноваги системи рiвнянь, на основi
аналiзу яких з’ясована якiсна поведiнка розв’язкiв для ви-
падкiв простих станiв рiвноваги.
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