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The polaron and bipolaron energy functionals obtained in the framework of quantum field
theory have been studied. Exact analytical expressions for the effective functionals are derived
in terms of the two-parametrical trial function for a polaron and the three-parametrical one
for a bipolaron. Variational solutions are found for the energies of the systems under study in
the case of the intermediate values of Fröhlich electron-phonon coupling constant, 4≤ 𝛼 ≤ 20.
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1. Introduction

Besides the known applications associated with the
attempts to construct the theory of high-temperature
superconductivity on the basis of the bipolaronic
mechanism [1, 2], the interest in the idea of polaron
is related to the fact that the model problems, in
which various aspects of the polaron theory are con-
sidered and which have a simple formulation, are very
convenient for the development of theoretical physics
methods aimed at studying the interaction between
charged particles and quantum fields. The polaron
and bipolaron states, as well as numerous applica-
tions of the polaron theory to various domains of con-
densed matter physics, are used in a huge number of
works, reviews, and monographs (see, e.g., work [3]
and references therein).

In work [4] with the use of the quantum field
theory methods, a consistent polaron theory mak-
ing allowance for the translational invariance was de-
veloped. The results obtained in the strong-coupling
limit reproduce those of Pekar’s polaron theory [5]. In
addition, the results obtained by A.V. Tulub in work
[4] in the weak-coupling limit and in the intermedi-
ate (closer to the weak limit) coupling range turned
out close to Feynman’s ones obtained in the frame-
work of the path-integration method. In work [6], it
was found that, at large values of Fröhlich electron-
phonon coupling constant 𝛼, the method proposed
by A.V. Tulub brings about the lowest polaron ener-
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gies in comparison with other methods. The binding
energy was calculated using approximate expressions
obtained, strictly speaking, in the limit 𝛼 → ∞.

Of great interest would be the derivation of ex-
act mathematical expressions for the effective polaron
and bipolaron functionals and the given set of trial
functions in the framework of field theory. For this
purpose, it is necessary to obtain, without any ap-
proximations, maximally simplified analytical expres-
sions for the polaron and bipolaron energy function-
als that would allow one to carry out the procedure
of numerical minimization in the range of the values
of electron-phonon coupling parameter 4 6 𝛼 6 20,
which is the most relevant for the bipolaron theory.

2. Tulub’s Polaron
and Bipolaron Functionals

The procedure to derive the polaron [4] and bipo-
laron [7, 8] functionals taking the recoil effects into
account was proposed in work [4]. It includes the
following steps. 1) Two classical canonical Lee–Low–
Pines transformations [9] are sequentially applied to
the Fröhlich Hamiltonian describing the electron–
phonon interaction. The first transformation excludes
the electron coordinate, and the second one corre-
sponds to the shift of the phonon creation, a+k , and
annihilation, ak, operators. 2) In the obtained Hamil-
tonian, the following terms are left:

𝐻0 =
∑︁
k

𝜔0
ka

+
k ak +

1

2𝑚*

(︃∑︁
k

k𝑓k(a+
k + ak)

)︃2
. (1)
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Here, 𝑚* is the effective electron mass, the varia-
tional function 𝑓k determines a shift of the phonon
operators (ak → ak + 𝑓k), k is the wave vector of
phonons, and 𝜔0

k is the frequency of longitudinal op-
tical phonons. In what follows, the dispersion of 𝜔0

k

is neglected.
Expression (1) can be transformed to a diagonal

form using the methods of quantum field theory. The
determination of the energy is reduced to the averag-
ing of the polaron functional over the eigenfunctions
of operator (1) and the following minimization over
𝑓k. In the strong-coupling limit, a simplified varia-
tion procedure is used: the functional is varied over
the parameters of the function 𝑓k, assuming the form
of the latter to be preliminary fixed, rather than over
the function 𝑓k itself.

The analytical expression for Tulub’s polaron func-
tional obtained in work [4] for the zero total momen-
tum of a polaron and the trial function 𝑓k looks like

𝐸PT = Δ𝐸 + 2
∑︁
k

𝑉𝑘𝑓𝑘 +
∑︁
k

𝑓2
𝑘 . (2)

Here, Δ𝐸 is the eigenvalue of Hamiltonian (1) (the
Feynman units 2𝑚* = 1, ~ = 1, and 𝜔0

𝑘 = 1 are
used, so that the energy unit is ~𝜔0

𝑘 and the length
unit is 𝐿0 =

√︀
~/2𝑚𝜔0

𝑘), 𝑉𝑘 = 𝑘−1~𝜔0
𝑘

√︀
4𝜋𝛼𝐿0/𝑉 ,

𝛼 = 𝑒2

2~𝜔0
𝑘𝐿0

(︀
1
𝜖∞

− − 1
𝜖0

)︀
, where 𝑉 – the volume of the

crystal, 𝜖∞ and 𝜖0 are the high-frequency and static
dielectric permittivities, respectively.

The bipolaron functional can be found after chang-
ing in the bipolaron Hamiltonian to the coordinates of
the center of mass, similarly to what was done in work
[10]. Afterward, the calculation procedure described
above when obtaining functional (2) is repeated. The
three-parametrical bipolaron functional obtained us-
ing Tulub’s method in the framework of quantum field
theory was analyzed in work [8]. It can be written in
the form
𝐸B = Δ𝐸′ + 2

∑︁
k

𝑉 ′
𝑘𝑓

′
𝑘 +

∑︁
k

𝑓 ′
𝑘
2
+ 𝑇 (r) + 𝑈(r), (3)

where 𝑉 ′
𝑘 = 2𝑉𝑘⟨Ψ| coskr/2|Ψ⟩; 𝑇 and 𝑈 are the av-

erage values of the kinetic energy and the energy of
electron repulsion in the coordinates of the center of
mass:; r = r1 − r2; R = (r1 + r2)/2; and r1 and
r2 are the radius vectors of electrons 1 and 2, re-
spectively. The coordinate R of the center of mass is
excluded from Eq. (3) using the first canonical Lee–
Low–Pines transformation [9]. The primes are intro-
duced to distinguish the quantities Δ𝐸 and Δ𝐸′ and

the functions 𝑓𝑘 and 𝑓 ′
𝑘 entering Eqs. (2) and (3),

respectively.
The two-parametrical trial polaron function is se-

lected in the form

𝑓𝑘 = −𝑁𝑉𝑘 exp(−𝑘2/2𝑎2), (4)

where 𝑁 and 𝑎 are variational parameters. The bipo-
laron functional (3) is minimized with a trial varia-
tional function, whose phonon part looks like

𝑓 ′
𝑘 = −𝑁𝑉 ′

𝑘 exp(−𝑘2/2𝜇), (5)

and the coordinate part like

Ψ(r) = (2/𝜋𝑏2)3/4 exp(−𝑟2/𝑏2),

where 𝑁 , 𝜇, and 𝑏 are variational parameters.
In the strong-coupling limit, the first term in

Eq. (2) plays the role of the kinetic energy of an elec-
tron in the phonon field. In the general case of in-
termediate electron-phonon coupling constant values,
the terms corresponding to the kinetic energy of elec-
trons stand out and do not coincide with the values
of Δ𝐸 for a polaron and Δ𝐸′ + 𝑇 for a bipolaron.

Putting the integration limits over the phonon wave
vector equal to infinity, we obtain

Δ𝐸 =
1

2𝜋2

∞∫︁
0

𝑑𝑘𝑘4𝑓2
𝑘𝜔𝑘𝐹 (𝜔𝑘), (6)

𝐹 (𝜔𝑘) =
1

2𝜋𝑖

∫︁
𝐶

√
𝑠

(𝑠− 𝜔2
𝑘)

2

1

𝐷(𝑠)
𝑑𝑠,

𝐷(𝑠) = 1− 2

3(2𝜋)3

∫︁
𝑘2𝑓2

𝑘𝜔𝑘

𝑠− 𝜔2
𝑘

𝑑3k,

(7)

where 𝜔𝑘 = 1 + 𝑘2/2. The choice of the integration
path 𝐶 in the plane of the complex variable 𝑠 was
discussed in work [4].

The quantity Δ𝐸′ in the bipolaron functional (3)
can be obtained from Δ𝐸 by substituting 𝑓 ′

𝑘 for 𝑓𝑘.
Expression (6) can be simplified very much. A lot

of integrals can be calculated analytically. The inte-
grals with poles on the real axis are calculated in the
principal value sense.

In the case of the variational polaron function 𝑓𝑘
and when integrating within infinite limits, the real
and imaginary parts of expression (7) look like

Re𝐷(𝜔2
𝑘) = 1 + 𝜆𝜈(𝑦), Im𝐷(𝜔2

𝑘) = 𝑘3𝑓2
𝑘/6𝜋, (8)
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Dependences of the energies of a bipolaron, 𝐸B, doubled
Miyake strong-coupling polaron [15], 2𝐸MT, and doubled Tu-
lub polaron, 2𝐸TP, on the Fröhlich coupling constant at 𝜂 =

= 𝜀∞/𝜀0 = 0, and the corresponding dependence of the bipo-
laron energy 𝐸′

B calculated at 𝜂 = 0.1. The horizontal dash-
dotted line marks an energy of −45 and was drawn to make
the comparison of the results obtained in this work with those
of work [12] convenient. The energy 𝐸TP was calculated us-
ing the two-parametrical function 𝑓k, and the energies 𝐸B and
𝐸′

B using the three-parametrical function 𝑓 ′
k and expressions

(9)–(13) for a polaron and the corresponding expressions for a
bipolaron

Dependences of the bipolaron energy
on the electron-phonon coupling parameters:
current calculations (𝐸B), extrapolation
of the strong-coupling limit 1/𝜆 = 0 (𝐸Bs), and
the energy calculated in work [13] (𝐸BK). 𝜂 = 𝜀∞/𝜀0

𝛼 = 9

𝜂 −𝐸B −𝐸Bs −𝐸BK

0 19.08 35.69 24.93
0.01 18.86 35.25 24.65
0.1 16.79 31.00 22.07

𝛼 = 7

𝜂 −𝐸B −𝐸Bs −𝐸BK

0 13.02 21.60 16.23
0.01 12.24 21.32 16.05
0.1 10.89 18.75 14.60

where

𝜈(𝑦) = 1− 𝑦𝑒−𝑦2

𝑦∫︁
0

𝑒𝑡
2

𝑑𝑡− 𝜉(𝑦)𝑒−𝜉(𝑦)2
∞∫︁

𝜉(𝑦)

𝑒−𝑡2𝑑𝑡,

𝜉(𝑦) =
√︀
𝑦2 + 4/𝑎2, 𝑦 = 𝑘/𝑎, 𝜆 = 4𝑁2𝛼𝑎/3

√
2𝜋.

It is worth paying attention to the fact that the
account for the phonon spectrum confinement by a
threshold value of the wave vector results in more
cumbersome expressions. Not only does the analyt-
ical expression for the function 𝐷(𝑠) change, but
also the form of polaron and bipolaron function-
als. Namely, there appears an additional term, the
general form of which is given in work [11]. In this
work, the limits of integration over the wave vector
are not confined.

The exact formulas obtained for quantity (6) with
the use of the trial variational function 𝑓𝑘 (Eq. (4))
and provided infinite integration limits are as follows:

Δ𝐸(𝑎,𝑁, 𝛼) = Δ𝐸0(𝑎,𝑁, 𝛼) + Δ𝐸1(𝑎,𝑁, 𝛼), (9)

Δ𝐸0 =
3𝑎2

16
𝑞0(𝑎,𝑁, 𝛼),

Δ𝐸1 =
3𝑎2

16
𝑞1(𝑎,𝑁, 𝛼),

(10)

𝑞0 =
1

1 + 1
𝜆 −

√
𝜋
𝑎 exp(4/𝑎2)(erf(2/𝑎)− 1)

, (11)

𝑞1 =
2√
𝜋

∞∫︁
0

𝑑𝑦
𝑒−𝑦2

(1− Ω̃(𝑦))̃︀𝜂(𝑦)
(𝜈(𝑦) + 1/𝜆)2 + 𝜋𝑦2 exp(−2𝑦2)/4

. (12)

Here, ̃︀𝜂(𝑦) = (𝑦2 + 2/𝑎2)/(𝑦2 + 4/𝑎2),

Ω̃(𝑦) = 2𝑦2

[︃
(1 + 2𝜉(𝑦)2)𝜉(𝑦)𝑒𝜉(𝑦)

2

×

×
∞∫︁

𝜉(𝑦)

𝑒−𝑡2𝑑𝑡− 𝜉(𝑦)2

]︃
. (13)

In the limit 𝑎 ≫ 1 and 𝛼 ≫ 1, we obtain

Δ𝐸0 ≈ 3𝑎2/16, 𝜉(𝑦) ≈ 𝑦, ̃︀𝜂(𝑦) ≈ 1.

Let us introduce the new notation for this limit:

𝑞1 ≈ 𝑞(1/𝜆), Ω̃(𝑦) ≈ Ω(𝑦).
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Hence, in the strong-coupling limit, expressions (12)
and (13) can be approximately written as follows:

𝑞(1/𝜆) =
2√
𝜋

∞∫︁
0

𝑑𝑦×

× 𝑒−𝑦2

(1− Ω(𝑦))

(𝜈(𝑦) + 1/𝜆)2 + 𝜋𝑦2 exp(−2𝑦2)/4
, (14)

Ω(𝑦) = 2𝑦2

[︃
(1 + 2 𝑦2)𝑦𝑒𝑦

2

∞∫︁
𝑦

𝑒−𝑡2𝑑𝑡− 𝑦2

]︃
. (15)

The approximate expressions (14) (at 𝑁 = 1) and
(15) coincide with the quantities 𝑞(1/𝜆) and Ω(𝑦) of
work [4].

At large values of electron-phonon coupling con-
stant, there emerges a delta-like peculiarity in the
integrands of expressions (12) and (14). It appears
because the quantity Re𝐷(𝜔2

𝑘) defined by formula
(8) passes through zero and becomes negative. This
peculiarity does not appear at the small enough val-
ues of Fröhlich coupling constant, 𝛼 ≤ 10. At the
same time, at 10 ≤ 𝛼 ≤ 20, the integrals in expres-
sion (6) can be calculated numerically with a good
accuracy.

In the variational bipolaron function 𝑓 ′
𝑘, we took

the additional variational parameter 𝑁 into account,
the role of which was discussed in work [6]. Therefore,
the values of bipolaron energy in the strong-coupling
limit at 𝛼 → ∞ for 𝜂 = 0, which were obtained us-
ing the exact expressions (9)–(13) – namely, 𝐸Bs ≈
≈ −0.440959𝛼2, with the principal value of inte-
gral (12) being calculated numerically – turned out
a little smaller than the value obtained in work [7]
for 𝑁 = 2 (without varying the bipolaron func-
tional over this parameter). The results obtained in
the strong-coupling approximation are valid with a
good accuracy in the interval 𝛼 ≥ 35. The value
𝑁 =

√
2 coincides with the optimum value for Tu-

lub’s strong-coupling polaron functional [6] in the
limit 1/𝜆 → 0. In work [8], the bipolaron func-
tional was optimized with respect to the parameter
𝑁 . However, the calculations were carried out for the
approximate value Δ𝐸 given in work [4]. In addition,
the approximation 1/𝜆 ≈ 0 was used, which made
the bipolaron functional considerably simpler, but
resulted in the underestimated values of bipolaron
energy in the interval of the relatively small values

of electron-phonon coupling parameter, 𝛼 ≤ 20. At
the same time, the application of the exact formu-
las (9)–(13) for a polaron and the corresponding ex-
pressions for a bipolaron with the additional vari-
ational parameter 𝑁 in the interval 4 ≤ 𝛼 ≤ 20
brought about lower bipolaron energies in compar-
ison with those in work [12]. The authors of that
work used the approximate strong-coupling formu-
las given in work [4] for the positive increment Δ𝐸,
but abandoned the approximation 1/𝜆 = 0 in expres-
sion (14).

3. Calculation Results

The polaron energy was calculated, by using the ex-
act formulas (9)–(13) for the term Δ𝐸 in functional
(2). The quantity Δ𝐸′ in Eq. (3) can be obtained
from Δ𝐸 by changing the notation of variational pa-
rameters. The analytical expressions for other terms
in bipolaron functional (3) can be found in work [8].

In Table, the results obtained for the bipolaron en-
ergy 𝐸B using the exact formulas for the term Δ𝐸′ are
shown, as well as the corresponding values obtained in
works [8,13], for 𝛼 = 9 and 7, and various values of the
parameter 𝜂 = 𝜀∞/𝜀0. The quantity 𝐸Bs corresponds
to the extrapolation of the approximation 1/𝜆 = 0 to
the region of the relatively small values of parameter
𝛼 (this extrapolation was done in works [7, 8]), and
𝐸BK is the bipolaron energy obtained in work [13] us-
ing the Buimistrov–Pekar method [14]. Note that the
values of 𝐸B and 𝐸BK were obtained in the framework
of the variational technique without any approxima-
tions in the initial functionals. Therefore, they can
be regarded as the upper limits of the bipolaron en-
ergy. At the same time, the 𝐸Bs-values were obtained
by varying the approximate functional in the limit
1/𝜆 = 0.

In Figure, the results of numerical calculations for
the polaron and bipolaron energies are shown. For
comparison, the corresponding dependence for the
doubled energy of a Miyake strong-coupling polaron
[15] is plotted. The analysis of the data obtained
for the bipolaron energy testifies that the extrapola-
tion of the strong-coupling limit (the approximation
1/𝜆 ≈ 0) to the region of the examined 𝛼-values is
invalid, because this approximation gives rise to the
substantially underestimated values of bipolaron en-
ergy. The calculations carried out in the framework
of Tulub’s method without use of the approximate
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expressions for the polaron and bipolaron functionals
demonstrated that the critical value of Fröhlich cou-
pling constant in the limit 𝜂 → 0, below which the
bipolaronic state does not exist, equals 𝛼𝑐 = 10. This
value does not expand the interval of the bipolaron
existence in comparison with other methods. As an
example, the lower values of bipolaron energy, which
were obtained in work [13] for the same parameter
values, are quoted in Table.

At the same time, in the interval 𝛼 ≤ 8, which was
studied in work [4], the asymptotics 𝑞(1/𝜆) = 𝑞(0)
and the application of approximate expressions for
the polaron functional in the strong-coupling limit
did not – expectedly – result in the underestima-
tion of the polaron energy. The author of work [4]
saw the reason for why the electron-phonon coupling
constants are restricted rather strictly by relatively
small values in that the polarons cannot be scat-
tered by optical phonons at all at large coupling con-
stant values, because, as 𝛼 increases, lattice vibra-
tions with shorter and shorter wavelengths become
responsible for the scattering. However, the electron-
phonon interaction at short wavelengths cannot be
described in the framework of the continual approxi-
mation, which forms the basis of Tulub’s theory. The
cut-off of the phonon spectrum by a threshold wave
vector also gives rise to a restriction with respect
to the constant coupling, beyond which the contin-
ual approximation does not work. Analytical calcula-
tions of elements in the matrix of the polaron scat-
tering by optical phonons and numerical estimations
made for the parameters of some crystals (see work
[4]) showed that the maximum values of Fröhlich
electron-phonon coupling constant are 𝛼max ≈ 8÷9
for the majority of ionic crystals. Those values re-
duce, in effect, the applicability region of the strong
coupling approximation to zero, because either the
weak or intermediate coupling should be realized in
real crystals.

The analysis of the dependence of the bipolaron en-
ergy on the parameter of the phonon spectrum cut-
off is an independent and extremely labor-consuming
problem. Therefore, it will be done elsewhere. Here,
we would like only to note that, for rather small
electron-phonon coupling constants, the positive in-
crement, the analytical form of which is given in work
[11], does not lead to substantial variations in the po-
laron and bipolaron energy magnitudes.

The author expresses her sincere gratitude to
A.V.Tulub and V.D. Lakhno for the useful discussion
of the results obtained in this work.
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ЗАСТОСУВАННЯ МЕТОДIВ
КВАНТОВОЇ ТЕОРIЇ ПОЛЯ ДО РОЗРОБКИ
ТРАНСЛЯЦIЙНО-IНВАРIАНТНОЇ ТЕОРIЇ
ПОЛЯРОНА ТА БIПОЛЯРОНА

Р е з ю м е

У роботi дослiджуються функцiонали енергiї полярона i
бiполярона, отриманi методом квантової теорiї поля. Ви-
ведено точнi аналiтичнi вирази для ефективних функцiо-
налiв з використанням двохпараметричної пробної функцiї
для полярона i трьохпараметричної для бiполярона. Варi-
ацiйним методом знайдено значення енергiї дослiджуваних
систем для промiжних значень фрьолiховської константи
електрон-фононного зв’язку 4 ≤ 𝛼 ≤ 20.

1092 ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 11


