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Spin waves in a cylindrical ferromagnetic nanotube are studied. A nanotube with an external
magnetic field applied parallel to its symmetry axis is considered. A linearized Landau–Lifshitz
equation in the magnetostatic approximation is used with regard for the magnetic dipole-
dipole interaction, exchange interaction, and anisotropy effects. As a result, the dispersion
relation and the radial wavenumber spectrum for spin waves in the above-described nanotube
are found. From the radial wavenumber spectrum, limitations on the transverse-angular modes
are defined.
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1. Introduction

Waves of magnetization in magnetically ordered ma-
terials, the so-called spin waves [1,2], have been stud-
ied extensively both theoretically and experimentally
in recent years. Magnetic spin waves are a subject of
the study in new fields of research and technology
such as magnonics [2] and spintronics [3]. Articles on
the topic investigate, in particular, the spectrum and
the dispersion relation for spin waves in media of var-
ious types [4–6] and the processes of reflection and
passage of spin waves on the interface of two media
[7, 8]. In numerous articles, the intense study of spin
waves in thin ferromagnetic films [9–11], micron-sized
magnetic quantum dots [12–14], nanowires [4, 15–17],
and other nanostructures is conducted. Spin waves
are promising for a variety of practical applications
– for creating new data storage devices, data trans-
mission devices, and so on.

One of the results of the nanotechnology advance in
recent decades is the synthesis and the application of
composite nanostructures. It is known that anoma-
lous magnetic properties are typical ащк nanocom-
posites that contain a ferromagnet [18–23]. Spin
waves in various nanocomposites – multilayer thin
films [24, 25], ensembles of ferromagnetic nanopar-
ticles in certain matrices [26], and so on – are widely
studied. However, a little attention has been paid to
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spin waves in composite nanoparticles, which are the
subject of a particular research interest. In particu-
lar, recently synthesized magnetic nanotubes [27–33]
have found a wide range of applications, particularly
in magnetobiology [34, 35]. Still, the spin waves in
magnetic nanotubes currently attract a little atten-
tion, and the available papers on this subject investi-
gate mostly spin solitons [36] and waves on magnetic
domains interfaces [37, 38].

In this work, we study spin waves in a ferromag-
netic nanotube. We have found a dispersion rela-
tion for the spin waves in such structure consider-
ing the magnetic dipole-dipole interaction, the ex-
change interaction, and the anisotropy effects. We
have also found the radial wavenumber spectrum for
such waves.

2. Statement of the Problem

Let us consider a nanotube, which is composed of a
non-magnetic core and a ferromagnetic metallic shell,
with the inner radius a and the external radius b. The
outside material is also considered non-magnetic.

We consider the nanotube shell comprised of a fer-
romagnet that has an uniaxial magnetic anisotropy,
with the magnetic anisotropy axis directed along the
nanotube symmetry axis. We consider the ferromag-
net of the “easy axis” type, so the saturation mag-
netization is also directed along the symmetry axis
of the ferromagnetic shell. We assume that the fer-
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romagnet is characterized by the following parame-
ters: the uniaxial anisotropy parameter 𝛽 (it is con-
sidered constant), the exchange interaction parameter
𝛼 (the exchange energy tensor in the general case of
an uniaxial crystal is diagonal and has two indepen-
dent components; we consider the case where these
components are equal, which is true for a cubic crys-
tal, for a polycrystalline ferromagnet with small crys-
tals, etc.). We assume that the saturation magnetiza-
tion M0 of the shell is constant throughout the shell
volume and is directed along the nanotube axis. We
neglect the dissipation and, therefore, the damping of
spin waves in the nanotube shell, discarding the re-
laxation terms in the Landau–Lifshitz equation. The
gyromagnetic ratio 𝛾 of the nanotube ferromagnet is
considered constant.

Let us consider a spin wave propagating in the
shell of the above-described nanotube in parallel to its
axis. Considering a typical nanotube length and cor-
responding wavenumber limitations, we have to take
into account both the magnetic dipole-dipole inter-
action and the exchange interaction in the Landau–
Lifshitz equation. We also have to keep the anisotropy
addend in this equation, as we consider an uniaxial
ferromagnet.

We apply the linearized spin wave theory, so the
spin wave magnetization density and the magnetic
field are small perturbations of the overall magne-
tization density and the overall magnetic field, cor-
respondingly. Thus, a perturbation m of the mag-
netization density (M = M0 + m, where M is
the overall magnetization) must satisfy the condition
|m| ≪ |M0|.

The goal of this work is to obtain a dispersion rela-
tion and a radial wavenumber spectrum of the above-
described spin waves.

3. Theoretical Background

Let us write down the Landau–Lifshitz equation for
a nanotube described in the previous section. If the
deviations of the magnetization m and of the mag-
netic field h inside the ferromagnet from their values
in the ground state – M0 and H

(𝑖)
0 , respectively – are

small, the linearized Landau–Lifshitz equation inside
the ferromagnetic tube (after omitting the damping
term) has the form [1]

𝜕m

𝜕𝑡
= 𝛾

(︃
M0 ×

(︃
h+ 𝛼

∑︁
𝑖

𝜕2m

𝜕𝑥2
𝑖

+ 𝛽n (mn) −

− 1

𝑀2
0

(︁
M0H

(𝑖)
0 + 𝛽 (M0n)

2
)︁
m

)︃)︃
, (1)

where n is a unit vector along the anisotropy axis of
the system.

Let us direct the axis 𝑂𝑧 along the symmetry axis
of the system. As follows from the properties of “easy
axis” ferromagnets, the saturation magnetization is
directed along n and, consequently, along the axis
𝑂𝑧. Therefore, the ground-state magnetic field in-
side the ferromagnetic shell is also directed along 𝑂𝑧:
H

(𝑒)
0 − 4𝜋�̂�M0 = H

(𝑖)
0 ||𝑂𝑧, where H

(𝑒)
0 is an exter-

nal field (outside the nanotube), �̂� is the tensor of
demagnetizing coefficients (for the symmetry of our
system, 4𝜋�̂�M0 = 0). Using these relations, let us
substitute m and h in the periodic-by-time form

m(r, 𝑡) = m0(r) exp(𝑖𝜔𝑡),h(r, 𝑡) = h0(r) exp(𝑖𝜔𝑡) (2)

into Eq. (1). After considering the fact that M0 ||
||H(𝑒)

0 ||n ||𝑂𝑧, m0⊥e𝑧, we obtain

𝑖𝜔m0 = 𝛾

(︃
𝑀0e𝑧×

(︃
h0 + 𝛼Δm0 −

(︃
𝛽 +

𝐻
(𝑒)
0

𝑀0

)︃
m0

)︃)︃
,

(3)
where e𝑧 is a unit vector of the axis 𝑂𝑧.

In order to solve the Landau–Lifshitz equation, we
need one more relation between the magnetization
and the magnetic field. Let us use the magnetostatic
approximation [1]. In this approximation, the mag-
netic field deviation h is a potential field: h = −∇Φ,
h0 = −∇Φ0, where Φ is a magnetic potential, and
Φ = Φ0 (r) exp (𝑖𝜔𝑡). Using this approximation and
the Maxwell equation divh = −4𝜋 divm, we obtain
the sought relation:

ΔΦ− 4𝜋divM = 0. (4)

Equations (3) and (4) give us the necessary relation-
ship between m and h. Using this system of equa-
tions, we can find the dispersion relation and the
wavenumber spectrum for spin waves in the shell.

4. Dispersion Relation
and Wavenumber Spectrum

Let us find the dispersion relation for spin waves
in the ferromagnetic nanotube, using the system of
equations (3), (4).
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In the system of equations (3), (4) (after taking
the relation 𝑚0𝑧 = 0 into account), the magnetiza-
tion perturbation m can be eliminated. In this way,
the system reduces to the following equation for the
magnetic potential:(︃

𝜔2

𝛾2𝑀2
0

−

(︃
𝐻

(𝑒)
0

𝑀0
+ 𝛽 − 𝛼Δ

)︃(︃(︃
𝐻

(𝑒)
0

𝑀0
+ 𝛽

)︃
+

+4𝜋−𝛼Δ

)︃)︃
ΔΦ0+4𝜋

(︃
𝐻

(𝑒)
0

𝑀0
+𝛽−𝛼Δ

)︃
𝜕2Φ0

𝜕𝑧2
= 0. (5)

Let us use the cylindrical coordinate system (𝜌, 𝜃,z ).
In these coordinates, Eq. (5) has solutions in the form

Φ = (𝐴1𝐽𝑛(𝑘⊥𝜌)+𝐴2𝑁𝑛(𝑘⊥𝜌)) exp(𝑖(𝑛𝜃+𝑘‖𝑧 − 𝜔𝑡)),

(6)

where A1 and A2 are constants, 𝐽𝑛 (𝑘⊥𝜌) is the
Bessel function of the order n, 𝑁𝑛 (𝑘⊥𝜌) is the Neu-
mann function of the order n, 𝑘⊥ is a transverse
wavenumber, and n is a transverse-angular mode
number. (This form of solution becomes evident if we
write down the relation ΔΦ = −

(︁
𝑘2⊥ + 𝑘2‖

)︁
Φ for the

potential given by (6). Note that, by the properties
of the Bessel functions, the angular mode number n
coincides with the order of the radial Bessel func-
tions 𝐽𝑛 (𝑘⊥𝜌), 𝑁𝑛 (𝑘⊥𝜌), so we call it the “transverse-
angular” mode number.) By substituting solution (6)
into Eq. (5), we obtain a dispersion equation in the
form

𝛼2(𝑘2‖ + 𝑘2⊥)
3 + 2𝛼(𝛽 + 2𝜋)(𝑘2‖ + 𝑘2⊥)

2 +

+

(︂
𝛽(𝛽 + 4𝜋)− 𝜔2

𝛾2𝑀2
0

− 4𝜋𝛼𝑘2‖

)︂
×

×
(︁
𝑘2‖ + 𝑘2⊥

)︁
− 4𝜋𝛽𝑘2‖ = 0, (7)

where 𝛽 = 𝛽+
𝐻

(𝑒)
0

𝑀0
. This equation corresponds to the

following dispersion relation:

𝜔 = 𝛾𝑀0 ×

×

⎯⎸⎸⎷𝛼2𝑘4+2𝛼(2𝜋+𝛽)𝑘2+𝛽(4𝜋+𝛽)− 4𝜋𝑘2‖

(︃
𝛼+

𝛽

𝑘2

)︃
,

(8)

where the total wavenumber 𝑘2 = 𝑘2‖ + 𝑘2⊥. Note
that the result we obtained agrees with the disper-
sion relation obtained in [4, 39] for cylindrical nano-
wires. Thus, the transition from nanowires to nan-
otubes does not change the pattern of spin waves in

the system. The dispersion relation we obtained con-
siders the exchange effects.

At this point, we, in the general case, should apply
the boundary conditions for the magnetic field (for
both vectors B and H) and solve equations for the
magnetic potential with these boundary conditions
both inside and outside the nanotube. In this way,
we can obtain another necessary relation between the
spin wave frequency 𝜔 and the wavenumber compo-
nents k, 𝑘‖. This method requires numerical calcu-
lations; however, as we shall see, for a cylindrical
nanotube with a non-magnetic external material, the
boundary conditions for the magnetization are suf-
ficient to find this relation (namely, an orthogonal
wavenumber spectrum) in an analytical form for vol-
ume spin-wave modes.

Let us impose exchange boundary conditions on the
magnetization perturbation m (see, e.g., [1]) on the
inner and the outer border of the nanotube. In the ab-
sence of the magnetic moment outside the shell, these
boundary conditions can be written as m|𝜌=𝑎,𝑏 = 0,
𝜕m
𝜕𝜌

⃒⃒⃒
𝜌=𝑎,𝑏

= 0 (as for the strong pinning case, see,

e.g., [41]). The Maxwell equation (4) allows us to
transform these boundary conditions into conditions
for the potential Φ:

ΔΦ|𝜌=𝑎,𝑏= 4𝜋

(︂
𝑑𝑚0𝜌

𝑑𝜌
+
𝑚0𝜌

𝜌
+
𝑖𝑛

𝜌
𝑚0𝜃+𝑖𝑘‖𝑚0𝑧

)︂
𝜌=𝑎,𝑏

×

× exp(𝑖(𝑛𝜃 + 𝑘‖𝑧 − 𝜔𝑡)) = 0, (9)

where m can be represented in the form m =
= m0 (𝜌) exp

(︀
𝑖
(︀
𝑛𝜃 + 𝑘‖𝑧 − 𝜔𝑡

)︀)︀
. On the other hand,

the condition ΔΦ|𝜌=𝑎,𝑏 = 0 for volume spin waves
can be rewritten as 𝑘2Φ0

⃒⃒
𝑎,𝑏

= 0, using the following
property of the Bessel functions:

1

𝜌

𝑑

𝑑𝜌
𝜌
𝑑

𝑑𝜌
Φ0 =

(︂
−𝑘2⊥ +

𝑛2

𝜌2

)︂
Φ0. (10)

Therefore, for 𝑘 ̸= 0, the boundary conditions for the
magnetization Φ0|𝑎,𝑏 = 0 yield

𝐴1𝐽𝑛(𝑘⊥𝑎) +𝐴2𝑁𝑛(𝑘⊥𝑎) =

= 𝐴1𝐽𝑛(𝑘⊥𝑏) +𝐴2𝑁𝑛(𝑘⊥𝑏) = 0. (11)

In the general case, we have to solve this equa-
tion together with other relations (obtained from the
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boundary conditions for the magnetic field) between
the spin wave amplitudes and the orthogonal wave-
number. However, we note that, in our case (non-
magnetic external material), the boundary conditions
for the magnetization in the form (11) can be reduced
to a form that does not require such calculations after
the division by the amplitude 𝐴1:

𝐽𝑛(𝑘⊥𝑎)+
𝐴2

𝐴1
𝑁𝑛(𝑘⊥𝑎) = 𝐽𝑛(𝑘⊥𝑏)+

𝐴2

𝐴1
𝑁𝑛(𝑘⊥𝑏) = 0.

(12)

This system of two equations for two unknowns, re-
ally, allows us to obtain the orthogonal wavenum-
ber spectrum without solving the system of equa-
tions with complete boundary conditions. Therefore,
the orthogonal wavenumber spectrum is given by the
system of transcendental equations (12).

For a wide shell with 𝑘⊥𝑎 ≫ 1 or for a shell that
is thin compared to its width, so that 𝑏−𝑎

𝑎 ≪ 1,
the expression for the transverse wave number spec-
trum (12) can be simplified significantly. (Since 𝑘⊥
is of the same order of magnitude or greater than
1

𝑏−𝑎 , if the condition 𝑏−𝑎
𝑎 ≪ 1 is satisfied, the condi-

tion 𝑘⊥𝑎 ≫ 1 is also satisfied.) Using the asymp-
totics of Bessel functions, we can write Φ0 (r) =
= 𝐶√

𝜌 sin (𝑘𝜌+ 𝛿) exp
(︀
𝑖
(︀
𝑛𝜃 + 𝑘‖𝑧

)︀)︀
, where C is a

normalization constant and 𝛿 is an initial phase. Hen-
ce, for a thin shell, 𝑘⊥ can be obtained from the
boundary conditions (11) in the form

𝑘⊥ =
𝜋𝑝

𝑏− 𝑎
, (13)

where p is any nonnegative integer. (Note that the
thin shell condition 𝑏−𝑎

𝑎 ≪ 1 that allows for the trans-
verse wavenumber to be written in the form (13) is
satisfied for typical nanotubes.)

Note that the transverse wavenumber spectrum for
a thin shell (13) is analogous to the spectrum of a par-
ticle in a one-dimensional potential well. So, the prob-
lem becomes quasi-one-dimensional for a thin shell.

5. Discussion

Let us analyze the dispersion relation (given by (8))
and the transverse wavenumber spectrum (given by
(12) and (13)) for spin waves in a ferromagnetic
nanotube.

First, we note that if the ferromagnetic shell is thin
compared to the characteristic length of the exchange

interaction (𝑏 − 𝑎 ≪ 𝑙ex), so we can consider 𝑘⊥ = 0
(radial dependence of the magnetization on the shell
thickness can be neglected), the dispersion relation
(8) transforms into the following form:

𝜔 = 𝛾𝑀0

(︃
𝛼𝑘2‖ +

𝐻
(𝑒)
0

𝑀0
+ 𝛽𝑗

)︃
⇔

⇔ 𝑘‖ =

⎯⎸⎸⎷ 1

𝛼

(︃
𝜔

𝛾𝑀0
− 𝐻

(𝑒)
0

𝑀0
− 𝛽

)︃
. (14)

The dispersion relation (14) for a thin shell agrees
with the dispersion relation for a thin ferromagnetic
film and for a thin cylindrical nanowire (see, e.g., [4,
39, 40]). Therefore, we can say that, for small enough
(by one or two dimensions) ferromagnetic nanoob-
jects, the spin wave pattern is similar and becomes
quasi-one-dimensional.

Second, let us make the numerical evaluations of
the spin wave frequency given by (8) in the absence
of an external magnetic field, by assuming that the
longitudinal wavenumber is restricted, on the one
hand, by the nanotube length (which makes uni-
ties or tens of micrometers for typical nanotubes),
and, on the other hand, by the exchange interac-
tion length (has the order of several nanometers
for typical ferromagnets). Similar restrictions are im-
posed on the transverse wavenumber, with the addi-
tion that the transverse wavenumber nullifies when
𝑛 = 0. Thus, both the longitudinal wavenumber 𝑘‖
and the total wavenumber k for a typical nanotube
change from 102 cm−1 to 106 cm−1 by the order
of magnitude. For a typical ferromagnetic nanotube,
𝛽 ∼ 1 and 𝛼 ∼ 10−12 cm−2. So, for a nanotube
consisting of a material with the gyromagnetic ra-
tio 𝛾 = 107 Hz/Gs and the saturation magnetization
𝑀0 = 103 Gs (typical values for ferromagnets used in
experiments), a spin wave frequency calculated with
the use of (8) has the order of magnitude of 1010 Hz
throughout the whole range of wavenumbers. (Note
that if k|| and 𝑘⊥ both tend to zero, which corre-
sponds to the zero transverse-angular mode in an in-
finitely long nanotube, the frequency of oscillations
𝜔 = 𝛾𝑀0

√︀
𝛽(4𝜋 + 𝛽) also has an order of 1010 Hz.)

As one can see from (13), the transverse wavenum-
ber increases, as the shell thickness decreases. Since
typical shells are thin, this fact puts a limitation on
the mode number n (because of a limitation on the
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transverse wavenumber 𝑘⊥ related to the exchange
length). In particular, when the nanotube thickness is
small compared to the exchange length (𝑏− 𝑎 ≪ 𝑙ex),
the magnetization is uniform through the thickness of
the shell, so we can consider 𝑘⊥ = 0. Therefore, for
very thin tubes (𝑏− 𝑎 < 𝑙ex), only a zero transverse-
angular mode is possible (𝑛 = 0). A typical nan-
otube have a thickness of tens of nanometers; for such
nanotubes, the number of possible transverse-angular
modes has an order of 𝑏−𝑎

𝑙ex
∼ 10.

6. Conclusions

Therefore, we have developed a theory of dipole-
exchange spin waves in ferromagnetic nanotubes. For
a spin wave in a cylindrical nanotube composed of an
“easy axis” ferromagnet, we have obtained a disper-
sion relation and a radial (transverse) wavenumber
spectrum.

We have shown that the above-mentioned disper-
sion relation in the case of a nanotube, which is thin
compared to the characteristic exchange interaction
length, transforms into the dispersion relation for spin
waves in a thin ferromagnetic nanowire and a thin
ferromagnetic film. The dispersion relation for a nan-
otube that is thin compared to the exchange length
becomes quadratic in the wavenumber.

We have also shown that, for a thin nanotube (the
nanotube thickness is much less than its inner radius,
which is true for a typical nanotube), the wavenumber
levels become equidistant, so the wavenumber spec-
trum becomes quasi-one-dimensional. The distance
between these levels is inversely proportional to the
nanotube thickness.

The analysis of the exchange limitations shows
that, for spin waves in the above-mentioned nano-
tubes, only the first N transverse-angular modes can
be excited, where the number 𝑁 ∼ 𝑏−𝑎

𝑙ex
(here, a and

b are the inner and the outer radii of the nanotube,
respectively, and 𝑙ex is the characteristic exchange in-
teraction length) has an order of 10 for a typical na-
notube.
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ДИПОЛЬНО-ОБМIННI СПIНОВI
ХВИЛI У ФЕРОМАГНIТНIЙ НАНОТРУБЦI

Р е з ю м е

У роботi дослiджено спiновi хвилi у цилiндричнiй фе-
ромагнiтнiй нанотрубцi. Розглянуто нанотрубку у зовнi-
шньому магнiтному полi, прикладеному паралельно до її
осi симетрiї. Використано лiнеаризоване рiвняння Ландау–
Лiфшица у магнiтостатичному наближеннi з урахуванням
магнiтної диполь-дипольної взаємодiї, обмiнної взаємодiї та
ефектiв анiзотропiї. В результатi знайдено дисперсiйне вiд-
ношення та спектр радiальних хвильових чисел для спiно-
вих хвиль у описанiй вище нанотрубцi. Зi спектра радiаль-
них хвильових чисел визначено обмеження на поперечно-
кутовi моди.

546 ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 5


