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EFFECTIVE POTENTIAL
OF ELECTRON-ELECTRON INTERACTION
IN THE SEMIINFINITE ELECTRON GAS
WITH REGARD FOR THE LOCAL-FIELD CORRECTIONPACS 71.45.Gm

The effective potential of electron–electron interaction and the two-particle “density–density”
correlation function have been calculated for a simple semiinfinite metal making allowance for
the local-field correction. The influences of a flat interface and various models of local-field
correction on the results of calculations are analyzed.
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1. Introduction

The modern quantum-mechanical statistical theory
of Fermi systems with an interface is still far from
being completed. The urgency in the theoretical de-
scription of such systems can hardly be overestimated
owing to the importance of processes that occur in the
presence of an interface and a rapid development of
experimental methods aimed at surface researches.

The most popular theoretical method to study such
systems is the density functional one [1], which was
created on the basis of the well-known Thomas–Fermi
approximation firstly developed for atoms. By its na-
ture, the density functional method is a one-particle
approach, so it cannot consider many-body correla-
tion effects correctly. Therefore, the energy function-
als of systems with an interface are most often consid-
ered in the local density approximation; namely, the
expressions known from the theory of uniform sys-
tems are taken for calculations, but the distribution
of the electron density 𝑛(r) is substituted for the elec-
tron concentration 𝑛. This approach is debatable [2],
because the interface introduces not only quantita-
tive, but also qualitative changes in various param-
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eters of the electron system (e.g., the image forces
emerge and so on), which cannot be taken into ac-
count in principle by the density functional theory.

In the cycle of works [3–9], an attempt was made to
develop a consistent quantum-mechanical statistical
theory for a simple metal with the interface “metal–
vacuum”. In particular, it was shown that the ther-
modynamic potential and the structural distribution
functions of electrons in a semiinfinite metal are ex-
pressed in terms of the effective electron-electron in-
teraction potential. This work logically continues this
cycle of works. It was aimed at studying the influ-
ence of various approximations for the local-field cor-
rection on the two-particle correlation function “den-
sity–density” and the effective potential of electron-
electron interaction.

The effective interaction between charged particles
in spatially confined systems attracts the attention
of researchers for a long time. In particular, it was
studied in works [10–18]. In work [10], under cer-
tain approximations, the polarization part of the en-
ergy of interaction between a motionless point charge
and a semiinfinite metal was calculated. Using similar
approximations, the dielectric function of a semiinfi-
nite metal and the effective potential were calculated
in work [11]. In works [12, 13] in the framework of
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the effective interaction potential approximation, the
asymptotics of Friedel oscillations at large distances
between charges at the interface was obtained, and
their dependence on the Fermi surface shape in met-
als were studied.

In works [14–17], the screening of a charged impu-
rity near the metal surface was studied in the random-
phase approximation. In particular, the dependences
of the electrostatic potential of this impurity on the
distance in the surface plane and the distance to the
surface were calculated in the quasiclassical case and
the Thomas–Fermi approximation, and Friedel oscil-
lations were revealed.

In order to eliminate shortcomings inherent to the
density functional method, attempts were made to
use the GW approach [19] with the density functional
method. In particular, in work [18], the effective po-
tential of electron-electron interaction was calculated
with the use of the local density approximation for
the exchange-correlation potential.

2. Model

Consider a semiinfinite simple metal in the framework
of the jellium model, i.e. when the ionic subsystem
of a metal is represented by a uniformly distributed
positive charge confined by the interface plane 𝑧 =
= −𝑑, with the density

𝑛+(𝑥, 𝑦, 𝑧) ≡ 𝑛+(𝑧) = 𝑛bulk 𝜃(−𝑑− 𝑧), (1)

where

𝜃(𝑥) =
{︁
1, 𝑥 > 0,
0, 𝑥 < 0

is the Heaviside function, 𝑛bulk is the electron con-
centration, and 𝑑 > 0 is a parameter determined self-
consistently from the electroneutrality condition

+∞∫︁
−∞

d𝑧 (𝑛(𝑧)− 𝑛+(𝑧)) = 0, (2)

where 𝑛(𝑧) is the electron density distribution. Let
the ionic subsystem form a surface potential for elec-
trons in the metal, which does not allow them to es-
cape. This surface potential is simulated by the po-
tential wall

𝑉 (𝑧) =
{︁∞, 𝑧 > 0,
0, 𝑧 < 0. (3)

This model of potential physically correctly corre-
sponds to a real situation and allows analytical so-
lutions to be obtained for the Schrödinger equation[︂
− ~2

2𝑚
Δ+ 𝑉 (𝑧)

]︂
Ψp,𝛼(r) = 𝐸𝛼(p)Ψp,𝛼(r),

where 𝑚 is the electron mass, ~p the two-dimensional
vector of electron momentum in the plane parallel
to the interface, and 𝛼 the quantum number associ-
ated with the electron motion normally to the inter-
face. Since the electron moves freely in parallel to the
interface, the wave function and the corresponding
energy of the electron can be written as follows:

Ψp,𝛼(r) =
1√
𝑆
eipr||𝜙𝛼(𝑧), 𝐸𝛼(p) =

~2(𝑝2 + 𝛼2)

2𝑚
.

Here, r = (r||, 𝑧) is the radius vector of the electron,
𝑆 is the interface area, and

𝜙𝛼(𝑧) =
2√
𝐿
sin(𝛼𝑧)𝜃(−𝑧), 𝛼 =

2𝜋𝑛

𝐿
, 𝑛 = 1, 2, ...,

where 𝐿 determines the variation range of the
electron coordinate normal to the interface: 𝑧 ∈
∈ [−𝐿/2,+∞). The parameters 𝐿 and 𝑆 tend to in-
finity, so that the problem is considered in the ther-
modynamic limit.

3. Effective Potential
of Electron-Electron Interaction

According to work [6], the two-dimensional Fourier
transform of the effective potential of electron-
electron interaction with respect to the radius vector
r|| can be expressed in the form

𝑔(𝑞|𝑧1, 𝑧2) = 𝜈(𝑞|𝑧1 − 𝑧2)+

+
𝛽

𝑆𝐿2

+∞∫︁
−𝐿/2

d𝑧

+∞∫︁
−𝐿/2

d𝑧′𝜈(𝑞|𝑧1 − 𝑧)×

×M(𝑞|𝑧, 𝑧′)𝜈(𝑞|𝑧′ − 𝑧2), (4)

where

𝜈(𝑞|𝑧1 − 𝑧2) =
2𝜋𝑒2

𝑞
e−𝑞|𝑧1−𝑧2|

is the two-dimensional Fourier transform of the
Coulomb potential, 𝑧1 and 𝑧2 are the coordinates of
electrons reckoned normally to the interface, 𝛽 the
inverse thermodynamic temperature, and M(𝑞|𝑧, 𝑧′)
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the “density–density” correlation function, which is a
solution of the Fredholm integral equation of the sec-
ond kind [7],

M(𝑞|𝑧1, 𝑧2) = M0(𝑞|𝑧1, 𝑧2)+

+
𝛽

𝑆𝐿2

+∞∫︁
−𝐿/2

d𝑧

+∞∫︁
−𝐿/2

d𝑧′M0(𝑞|𝑧1, 𝑧)×

×
(︁
𝜈(𝑞|𝑧 − 𝑧′)− 𝜈(𝑞|𝑧 − 𝑧′)

)︁
M(𝑞|𝑧′, 𝑧2), (5)

where 𝜈𝑘(𝑞) = 𝐺𝑘(𝑞)𝜈𝑘(𝑞), 𝜈𝑘(𝑞) =
4𝜋𝑒2

𝑞2+𝑘2 is the
three-dimensional Fourier transform of the Coulomb
potential (the variable 𝑘 is responsible for the Fourier
expansion along the electron coordinate normal to the
interface),

𝜈(𝑞|𝑧 − 𝑧′) =
1

𝐿

∑︁
𝑘

ei𝑘(𝑧−𝑧′)𝜈𝑘(𝑞),

M0(𝑞|𝑧1, 𝑧2) is the two-particle “density–density” cor-
relation function in the ideal exchange approximation
[7], and 𝐺𝑘(𝑞) is the local-field correction.

In the low-temperature limit, the following expres-
sion was obtained in work [6] for the two-particle cor-
relation function of an electron gas in the ideal ex-
change approximation:

M0(𝑞|𝑧1, 𝑧2) =
𝐿2

𝛽

∑︁
𝛼1,𝛼2

Λ𝛼1,𝛼2
(𝑞)×

×𝜙*
𝛼1
(𝑧1)𝜙𝛼2

(𝑧1)𝜙
*
𝛼2
(𝑧2)𝜙𝛼1

(𝑧2), (6)

where

Λ𝛼1,𝛼2
(𝑞) =

2𝑚

~2
𝑆

2𝜋

𝛼2
1 − 𝛼2

2 − 𝑞2

𝑞2
×

×

[︃
1−

√︃
1− 4𝑞2

𝑝2F − 𝛼2
1

(𝛼2
1 − 𝛼2

2 − 𝑞2)2
×

× 𝜃

(︂
1− 4𝑞2

𝑝2F − 𝛼2
1

(𝛼2
1 − 𝛼2

2 − 𝑞2)2

)︂]︃
𝜃(𝑝F − 𝛼1), (7)

𝑝F = (9𝜋/4)1/3/𝑟S is the Fermi momentum, and 𝑟S
the Brueckner parameter in the units of the Bohr ra-
dius 𝑎B.

In work [6], it was shown that, in some approxi-
mations, an analytical expression can be obtained for
the function M0(𝑞|𝑧1, 𝑧2),

M0(𝑞|𝑧, 𝑧′) = −𝑆𝐿2

𝛽

2𝑚

~2
1

𝜋2

e−𝑞|𝑧−𝑧′| − e−𝑞|𝑧+𝑧′|

𝑞
×

×
[︂
𝑝F cos(𝑝F(𝑧 + 𝑧′))

(𝑧 + 𝑧′)2
− 𝑝F cos(𝑝F(𝑧 − 𝑧′))

(𝑧 − 𝑧′)2
+

+
sin(𝑝F(𝑧 − 𝑧′))

(𝑧 − 𝑧′)3
− sin(𝑝F(𝑧 + 𝑧′))

(𝑧 + 𝑧′)3

]︂
×

× 𝜃(−𝑧)𝜃(−𝑧′). (8)

From this expression, one can see, in particular,
that, besides the terms, which depend on (𝑧 − 𝑧′)
and are characteristic of uniform systems, there are
terms depending on (𝑧 + 𝑧′). The reason for their ap-
pearance is the presence of the plane interface. This
means that, in our ideal-exchange approximation for
the two-particle “density–density” correlation func-
tion, the image-force effects are already taken into
consideration. Note that the polarization operator in
works [10, 11] is presented as a sum of two po-
larization operators for the uniform electron gas:
one of them depends on (𝑧 − 𝑧′), and the other on
(𝑧 − 𝑧′). However, formula (8) shows that the depen-
dences of M0(𝑞|𝑧1, 𝑧2) on (𝑧 − 𝑧′) and (𝑧 + 𝑧′) are not
so simple.

In the following numerical calculations of the two-
particle “density–density” correlation function in the
ideal exchange approximation, expression (6) is used.

4. Results of Numerical Calculations of
Two-Particle “Density–Density” Correlation
Function and Effective Electron-Electron
Interaction Potential

The two-particle “density–density” correlation func-
tion of electrons, M(𝑞|𝑧1, 𝑧2), was numerically calcu-
lated according to Eq. (5) and making allowance for
the local-field correction 𝐺𝑘(𝑞) taken from the theory
of uniform electron gas in the following forms:

1) the modified Hubbard correction [20]

𝐺𝑘(𝑞) =
1

2

𝑞2 + 𝑘2

𝑞2 + 𝑘2 + 𝜉𝑝2F
, (9)

where 𝜉 is a parameter, the values of which are given
below; and

2) the Ichimaru correction [21]

𝐺𝑘(𝑞) = 𝐴𝑄4 +𝐵𝑄2 + 𝐶 +

+

[︂
𝐴𝑄4 +

(︂
𝐵 +

8

3
𝐴

)︂
𝑄2 − 𝐶

]︂
×

× 4−𝑄2

4𝑄
ln

⃒⃒⃒⃒
2 +𝑄

2−𝑄

⃒⃒⃒⃒
, (10)
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Fig. 1. Dependences of the dimensionless two-particle
“density–density” correlation function on the coordinate of elec-
tron 1 normal to the interface, whereas the corresponding co-
ordinate of electron 2 is fixed (𝑧1 = −19.57𝑎B); 𝑞 = 0.02𝑎−1

B

Fig. 2. The same as in Fig. 1, but for 𝑧1 = −2.99𝑎B and 𝑞 =

= 0.45𝑎−1
B

Legends of the figures

Line type Approximation

Animalu
Geldart and Vosko (𝜉 = 2)
𝐺𝑘(𝑞) ≡ 0

Hubbard (𝜉 = 1)
Sham (𝜉 = 1 + 4

𝜋𝑝F𝑎B
)

Animalu (𝜉 = 1 + 2
𝜋𝑝F𝑎B

)

where 𝑄 =
√︀

𝑞2 + 𝑘2/𝑝F, and the parameters 𝐴, 𝐵,
and 𝐶 are cumbersome and can be found in work [21].

All numerical calculations were carried out for
potassium (𝑟S = 4.86 𝑎B).

Substituting the numerical solution of Eq. (5) into
formula (4), we obtain a two-dimensional Fourier
transform of the effective potential of electron-elect-
ron interaction. Making the inverse Fourier transfor-
mation with respect to the variable q and taking into
account that the two-dimensional Fourier transform
of the effective potential depends only on the absolute
value of the vector q, we obtain the effective potential
of electron-electron interaction in the form

𝑔(𝑟‖, 𝑧1, 𝑧2) =
1

𝑆

∑︁
q

eiqr‖𝑔(𝑞|𝑧1, 𝑧2) =

=
1

2𝜋

∞∫︁
0

d𝑞 𝑞 J0(𝑞𝑟‖)𝑔(𝑞|𝑧1, 𝑧2),

where J0(𝑥) is the zeroth-order cylindrical Bessel
function.

In Figs. 1 to 3, the results of calculations of the
two-particle “density–density” correlation function of
electrons, M(𝑞|𝑧1, 𝑧2), obtained by solving the Fred-
holm integral equation of the second kind (5) making
allowance for various local-field corrections and with-
out them (the random-phase approximation) are de-
picted. If one of the electrons is in the metal depth,
this function is symmetric with respect to the coor-
dinate of a fixed electron directed normally to the in-
terface plane and has a sharp peak, when those coor-
dinates of two electrons coincide (see Fig. 1), i.e. the
electrons correlate with each other and do not feel
the influence of the surface. If one of the electrons
approaches the interface, the latter starts to affect
the two-particle correlation function of electrons. The
sharp symmetric peak that was observed in Fig. 1
loses its symmetry and broadens: besides electron
correlations, there emerges an effective repulsion from
the interface (see Fig. 2). This repulsion results in the
following. When the electron approaches the interface
even more, the maximum in the two-particle correla-
tion function of electrons does not occurs, when their
coordinates coincide, as it was in the metal depth (see
Fig. 1), but is a little shifted to the left from the in-
terface (in Fig. 3, this maximum is located at about
−2.7𝑎B).

In addition, Figs. 1 to 3 demonstrate that various
models of the local-field correction do not change the
behavior of the two-particle correlation function of
electrons qualitatively, but do it quantitatively. The
application of the random-phase approximation pro-
duces the smallest deviations in the two-particle cor-
relation function of electrons, whereas the Ichimaru
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Fig. 3. The same as in Fig. 1, but for 𝑧1 = −0.57𝑎B and 𝑞 =

= 0.45𝑎−1
B

Fig. 4. Dependences of the effective electron-electron inter-
action potential on the distance between the electrons along
the interface. The electron coordinates 𝑧1and 𝑧2 normal to the
interface are identical and fixed. The case (𝑧1, 𝑧2) → −∞. The
notation of curves is the same as in Fig. 1

correction leads to the largest ones. The calculated
values of two-particle correlation function for elec-
trons with the use of other local-field corrections fall
within the interval between the values obtained in the
random-phase approximation and with the use of the
Ichimaru correction.

In Fig. 4 to 9, the results of calculations for
the effective potential of electron-electron interaction
𝑔(𝑟‖, 𝑧1, 𝑧2) obtained for various local-field correction
models and without them (the random-phase appro-
ximation) are shown. In Fig. 4, the effective poten-
tial of interaction between electrons located in the
metal depth, i.e. when they do not feel the inter-
face influence, is exhibited. From this figure, one can
see that making allowance for the local-field correc-

Fig. 5. The same as in Fig. 4, but for 𝑧1 = 𝑧2 = −5𝑎B

Fig. 6. The same as in Fig. 4, but for 𝑧1 = 𝑧2 = −3𝑎B

Fig. 7. The same as in Fig. 4, but for 𝑧1 = 𝑧2 = −𝑎B

tion brings about the appearance of a potential well
at distances from 4.5 to 5 times 𝑎B, depending on
the specific correction model. The depth of this po-
tential well also depends on the local-field correction
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Fig. 8. Dependences of the effective electron-electron inter-
action potential on the distance from electron 1 to the inter-
face. The normal coordinate of electron 2 is fixed, 𝑧2 = −5𝑎B,
𝑟‖ = = 0. The notation of curves is the same as in Fig. 1

Fig. 9. The same as in Fig. 8, but for 𝑧2 = −𝑎B

model. The deepest potential well corresponds to the
Hubbard correction, and the shallowest one to the
Sham model. Other examined corrections give rise to
intermediate depths of the potential well. In addi-
tion, in the random-phase approximation (i.e. when
the local-field correction is not taken into consider-
ation, the dash-dotted curve), there is no potential
well at indicated distances in the case of a uniform
system. At large distances, there emerge Friedel oscil-
lations [12,13,22]. However, in the case of the effective
potential calculated in work [18], they are absent.

In Fig. 5, the dependence of the effective electron-
electron interaction potential on the distance between
the electrons is depicted for the normal coordinates
of electrons 𝑧1 = 𝑧2 = −5𝑎B. For this distance of elec-
trons from the interface, a considerable deepening of

the potential well is observed; moreover, it appears
even in the random-phase approximation. This fact
originates from a nonmonotonic behavior of the elec-
tron density distribution 𝑛(𝑧) near the interface [4];
namely, here, the plane layers with electron concen-
trations lower and higher than that in the metal depth
alternate. As a result, the collective effects in the
electron-enriched layers are more pronounced, and
the electron screening is stronger. In the electron-
depleted layers, the situation is opposite: the screen-
ing is weaker, and the repulsion between electrons
becomes stronger (see Fig. 6). If the electrons come
nearer to the interface, the repulsion between them
prevails (Fig. 7). As the coordinates of electrons nor-
mal to the interface grow further, the effective po-
tential of electron-electron interaction tends to the
Coulomb potential:

lim
𝑧1,𝑧2→∞

𝑔(𝑟‖, 𝑧1, 𝑧2) =
𝑒2√︁

𝑟2‖ + (𝑧1 − 𝑧2)2
.

The same behavior is demonstrated in Figs. 8 and
9. They exhibit the dependence of the effective po-
tential of interaction between the electrons located
on the same normal to the interface (𝑟‖ = 0) on the
normal coordinate of one of the electrons, regarding
the other electron to be fixed. The presence of the
interface results in a nonsymmetric effective poten-
tial of electron-electron interaction with respect to the
electron coordinate normal to the interface. There are
more electrons to the left from the fixed one, and the
screening is stronger; therefore, the potential wells
and Friedel oscillations are observed; to the right, the
number of electrons is smaller, so that the potential
well is either shallower or disappears.

5. Conclusions

To summarize, the two-particle correlation function
of electrons and the effective potential of electron-
electron interaction have been calculated making
allowance for various local-field correction models
known in the theory of uniform electron gas. The
behavior of the two-particle correlation function of
electrons depending on the electron coordinates nor-
mal to the interface is studied, as well as the influ-
ence of various local-field correction models on it. In
particular, it is found that the presence of the inter-
face gives rise to an additional effective repulsion of
the electrons from the interface, the maximum of the
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two-particle correlation function does not take place
at the coincidence of electron coordinates, as occurs
in the metal depth, but is a little shifted from the
interface.

The behavior of the effective electron-electron in-
teraction potential depending on the electron coor-
dinates normal to the interface and the distance be-
tween the electrons along the interface is also exam-
ined, as well as the influence of various local-field cor-
rection models on it. The results of our calculations
demonstrate that, in the near-surface region of the
metal, there are plane layers, where the behavior of
the effective potential of electron-electron interaction
is essentially different. Namely, in some layers, the
effective potential oscillates and form deep potential
wells, whereas the wells are shallower or even absent
in other layers. As a result, the additional mechani-
cal stresses emerge near the metal surface, which can
provoke the appearance of cracks and other defects.
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ЕФЕКТИВНИЙ ПОТЕНЦIАЛ
МIЖЕЛЕКТРОННОЇ ВЗАЄМОДIЇ
ДЛЯ НАПIВОБМЕЖЕНОГО ЕЛЕКТРОННОГО ГАЗУ
З ВРАХУВАННЯМ ПОПРАВКИ НА ЛОКАЛЬНЕ ПОЛЕ

Р е з ю м е

У роботi проведено чисельний розрахунок ефективного по-
тенцiалу мiжелектронної взаємодiї та двочастинкової коре-
ляцiйної функцiї електронiв “густина–густина” для напiв-
обмеженого простого металу з урахуванням поправки на
локальне поле. Дослiджено вплив на них плоскої поверхнi
подiлу та рiзних форм поправки на локальне поле. Показа-
но, що бiля поверхнi подiлу є областi з бiльшою глибиною
потенцiальної ями у ефективному потенцiалi мiжелектрон-
ної взаємодiї, нiж в глибинi металу.
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