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1. Introduction

Last decades, one can see the unprecedented ac-
tive development of alternative theories of gravity,
which modify general relativity (GR) in various ways.
Among them, there are scalar-tensor theories, the
Einstein–Cartan theory, the Lovelock theory in the
general form, as well as its special cases such as very
popular Einstein–Gauss–Bonnet theory, metric-affine
theories, supergravity, 𝑓(𝑅)-theories, Chern–Simons
modifications of GR, Lovelock–Cartan theories, topo-
logically massive gravity, topologically massive super-
gravity, new massive gravity, critical gravity, chiral
gravity, various topological gauge theories of gravity
and supergravity, etc.

Constructing the conservation laws (CLs) and the
conserved quantities (CQs) in an arbitrary field the-
ory, including gravitational theories, is a main prob-
lem. Many above-listed theories presented in the
second-order formalism are the metric-torsion theo-
ries. Therefore, there is a demand for universal ex-
pressions for CLs and CQs. Recently, such a formal-
ism was developed by the authors [1–3]. The formal-
ism itself is an initially manifestly covariant modi-
fication of the Noether-like approach suggested by
Bergmann [4, 5] and Mitskevich [6–8]. In the present
work, we give a brief derivation of this formalism and
the new results obtained in its framework. The nov-
elty of our results is in the following: – Universal-
ity. We consider arbitrary diffeomorphically invariant
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classical field theories, Lagrangians of which contain
the derivatives of field variables (tensor densities of
arbitrary, but fixed ranks and weights) up to the sec-
ond order;

– Manifest general covariance. We develop mani-
festly generally covariant formalism, first, using ini-
tially generally covariant expressions (without using
auxiliary structures, such as a background metric);
second, all of our calculations are manifestly gener-
ally covariant at each step;

– The torsion field is taken into account. The
space-time under consideration is presented by an
arbitrary Riemann–Cartan space. Both the torsion
tensor and the metric tensor are the dynamical
fields, the torsion coupling in the Lagrangian can be
both minimal (through connection) and non-minimal
(explicit).

Below, we use the following notation: Greek in-
dices 𝛼, 𝛽, ..., 𝜇, 𝜈, ... take values of 0, 1, ..., 𝐷 and
enumerate space-time coordinates 𝑥

def
= {𝑥𝛼}, partial

𝜕
def
= {𝜕𝛼}

def
= {𝜕/𝜕𝑥𝛼} and covariant ∇ def

= {∇𝛼},
*
∇ def

= {
*
∇𝛼} derivatives, and the space-time tensor

components of fields as well. The coordinate 𝑥0 is a
time one, whereas the coordinates x

def
= {𝑥1, ..., 𝑥𝐷}

are space ones. Capital Latin indices 𝐴, 𝐵, ..., are col-
lective and enumerate components of the full set of
physical fields Φ

def
= {Φ𝐴(𝑥)} (containing both gravi-

tational and matter fields) and are related to 1, 2, ...,
𝑁 . At last, small Latin indices from the beginning of
the alphabet 𝑎, 𝑏, ..., ℎ enumerate components of the
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matter (non-gravitational) fields 𝜙
def
= {𝜙𝑎(𝑥)} and

take values of 1, 2, ..., 𝑛.
As usual, for a twice repeated index, the Einstein

summation rule is assumed. The indices in parenthe-
ses need to be symmetrized; whereas, the indices in
brackets needs to be antisymmetrized. Two vertical
lines inside the brackets ( ) and [ ] mean that the in-
dices between them do not participate in symmetriza-
tion/antisymmetrization. For example,

𝐴(𝛼𝛽) =
1

2
(𝐴𝛼𝛽 +𝐴𝛽𝛼),

𝐴[𝛼|𝛽|𝛾] =
1

2
(𝐴𝛼𝛽𝛾 −𝐴𝛾𝛽𝛼).

The speed of light in vacuum is set to 1.
Important definitions and relations in the Rie-

mann–Cartan geometry are given in Ref. [1]. Now,
we introduce the necessary notation only. The tor-
sion tensor T

def
= {𝑇𝜆

𝜇𝜈} and the curvature tensor
R

def
= {𝑅𝜅

𝜆𝜇𝜈} are presented as

𝑇𝜆
𝜇𝜈 = −2Γ𝜆

[𝜇𝜈];

𝑅𝜅
𝜆𝜇𝜈 = 2

(︀
𝜕[𝜇Γ

𝜅
𝜆𝜈] + Γ𝜅

𝛼[𝜇Γ
𝛼
𝜆𝜈]

)︀
.

Here, the connection Γ
def
= {Γ𝜆

𝜇𝜈} is defined by a
metric compatible condition

∇𝜆𝑔𝜇𝜈 = 𝜕𝜆𝑔𝜇𝜈 − Γ𝛼
𝜇𝜆𝑔𝛼𝜈 − Γ𝛼

𝜈𝜆𝑔𝜇𝛼 = 0,

where the standard covariant derivative ∇ def
= {∇𝜆}

is used, and g
def
= {𝑔𝜇𝜈} is the metric tensor. The

modified covariant derivative
*
∇ def

= {
*
∇𝜆} is

*
∇𝜆

def
= ∇𝜆 + 𝑇𝜆; 𝑇𝜆

def
= 𝑇𝛼

𝜆𝛼.

2. General Consideration

2.1. General Noether identity. Generalized
Noether’s current and charge

We consider a classical field theory determined by the
action functional

𝐼[Φ; Σ1,2] =

Σ2∫︁
Σ1

𝑑𝑥
√
−𝑔L (1)

in the Riemann–Cartan space 𝒞(1, 𝐷). Here, 𝑑𝑥
def
=

def
= 𝑑𝑥0𝑑𝑥1... 𝑑𝑥𝐷; the integration is provided over an

arbitrary (𝐷 + 1)-dimensional volume in 𝒞(1, 𝐷) re-
stricted by two space-like 𝐷-dimensional hypersur-
faces Σ1 and Σ2; the Lagrangian L is a local func-
tion of the set of field variables Φ(𝑥) = {Φ𝐴(𝑥);𝐴 =
= 1, 𝑁} and their first and second derivatives. We
assume that the Lagrangian L is a generally covari-
ant scalar and functional variation 𝛿Φ𝐼 of the action
functional 𝐼,

𝛿Φ𝐼[Φ; Σ1,2]
def
= 𝐼[Φ+ 𝛿Φ; Σ1,2]− 𝐼[Φ; Σ1,2] =

=
Σ2∫︀
Σ1

𝑑𝑥 𝛿 (
√
−𝑔L ), (2)

has the following structure:

𝛿Φ𝐼 =

Σ2∫︁
Σ1

𝑑𝑥
√
−𝑔

Δ𝐼

ΔΦ𝐴
𝛿Φ𝐴 +

+
Σ2∫︀
Σ1

𝑑𝑥
√
−𝑔

*
∇𝜇

{︀
𝐾𝜇|𝐴𝛿Φ𝐴 + 𝐿𝛽𝜇|𝐴∇𝛽𝛿Φ

𝐴
}︀
. (3)

Hereinafter, Δ𝐼/ΔΦ𝐴 is defined by the variational
derivative 𝛿𝐼/𝛿Φ𝐴, which is the operator of the equa-
tions of motion,

Δ𝐼

ΔΦ𝐴

def
=

1√
−𝑔

𝛿𝐼

𝛿Φ𝐴
, (4)

K
def
= {𝐾𝜇|𝐴} and L

def
= {𝐿𝛽𝜇|𝐴} are local functions

of the field variables Φ and their first and second
derivatives and are defined in an unique way (without
ambiguities) by the Lagrangian L.

Then, due to the invariance of the action functional
𝐼 (1) with respect to general/arbitrary infinitesimal
diffeomorphisms{︃
𝛿𝑥𝜇 = 𝛿𝜉𝜇(𝑥);

𝛿𝜉Φ
𝐴(𝑥) = Φ𝛼|𝐴𝛿𝜉𝛼 +Φ𝛼

𝛽 |𝐴∇𝛽𝛿𝜉
𝛼,

(5)

(6)

the general Noether identity (the main identity) fol-
lows:

*
∇𝜇𝐽

𝜇[𝛿𝜉] +
Δ𝐼

ΔΦ𝐴
𝛿𝜉Φ

𝐴 ≡ 0. (7)

In formula (6), the quantities {Φ𝛼|𝐴}, {Φ𝛼
𝛽 |𝐴} are

local functions of Φ and their derivatives, which are

664 ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 7



Covariant Differential Identities and Conservation Laws

defined uniquely by the transformation properties of
Φ, and

𝐽𝜇[𝛿𝜉]
def
=
{︀
𝐾𝜇|𝐴Φ𝛼|𝐴 + L 𝛿𝜇𝛼 + 𝐿𝜈𝜇|𝐴∇𝜈Φ𝛼|𝐴

}︀
𝛿𝜉𝛼+

+
{︀
𝐾𝜇|𝐴Φ𝛼

𝛽 |𝐴 + 𝐿𝛽𝜇|𝐴Φ𝛼|𝐴 + 𝐿𝜈𝜇|𝐴∇𝜈Φ𝛼
𝛽 |𝐴

}︀
×

×∇𝛽𝛿𝜉
𝛼+

{︀
𝐿𝛾𝜇|𝐴Φ𝛼

𝛽 |𝐴
}︀
∇𝛾∇𝛽𝛿𝜉

𝛼. (8)

Unlike the standard Noether currents obtained by the
recipe of the 1-st Noether theorem in the theories
with global symmetries, the current J[𝛿𝜉] def= {𝐽𝜇[𝛿𝜉]}
(8) depends on an arbitrary displacement vector field
𝛿𝜉

def
= {𝛿𝜉𝜇} and its covariant derivatives. For this

reason, we will call J[𝛿𝜉] as the generalized Noether
current, and a correspondent conserved charge

𝑄[𝛿𝜉; Σ]
def
=

∫︀
Σ

𝑑𝜎𝜇 𝐽
𝜇[𝛿𝜉] (9)

as the generalized Noether charge.
If the equations of motion Δ𝐼/ΔΦ𝐴 = 0 hold, then

identity (7) transforms into the continuity equation
*
∇𝜇𝐽

𝜇[𝛿𝜉] = 0 (on the Φ-equations). (10)

Additionally, if the field variables and their deriva-
tives vanish fast enough at a spatial infinity, then the
last equation leads to the conservation of the gener-
alized charge

𝛿𝑄[𝛿𝜉; Σ]/𝛿Σ(𝑥) = 0 (on the Φ-equations), (11)

meaning that its value is the same on each of the
hypersurfaces Σ.

2.2. The Klein and Noether identities

After some transformations, the generalized Noether
current J[𝛿𝜉] (8) can be led to the next standard form:

𝐽𝜇[𝛿𝜉] = 𝑈𝛼
𝜇𝛿𝜉𝛼 +𝑀𝛼

𝛽𝜇∇𝛽𝛿𝜉
𝛼 +𝑁𝛼

𝛽𝛾𝜇∇(𝛾∇𝛽)𝛿𝜉
𝛼,

(12)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑈𝛼
𝜇 def
= L 𝛿𝜇𝛼 +𝐾𝜇|𝐴Φ𝛼|𝐴

+ 𝐿𝜅𝜇|𝐴
(︂
∇𝜅Φ𝛼|𝐴 +

1

2
𝑅𝜀

𝛼𝜅𝜆Φ𝜀
𝜆|𝐴

)︂
;

𝑀𝛼
𝛽𝜇 def

= 𝐾𝜇|𝐴Φ𝛼
𝛽 |𝐴 + 𝐿𝛽𝜇|𝐴Φ𝛼|𝐴

+ 𝐿𝜅𝜇|𝐴
(︂
∇𝜅Φ𝛼

𝛽 |𝐴 − 1

2
𝑇 𝛽

𝜅𝜆Φ𝛼
𝜆|𝐴

)︂
;

𝑁𝛼
𝛽𝛾𝜇 def

= 𝐿(𝛾|𝜇|𝐴Φ𝛼
|𝛽)|𝐴.

(13)

(14)

(15)

Substituting (12) and (6) into (7) and tak-
ing into account that {𝛿𝜉𝛼, ∇𝛽𝛿𝜉

𝛼, ∇(𝛾∇𝛽)𝛿𝜉
𝛼,

∇(𝛿∇𝛾∇𝛽)𝛿𝜉
𝛼} presents a set of independent and ar-

bitrary quantities at every point, one obtains the sys-
tem of identities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

*
∇𝜇𝑈𝛼

𝜇 − 1

2
𝑀𝜆

𝜇𝜈𝑅𝜆
𝛼𝜇𝜈 −

− 1

3
𝑁𝜅

𝜆𝜇𝜈

(︂
∇𝜆𝑅

𝜅
𝛼𝜇𝜈+

1

2
𝑇𝜎

𝜇𝜈𝑅
𝜅
𝛼𝜆𝜎

)︂
≡ −𝐼𝛼;

𝑈𝛼
𝛽 +

(︂
*
∇𝜇𝑀𝛼

𝛽𝜇 +
1

2
𝑀𝛼

𝜇𝜈𝑇 𝛽
𝜇𝜈

)︂
+

+
1

3
𝑁𝛼

𝜆𝜇𝜈

(︂
2𝑅𝛽

𝜆𝜇𝜈 +∇𝜆𝑇
𝛽
𝜇𝜈 +

+
1

2
𝑇𝜎

𝜇𝜈𝑇
𝛽
𝜆𝜎

)︂
−𝑁𝜅

𝛽𝜇𝜈𝑅𝜅
𝛼𝜇𝜈 ≡ −𝐼𝛼

𝛽 ;

𝑀𝛼
(𝛽𝛾) +

*
∇𝜇𝑁𝛼

𝛽𝛾𝜇 +𝑁𝛼
(𝛽|𝜇𝜈𝑇 |𝛾)

𝜇𝜈 ≡ 0;

𝑁𝛼
(𝛽𝛾𝛿) ≡ 0,

(16)

(17)

(18)

(19)

where

𝐼𝛼
def
=

Δ𝐼

ΔΦ𝐴
Φ𝛼|𝐴; 𝐼𝛼

𝛽 def
=

Δ𝐼

ΔΦ𝐴
Φ𝛼

𝛽 |𝐴. (20)

Originally, the system analogous to the above one has
been obtained in a non-covariant form by Klein [9] for
purely metric theories of gravity. Therefore, we will
name system (16)–(19) as the Klein identities.

Statement 1.The Klein identities (16)–(19) pre-
sent a complete manifestly covariant universal system
of differential identities, which is valid in an arbitrary
diffeomorphically invariant field theory.

Subtracting the divergence
*
∇𝛽 of (17) from identity

(16), we obtain the new identity

*
∇𝜇𝐼𝛼

𝜇 − 𝐼𝛼 ≡ 0 (21)

that is the Noether identity rewritten in a manifestly
covariant form.

Statement 2. The (usual) Noether identity (21)
is a consequence of the Klein identities (16)–(19).

Analyzing system (16)–(19), one shows that the fol-
lowing is valid:

Statement 3. Instead of the Klein system (16)–
(19), one can use the equivalent Klein–Noether sys-
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tem of identities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

*
∇𝜇𝐼𝛼

𝜇 ≡ 𝐼𝛼;(︂
𝑈𝛼

𝛽 − 1

3
𝑁𝜆

𝛽𝜌𝜎𝑅𝜆
𝛼𝜌𝜎

)︂
+

+
*
∇𝜇

(︂
𝑀𝛼

[𝛽𝜇]− 2

3

*
∇𝜆𝑁𝛼

𝜆[𝛽𝜇]+
1

3
𝑁𝛼

[𝛽|𝜌𝜎𝑇 |𝜇]
𝜌𝜎

)︂
+

+
1

2

(︂
𝑀𝛼

[𝜌𝜎]− 2

3

*
∇𝜆𝑁𝛼

𝜆[𝜌𝜎]+
1

3
𝑁𝛼

[𝜌|𝜅𝜆𝑇 |𝜎]
𝜅𝜆

)︂
×

× 𝑇 𝛽
𝜌𝜎 ≡ −𝐼𝛼

𝛽 ;

𝑀𝛼
(𝛽𝛾) +

*
∇𝜇𝑁𝛼

𝛽𝛾𝜇 +𝑁𝛼
(𝛽|𝜇𝜈𝑇 |𝛾)

𝜇𝜈 ≡ 0;

𝑁𝛼
(𝛽𝛾𝛿) ≡ 0.

(22)

(23)

(24)

(25)

2.3. The generalized Noether superpotential.
The boundary Klein–Noether theorem

Substituting {𝛿𝜉Φ𝐴} (6) and {𝐼𝛼} from (22) into
the general Noether identity (7), one obtains another
identity

*
∇𝜇J 𝜇[𝛿𝜉] ≡ 0, (26)

which has a meaning of the continuity equation for
the current defined as J [𝛿𝜉]

def
= {J 𝜇[𝛿𝜉]}, where

J [𝛿𝜉]
def
= (𝑈𝛼

𝜇 + 𝐼𝛼
𝜇) 𝛿𝜉𝛼+

+𝑀𝛼
𝛽𝜇∇𝛽 𝛿𝜉𝛼 +𝑁𝛼

𝛽𝛾𝜇∇(𝛾∇𝛽)𝛿𝜉
𝛼. (27)

Note that identity (26) takes place independently of
whether the equations of motion hold.

Statement 4 (Covariant Poincaré lemma). In
an arbitrary Riemann–Cartan space, an identically
conserved current J [𝛿𝜉] can be represented locally in
the form

J 𝜇[𝛿𝜉] =
*
∇𝜈𝜃

𝜇𝜈 [𝛿𝜉] +
1

2
𝜃𝜌𝜎[𝛿𝜉]𝑇𝜇

𝜌𝜎, (28)

where

𝜃[𝛿𝜉]
def
= {𝜃𝜇𝜈 [𝛿𝜉]} ; 𝜃[𝜇𝜈][𝛿𝜉] = 𝜃𝜇𝜈 [𝛿𝜉] (29)

is an antisymmetric tensor — the generalized Noether
superpotential.

Statement 5. For current (27), the generalized
Noether superpotential 𝜃[𝛿𝜉] (29) has the form

𝜃𝜇𝜈 [𝛿𝜉] =

=

{︂
−𝑀𝛼

[𝜇𝜈] +
2

3

(︂
*
∇𝜆𝑁𝛼

𝜆[𝜇𝜈]+
1

2
𝑇 [𝜇

𝜌𝜎𝑁𝛼
𝜈]𝜌𝜎

)︂}︂
𝛿𝜉𝛼+

+

{︂
−4

3
𝑁𝛼

𝛽[𝜇𝜈]

}︂
∇𝛽𝛿𝜉

𝛼. (30)

It is evident that the current J [𝛿𝜉] is connected
with the generalized Noether current J[𝛿𝜉] (12) by
the relation:

𝐽𝜇[𝛿𝜉] = −𝐼𝛼
𝜇𝛿𝜉𝛼 + J 𝜇[𝛿𝜉]. (31)

Substituting expression (28) into formula (31), inte-
grating it over Σ, and using the Stokes rule, we rewrite
the generalized Noether charge (9) in the form

𝑄[𝛿𝜉; Σ] = −
∫︁
Σ

𝑑𝜎𝜇 𝐼𝛼
𝜇𝛿𝜉𝛼+

1

2!

∮︁
𝜕Σ

𝑑𝑠𝜇𝜈 𝜃
𝜇𝜈 [𝛿𝜉]. (32)

The above relation is a special case (in an integral
form) of a more general

Statement 6 (The boundary Klein–Noether
theorem). In an arbitrary gauge-invariant theory,
the Noether current is presented by a sum of two
terms: the first vanishes on the equations of motion,
the second is the divergence of a superpotential.

2.4. The generalized
symmetrized Noether current

From now, we call J[𝛿𝜉] (12) and 𝜃[𝛿𝜉] (30) as the
generalized canonical Noether current and the gen-
eralized canonical superpotential, respectively. Recall
that J[𝛿𝜉] contains the derivatives of a displacement
vector ∇𝛿𝜉, ∇∇𝛿𝜉. We construct a new current
sym

𝐽 𝜇[𝛿𝜉], instead of the canonical one J[𝛿𝜉], with
the property that it does not contain derivatives of
𝛿𝜉. In other words, we search for

sym

𝐽
𝜇[𝛿𝜉] =

sym

𝑈 𝛼
𝜇𝛿𝜉𝛼. (33)

Because a new current has to be also differentially
conserved, we construct it by adding an antisymmet-
ric tensor B[𝛿𝜉]

def
=

{︀
B[𝜇𝜈][𝛿𝜉] = B𝜇𝜈 [𝛿𝜉]

}︀
, similarly

to (28):

sym

𝐽
𝜇[𝛿𝜉]

def
= 𝐽𝜇[𝛿𝜉]−

−
(︂

*
∇𝜈B

𝜇𝜈 [𝛿𝜉] +
1

2
B𝜌𝜎[𝛿𝜉]𝑇𝜇

𝜌𝜎

)︂
. (34)
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We call this formula as a generalized Belinfante rela-
tion, and a tensor B[𝛿𝜉] — as a generalized Belinfante
tensor. Calculations show that

Statement 7. The generalized Belinfante tensor
B[𝛿𝜉] coincides with the generalized canonical super-
potential 𝜃[𝛿𝜉] (30)

B𝜇𝜈 [𝛿𝜉] = 𝜃𝜇𝜈 [𝛿𝜉]; (35)

the tensor
sym

U
def
= {

sym

𝑈 𝛼
𝜇} has the form

sym

𝑈 𝛼
𝜇 =

(︂
𝑈𝛼

𝜇 − 1

3
𝑁𝜆

𝜇𝜌𝜎𝑅𝜆
𝛼𝜌𝜎

)︂
+

+
*
∇𝜈

[︂
𝑀𝛼

[𝜇𝜈]− 2

3

(︂
*
∇𝜆𝑁𝛼

𝜆[𝜇𝜈]+
1

2
𝑇 [𝜇

𝜌𝜎𝑁𝛼
𝜈]𝜌𝜎

)︂]︂
+

+
1

2

[︂
𝑀𝛼

[𝜌𝜎]− 2

3

(︂
*
∇𝜆𝑁𝛼

𝜆[𝜌𝜎]+
1

2
𝑇 [𝜌

𝜀𝜅𝑁𝛼
𝜎]𝜀𝜅

)︂]︂
𝑇𝜇

𝜌𝜎.

(36)

Note that the right-hand side of (36) exactly co-
incides with the left-hand side of the Klein identity
(23). Therefore, one can write also

sym

𝑈 𝛼
𝜇 = −𝐼𝛼

𝜇. (37)

It turns out that, in the manifestly generally co-
variant theories (see Sec. 3), the tensor

sym

U coin-
cides with the symmetrized energy-momentum tensor
sym

t
def
= {

sym
𝑡 𝜇

𝛼}:

sym

𝑈 𝛼
𝜇 =

sym
𝑡 𝜇

𝛼. (38)

Then relations (37) and (38) are a proof of the
Statement 8. The symmetrized energy-momen-

tum tensor
sym

t does not depend on the divergences
in the Lagrangian.

3. Manifestly Generally Covariant Theories

3.1. Structure of Lagrangians

In Sec. 2 the quantities and relations in the theories
of the most general type have been constructed. In
the present section, we will specify them. We ap-
ply the developed formalism to the study of mani-
festly generally covariant theories, and all the state-
ments, here, are related to them. We call a theory
as manifestly generally covariant if its Lagrangian
L is a generally covariant scalar constructed as an

algebraic scalar function of the manifestly covariant
objects, which are transformed following the linear
homogeneous representations of the diffeomorphism
group. This means that L is an algebraic function of
the scalar contractions of tensor (and/or spinor) field
functions and their covariant derivatives; in addition
to the manifested dependence on the field variables,
L can also depend on the curvature and torsion ten-
sors independently. It seems that almost all the phys-
ically interesting theories are manifestly generally co-
variant or can be presented in such a form.

Consider the field theories presented by action (1),
with Lagrangians in a manifestly covariant form:

L = L (g,R; T,∇T,∇∇T; 𝜙,∇𝜙,∇∇𝜙). (39)

Here, the total set of fields Φ is presented by the
metric tensor g, by the torsion tensor T, and by a
set of matter fields 𝜙

def
= {𝜙𝑎(𝑥); 𝑎 = 1, 𝑛}, which

are considered as tensorial ones as well. Lagrangians
of the type (39) include, together with the minimal
coupling, the non-minimal coupling related both to
the curvature and to the torsion. In this section, we
present relations and conserved quantities (currents
and superpotentials) constructed in the Sec. 2 in a
maximally specific form that follows from the specific
structure of Lagrangian (39).

Because the fields T and 𝜙 are included in the La-
grangian in a similar way, we unite them for simplifi-
cation of notations into the unique set 𝜑:

T,𝜙 → 𝜑
def
= {𝜑𝑎} def

= {T,𝜙}. (40)

Now, Lagrangian (39) is presented as

L = L (g,R; 𝜑,∇𝜑,∇∇𝜑). (41)

One has to keep in mind that the torsion T is included
in Lagrangian (39) not only explicitly as arguments
T, ∇T, and ∇∇T, but not explicitly also over the
connection Γ, which is used for constructing the co-
variant derivative ∇ and the curvature tensor R.

3.2. Structure of the tensors
U, M, N. Canonical EMT t and ST s

Direct calculations show that, in the case of a La-
grangian of the type (41), the tensors U (13), M (14),
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and N (15) have the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑈𝛼
𝜇 = 𝑡𝜇𝛼 +

(︁
Δ𝜇𝛽𝛾

𝜋𝜌𝜎𝑠
𝜋, 𝜌𝜎

)︁
𝑇𝛾, 𝛽𝛼 +

+
1

2
𝐺𝛽𝛾𝜀𝜇𝑅𝛼𝛽𝛾𝜀 +

[︂
*
∇𝜈

(︀
𝐺𝛽𝛾𝜇𝜈𝑇𝛽, 𝛾𝛼

)︀
+

+
1

2

(︀
𝐺𝛽𝛾𝜌𝜎𝑇𝛽, 𝛾𝛼

)︀
𝑇𝜇

𝜌𝜎

]︂
;

𝑀𝜅
𝜆𝜇 = −

(︁
Δ𝜇𝜆𝛼

𝜋𝜌𝜎 𝑠
𝜋, 𝜌𝜎

)︁
𝑔𝛼𝜅 −

−
(︂

*
∇𝜈𝐺𝜅

𝜆𝜇𝜈 +
1

2
𝐺𝜅

𝜆𝜌𝜎𝑇𝜇
𝜌𝜎

)︂
+

+
1

2
𝐺𝜅

𝛼𝛽𝜇𝑇𝜆
𝛼𝛽 −

(︀
𝐺𝛼

𝛽𝜆𝜇𝑇𝛼
𝛽𝜅

)︀
;

𝑁𝛼
𝛽𝛾𝜇 = 𝐺𝛼

(𝛽𝛾)𝜇.

(42)

(43)

(44)

Here,

𝐺𝜅
𝜆𝜇𝜈 def

= 2
𝜕L

𝜕𝑅𝜅
𝜆𝜇𝜈

; (45)

Δ𝛼𝛽𝛾
𝜆𝜇𝜈

def
=

1

2

(︁
𝛿𝛽𝜆𝛿

𝛼
𝜇𝛿

𝛾
𝜈 + 𝛿𝛾𝜆𝛿

𝛼
𝜇𝛿

𝛽
𝜈 − 𝛿𝛼𝜆 𝛿

𝛽
𝜇𝛿

𝛾
𝜈

)︁
; (46)

𝑡𝜇𝛼
def
= L 𝛿𝜇𝛼 − Δ𝐼

Δ(∇𝜇𝜑𝑎)
∇𝛼𝜑

𝑎 −

− 𝜕L

𝜕(∇𝜇∇𝜈𝜑𝑎)
∇𝛼∇𝜈𝜑

𝑎 −𝐺𝛽𝛾𝜀𝜇𝑅𝛽𝛾𝜀𝛼; (47)

𝑠𝜋𝜌𝜎
def
= −2

(︂
*
∇𝜂𝐺𝜌𝜎

𝜋𝜂 +
1

2
𝐺𝜌𝜎

𝛼𝛽𝑇𝜋
𝛼𝛽

)︂
+

+2

(︂
Δ𝐼

Δ(∇𝜋𝜑𝑎)
(Δ[𝜌𝜎])

𝑎|𝑏 𝜑
𝑏 +

+
𝜕L

𝜕(∇𝜋∇𝛼𝜑𝑎)

[︀
(Δ[𝜌𝜎])

𝑎|𝑏 ∇𝛼𝜑
𝑏 − 𝑔𝛼[𝜌∇𝜎]𝜑

𝑎
]︀)︂
; (48)

Δ𝐼

Δ(∇𝜇𝜑𝑎)

def
=

𝜕L

𝜕(∇𝜇𝜑𝑎)
−

*
∇𝜈

(︂
𝜕L

𝜕(∇𝜈∇𝜇𝜑𝑎)

)︂
(49)

and {(Δ𝜌𝜎)
𝑎|𝑏} are the Belinfante–Rosenfeld sym-

bols – some combinations of the Kronecker deltas
(explicit expressions are given in Appendix C.1 of
Ref. [2]).

Note also that the tensors t
def
= {𝑡𝜇𝜈} (47) and

s
def
= {𝑠𝜋𝜌𝜎} (48) are just the generalized canon-

ical energy-momentum tensor (EMT) and general-
ized canonical spin tensor (ST), corresponding to La-
grangian (39). The reason for this statement is that,
basing on the above definitions of the EMT and ST,
one obtains the standard equations of balance for the
EMT. In addition, as we will see in the Sec. 4, the

gravitational field equations acquire the form natu-
rally generalizing the gravitational field equations of
the Einstein–Cartan theory.

It is worth to note that the sequence of the second
derivative in the multiplier {∇𝛼∇𝜈𝜑

𝑎} in (47) is re-
verse to the sequence that follows from the construc-
tion of the canonical EMT by the direct application
of the 1-st Noether theorem. The last term in (47),
as well as the items in the first parentheses on the
right-hand side of (48), has appeared due to the non-
minimal coupling with the metric field. These items
cannot be obtained in principle with the use of the
1-st Noether theorem in the Minkowski space and the
covariantization of expressions.

Relations (44) and (45) yield directly
Statement 9. The tensor N (44) is not equal to

zero only if the Lagrangian contains explicitly the cur-
vature tensor R.

Next, the substitution of expressions (42)–(44) into
formula (12) leads to

Statement 10. The canonical current J[𝛿𝜉] (12)
is essentially constructed, basing on the canonical dy-
namic quantities t (47), s (48), and the tensor G
(45).

We have also:
Statement 11. The symmetrized Noether current

sym

J [𝛿𝜉] is expressed through only the symmetrized
EMT

sym

t even in the case of a Lagrangian of the most
general type (39):
sym

𝐽
𝜇[𝛿𝜉]

def
=

sym
𝑡 𝜇

𝛼𝛿𝜉
𝛼. (50)

3.3. Structure of the variational
derivatives. Modified canonical ST

mod
s

In work [2], we have shown the general
Statement 12 (Structure of the Δ𝐼/ΔT). The

variational derivative Δ𝐼/ΔT of the action func-
tional 𝐼 with respect to the torsion tensor T is equal
to
Δ𝐼

Δ𝑇 𝜀
𝛽𝛾

=
Δ*𝐼

Δ𝑇 𝜀
𝛽𝛾

+
1

2
𝑏𝛾𝛽𝜀, (51)

where

Δ*𝐼

Δ𝑇 𝜀
𝛽𝛾

def
=

𝜕*L

𝜕𝑇 𝜀
𝛽𝛾

−
*
∇𝜇

(︂
𝜕L

𝜕(∇𝜇𝑇 𝜀
𝛽𝛾)

)︂
+

+
*
∇𝜈

*
∇𝜇

(︂
𝜕L

𝜕(∇𝜇∇𝜈𝑇 𝜀
𝛽𝛾)

)︂
; (52)
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𝑏𝛾𝛽𝛼
def
= Δ𝛾𝛽𝛼

𝜋𝜌𝜎 𝑠
𝜋, 𝜌𝜎; 𝑏[𝛾𝛽]𝛼 = 𝑏𝛾𝛽𝛼.

The Belinfante tensor: b
def
=

{︀
𝑏𝛾𝛽𝛼

}︀
is induced by

the ST s.
Consequence 1. In the case of only minimal T-

coupling (when the Lagrangian L does not contain
the torsion tensor T explicitly), one has

Δ𝐼

Δ𝑇 𝜀
𝛽𝛾

=
1

2
𝑏𝛾𝛽𝜀. (53)

Earlier, the same result (53) has been proved only
for Lagrangians of the type L = L (g;𝜙,∇𝜙) with
a more simple presentations both of the ST and
the Belinfante tensor (see Refs. [10–16]). We have
proved a more general claim: formula (53) is left
valid for Lagrangians of the more general type L =
L (g,R;𝜙,∇𝜙,∇∇𝜙).

Formula (51) shows that the presence of a non-
minimal coupling with torsion changes (53). The re-
quirement (the desire) to conserve a sense of the
variational derivative (53) even in the presence of
a non-minimal T-coupling leads to the necessity to
modify both the initial Belinfante tensor and the ini-
tial ST. Let us demonstrate the modification step-by-
step. We rewrite formula (51) in the form of (53):

Δ𝐼

Δ𝑇 𝜀
𝛽𝛾

=
1

2

mod

𝑏
𝛾𝛽

𝜀. (54)

Here, the modified Belinfante tensor
mod

b = {
mod

𝑏 𝛾𝛽𝛼}
is defined analogously to the initial one (i.e., with the
use of any ST):
mod

𝑏
𝛾𝛽𝛼 def

= Δ𝛾𝛽𝛼
𝜋𝜌𝜎

mod
𝑠 𝜋, 𝜌𝜎. (55)

The modified Belinfante tensor and the canonical ST
can be represented as initial ones with corresponding
additions:
mod

𝑏
𝛾𝛽𝛼 def

= 𝑏𝛾𝛽𝛼+
add

𝑏
𝛾𝛽𝛼; (56)

mod
𝑠 𝜋

𝜌𝜎
def
= 𝑠𝜋𝜌𝜎+

add
𝑠 𝜋

𝜌𝜎. (57)

Finally, combining (51)–(55), one obtains the defini-
tions for the additional Belinfante tensor and ST:
add

𝑏
𝛾𝛽

𝜀 = 2
Δ*𝐼

Δ𝑇 𝜀
𝛽𝛾

; (58)

add
𝑠 𝜋, 𝜌𝜎 = −4𝑔[𝜎|𝜀

Δ*𝐼

Δ𝑇 𝜀|𝜌]𝜋
. (59)

The metric EMT
met
t

def
= {

met
𝑡 𝛽𝛾} is defined by a

standard way:

1

2

met
𝑡 𝛽𝛾 def

=
Δ𝐼

Δ𝑔𝛽𝛾
. (60)

3.4. Generalization of the Belinfante
symmetrization procedure. Symmetrized
EMT

sym

t

In the Riemann–Cartan space, the Belinfante sym-
metrization procedure is generalized in a non-trivi-
al way.

Statement 13. In an arbitrary Riemann–Car-
tan space, the Belinfante symmetrized EMT

sym

t
def
=

def
= {

sym
𝑡 𝜇

𝜈} must be constructed by the rule
sym
𝑡 𝜇

𝜈
def
= 𝑡𝜇𝜈 +

+

[︂
*
∇𝜆𝑏

𝜇𝜆
𝜈 +

1

2
𝑏𝜌𝜎𝜈𝑇

𝜇
𝜌𝜎 + 𝑏𝜇𝛽𝛼𝑇

𝛼
𝛽𝜈

]︂
. (61)

3.5. The physical sense of the Klein
and Noether identities. Equations of balance.

Modified canonical EMT
mod
t

Let us examine a physical sense of the identities by
Noether and Klein. Consequent substitutions of the
expressions for the tensors U (42), M (43), and N
(44) into identities (22), (24), (25), (23), and (16)
allow us to prove the next statements:

Statement 14 (The physical sense of the
Noether identity). The Noether identity (22) has
the explicit form
*
∇𝜇

met
𝑡 𝜇

𝜈 ≡ −
met
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

+

{︂
*
∇𝜇

[︂
Δ𝐼

Δ𝜑𝑎
(Δ𝜇

𝜈)
𝑎|𝑏 𝜑

𝑏

]︂
+

+
Δ𝐼

Δ𝜑𝑎

[︀
∇𝜈𝜑

𝑎 + (Δ𝜇
𝜆)

𝑎|𝑏 𝜑
𝑏 𝑇𝜆

𝜇𝜈

]︀}︂
(62)

or (in an expanded presentation)
*
∇𝜇

(︂
met
𝑡 𝜇

𝜈 +
*
∇𝜂

mod

𝑏
𝜂𝜇

𝜈

)︂
≡

≡ −
(︂

met
𝑡 𝜇

𝜆 +
*
∇𝜂

mod

𝑏
𝜂𝜇

𝜆

)︂
𝑇𝜆

𝜇𝜈 +

+
1

2

mod
𝑠 𝜋

𝜌𝜎𝑅
𝜌𝜎

𝜋𝜈 +

{︂
*
∇𝜇

[︂
Δ𝐼

Δ𝜙𝑎
(Δ𝜇

𝜈)
𝑎|𝑏 𝜙

𝑏

]︂
+

+
Δ𝐼

Δ𝜙𝑎

[︀
∇𝜈𝜙

𝑎 + (Δ𝜇
𝜆)

𝑎|𝑏 𝜙
𝑏 𝑇𝜆

𝜇𝜈

]︀}︂
(63)
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and is the basis for defining the equations of balance
for the metric EMT:

*
∇𝜇

met
𝑡 𝜇

𝜈 = −
met
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 (on the 𝜑-equations) (64)

or
*
∇𝜇

(︂
met
𝑡 𝜇

𝜈 +
*
∇𝜂

mod

𝑏
𝜂𝜇

𝜈

)︂
=

= −
(︂
met
𝑡 𝜇

𝜆 +
*
∇𝜂

mod

𝑏
𝜂𝜇

𝜆

)︂
𝑇𝜆

𝜇𝜈 +

+
1

2

mod
𝑠 𝜋

𝜌𝜎𝑅
𝜌𝜎

𝜋𝜈 (on the 𝜙-equations). (65)

Statement 15 (On the 4-th and 3-rd Klein
identities). The 4-th and 3-rd Klein identities (25)
and (24) are satisfied automatically.

Statement 16 (The physical sense of the 2-nd
Klein identity). The 2-nd Klein identity (23) has
the explicit form

sym
𝑡 𝜇

𝜈 ≡
met
𝑡 𝜇

𝜈 − Δ𝐼

Δ𝜑𝑎
(Δ𝜇

𝜈)
𝑎|𝑏 𝜑

𝑏 (66)

or
𝑡𝜇𝜈 −

*
∇𝜆𝑏

𝜆𝜇
𝜈 ≡

met
𝑡 𝜇

𝜈 +

+

(︂
1

2

add

𝑏
𝜌𝜎

𝜈𝑇
𝜇
𝜌𝜎 +

add

𝑏
𝜇𝛽

𝛼𝑇
𝛼
𝛽𝜈

)︂
−

− Δ𝐼

Δ𝜙𝑎
(Δ𝜇

𝜈)
𝑎|𝑏 𝜙

𝑏 (67)

and claims that, on the 𝜑-equations, the symmetrized

EMT
sym

t (61) is equal to the metric EMT
met
t (60):

sym
𝑡 𝜇

𝜈 =
met
𝑡 𝜇

𝜈 (on the 𝜑-equations) (68)

or
𝑡𝜇𝜈 −

*
∇𝜆𝑏

𝜆𝜇
𝜈 =

met
𝑡 𝜇

𝜈 +

+

(︂
1

2

add

𝑏
𝜌𝜎

𝜈𝑇
𝜇
𝜌𝜎 +

add

𝑏
𝜇𝛽

𝛼𝑇
𝛼
𝛽𝜈

)︂
(on the 𝜙-equations). (69)

Statement 17 (The physical sense of the 1-st
Klein identity). The 1-st Klein identity (16) has the
explicit form

*
∇𝜇𝑡

𝜇
𝜈 ≡ −𝑡𝜇𝜆𝑇

𝜆
𝜇𝜈 +

1

2
𝑠𝜋𝜌𝜎𝑅

𝜌𝜎
𝜋𝜈 −

− 1

2
𝑏𝛾𝛽𝛼∇𝜈𝑇

𝛼
𝛽𝛾 +

Δ𝐼

Δ𝜑𝑎
∇𝜈𝜑

𝑎 (70)

or
*
∇𝜇𝑡

𝜇
𝜈 ≡ −𝑡𝜇𝜆𝑇

𝜆
𝜇𝜈 +

1

2
𝑠𝜋𝜌𝜎𝑅

𝜌𝜎
𝜋𝜈 +

+
1

2

add

𝑏
𝛾𝛽

𝛼∇𝜈𝑇
𝛼
𝛽𝛾 +

Δ𝐼

Δ𝜙𝑎
∇𝜈𝜙

𝑎 (71)

and is the basis for constructing the equations of bal-
ance for the canonical EMT t

*
∇𝜇𝑡

𝜇
𝜈 = −𝑡𝜇𝜆𝑇

𝜆
𝜇𝜈 +

1

2
𝑠𝜋𝜌𝜎𝑅

𝜌𝜎
𝜋𝜈 −

− 1

2
𝑏𝛾𝛽𝛼∇𝜈𝑇

𝛼
𝛽𝛾 (on the 𝜑-equations) (72)

or
*
∇𝜇𝑡

𝜇
𝜈 = −𝑡𝜇𝜆𝑇

𝜆
𝜇𝜈 +

1

2
𝑠𝜋𝜌𝜎𝑅

𝜌𝜎
𝜋𝜈 +

+
1

2

add

𝑏
𝛾𝛽

𝛼∇𝜈𝑇
𝛼
𝛽𝛾 (on the 𝜙-equations). (73)

In Refs. [10–16], for a Lagrangian of the type
L = L (g; 𝜙,∇𝜙), the equation of balance for the
canonical EMT

*
∇𝜇𝑡

𝜇
𝜈 = −𝑡𝜇𝜆𝑇

𝜆
𝜇𝜈 +

1

2
𝑠𝜋, 𝜌𝜎𝑅𝜌𝜎𝜋𝜈

(on the 𝜙-equations) (74)

has been obtained. Result (74) is left valid also in a
more general case, when the Lagrangian has the form:
L = L (g,R; 𝜙,∇𝜙,∇∇𝜙) because the last term
in (73) does not appear. In the case of non-minimal
T-coupling, the right-hand side of (73) contains the

additional term
(︁

1
2

add

𝑏 𝛾𝛽
𝛼∇𝜈𝑇

𝛼
𝛽𝛾

)︁
. However, the

new equation (73) can be also transformed to the
form (74) (see [2] for details). Only, the EMT and
ST in (74) are changed to modified ones. The modi-
fication of the EMT is analogous to the modification
of the canonical ST in (57) and (59). The modified

canonical EMT
mod
t

def
= {

mod
𝑡 𝜇

𝜈}:

mod
𝑡 𝜇

𝜈
def
= 𝑡𝜇𝜈+

add
𝑡 𝜇

𝜈 , (75)

where the additional EMT
add
t

def
= {

add
𝑡 𝜇

𝜈} is defined
as

−
add
𝑡 𝜇

𝜈
def
=

*
∇𝜆

add

𝑏
𝜇𝜆

𝜈 +

+
1

2

add

𝑏
𝜅𝜆

𝜈𝑇
𝜇
𝜅𝜆+

add

𝑏
𝜇𝜆

𝜅𝑇
𝜅
𝜆𝜈 . (76)
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It is evident that EMT
mod
t (75) in the case of mini-

mal T-coupling only transforms to the usual canon-
ical EMT t. By definition (76), the Belinfante sym-

metrization of the type (61) applied to
add
t leads to

zero identically. Therefore,
Statement 18. The symmetrized EMT

sym

t con-

structed by the symmetrization of
mod
t (75) with the

use of
mod

b (55) by the rule
sym
𝑡 𝜇

𝜈 =
mod
𝑡 𝜇

𝜈 +

+

[︂
*
∇𝜆

mod

𝑏
𝜇𝜆

𝜈 +
1

2

mod

𝑏
𝜅𝜆

𝜈𝑇
𝜇
𝜅𝜆+

mod

𝑏
𝜇𝜆

𝜅𝑇
𝜅
𝜆𝜈

]︂
(77)

exactly coincides with the (usual) symmetrized EMT
sym

t (61).
Statement 19. In the terms of the modified cano-

nical EMT
mod
t , the 1-st Klein identities (70) or (71)

can be rewritten as
*
∇𝜇

mod
𝑡 𝜇

𝜈 ≡ −
mod
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

1

2

mod
𝑠 𝜋

𝜌𝜎𝑅
𝜌𝜎

𝜋𝜈 −

− 1

2

mod

𝑏
𝛾𝛽

𝛼∇𝜈𝑇
𝛼
𝛽𝛾 +

Δ𝐼

Δ𝜑𝑎
∇𝜈𝜑

𝑎 (78)

or
*
∇𝜇

mod
𝑡 𝜇

𝜈 ≡ −
mod
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

+
1

2

mod
𝑠 𝜋

𝜌𝜎𝑅
𝜌𝜎

𝜋𝜈 +
Δ𝐼

Δ𝜙𝑎
∇𝜈𝜙

𝑎. (79)

They are the basis for the equations of balance for the

modified canonical EMT
mod
t :

*
∇𝜇

mod
𝑡 𝜇

𝜈 = −
mod
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

1

2

mod
𝑠 𝜋

𝜌𝜎𝑅
𝜌𝜎

𝜋𝜈 −

− 1

2

mod

𝑏
𝛾𝛽

𝛼∇𝜈𝑇
𝛼
𝛽𝛾 (on the 𝜑-equations) (80)

or
*
∇𝜇

mod
𝑡 𝜇

𝜈 = −
mod
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

1

2

mod
𝑠 𝜋

𝜌𝜎𝑅
𝜌𝜎

𝜋𝜈

(on the 𝜙-equations). (81)

Now, Eq. (81) has the same structure as Eq. (74). We
note also that if the equations for the torsion field
Δ𝐼/ΔT = 0 hold, then

mod
𝑡 𝜇

𝜈 =
sym
𝑡 𝜇

𝜈 (on the T-equations), (82)

as it follows from (77) and (54).

At last, let us find the identities and the equations
of balance for the symmetrized EMT

sym

t . Use (61)
for rewriting t as a function of

sym

t and b, substitute
the result into (70) and (71), and find, respectively,

Statement 20. The 1-st Klein identity, as well as
the 2-nd one, leads to the identities
*
∇𝜇

sym
𝑡 𝜇

𝜈 ≡ −
sym
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

Δ𝐼

Δ𝜑𝑎
∇𝜈𝜑

𝑎 (83)
or
*
∇𝜇

sym
𝑡 𝜇

𝜈 ≡ −
sym
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

+
1

2

mod

𝑏
𝛾𝛽

𝛼∇𝜈𝑇
𝛼
𝛽𝛾 +

Δ𝐼

Δ𝜙𝑎
∇𝜈𝜙

𝑎, (84)

which are the basis for constructing the equations of
balance for the symmetrized EMT

sym

t :
*
∇𝜇

sym
𝑡 𝜇

𝜈 = −
sym
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈

(on the 𝜑-equations) (85)
or
*
∇𝜇

sym
𝑡 𝜇

𝜈 = −
sym
𝑡 𝜇

𝜆𝑇
𝜆
𝜇𝜈 +

+
1

2

mod

𝑏
𝛾𝛽

𝛼∇𝜈𝑇
𝛼
𝛽𝛾 (on the 𝜙-equations). (86)

3.6. Explicit form of the superpotential 𝜃[𝛿𝜉]

Let us turn to the superpotential 𝜃[𝛿𝜉]. Substituting
the explicit expressions for the tensors U (42), M
(43), and N (44) into formula (30), we obtain

Statement 21. In manifestly generally covariant
field theories with Lagrangians of the type (39), the
generalized superpotential 𝜃[𝛿𝜉] has the explicit form

𝜃𝜇𝜈 [𝛿𝜉]
def
=

[︀
−𝑏𝜇𝜈𝛼 +𝐺𝜅

𝜆𝜇𝜈𝑇𝜅
𝜆𝛼

]︀
𝛿𝜉𝛼 +

+
[︀
−𝐺𝛼

𝛽𝜇𝜈
]︀
∇𝛽𝛿𝜉

𝛼, (87)

i.e., it is expressed through only the Belinfante tensor
b induced by the canonical ST s and the tensor G.

4. Structure and Interpretation
of the Equations of Gravitational Field

4.1. Splitting of the total Lagrangian

Represent the total Lagrangian (39) as a sum of the
pure gravitational L 𝐺 and matter L 𝑀 parts:

L = L (g,R; T,∇T,∇∇T; 𝜙,∇𝜙,∇∇𝜙)
def
=

def
= L (g,R; 𝜑,∇𝜑,∇∇𝜑) = L 𝐺 + L 𝑀 , (88)
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where

L 𝐺 = L 𝐺(g,R)
def
= L (g,R; 0, 0, 0); (89)

L 𝑀 = L 𝑀 (g,R; 𝜑,∇𝜑,∇∇𝜑)
def
= L − L 𝐺. (90)

Remark that, in spite of the Lagrangian L 𝐺 does not
contain the torsion T explicitly, it contains the torsion
not explicitly over the connection Γ, which is used for
constructing the curvature tensor R. Therefore, the
proposed splitting (88)–(90) is non-trivial.

It is evident that the splitting of Lagrangian (88)
leads to a correspondent splitting of the action func-
tional:

𝐼 =

Σ2∫︁
Σ1

𝑑𝑥
√
−𝑔L =

Σ2∫︁
Σ1

𝑑𝑥
√
−𝑔L 𝐺 +

+

Σ2∫︁
Σ1

𝑑𝑥
√
−𝑔L 𝑀 def

= 𝐼𝐺 + 𝐼𝑀 .

Of course, the Lagrangian of the vacuum system L 𝐺

has to be generally covariant scalar, and then the
matter Lagrangian L 𝑀 is, like this, also. Therefore,
all the above results and conclusions related to the
total Lagrangian L are left valid for each of the La-
grangians L 𝐺 and L 𝑀 .

4.2. The material and geometric tensors

Define the following matter tensors.

𝑆𝜋
𝜌𝜎

def
= 𝑠𝜋𝜌𝜎|L=L 𝑀

(the canonical ST of matter);

𝐵𝛾𝛽𝛼 def
= 𝑏𝛾𝛽𝛼

⃒⃒
L=L 𝑀

(the Belinfante tensor for ST S);

𝑇𝜇
𝜈

def
= 𝑡𝜇𝜈 |L=L 𝑀

(the canonical EMT of matter)

(91)

(92)

(93)

and analogously for the tensors {
add

𝑆 𝜋
𝜌𝜎}, {

mod

𝑆 𝜋
𝜌𝜎};

{
add

𝐵 𝛾𝛽𝛼}, {
mod

𝐵 𝛾𝛽𝛼}; {
add

𝑇 𝜇
𝜈}, {

mod

𝑇 𝜇
𝜈}, {

sym

𝑇 𝜇𝜈}
and {

met

𝑇 𝜇𝜈}.
For the above-defined matter tensors, the relations

analogous to those between the total tensors take
place. In particular,

Δ𝐼𝑀

Δ𝑇𝛼
𝛽𝛾

=
1

2

mod

𝐵
𝛾𝛽

𝛼; (94)

2
Δ𝐼𝑀

Δ𝑔𝜇𝜈
=

met

𝑇
𝜇𝜈 ≡

≡
mod

𝑇
𝜇𝜈 −

*
∇𝜆

mod

𝐵
𝜆𝜇𝜈 +

Δ𝐼𝑀

Δ𝜙𝑎
(Δ𝜇𝜈) 𝑎|𝑏 𝜙

𝑏. (95)

Now, we define the Cartan tensor C
def
= {C [𝛾𝛽]

𝛼 =

= C 𝛾𝛽
𝛼}, the (generalized) Einstein tensor E

def
=

def
= {E (𝜇𝜈) ̸= E 𝜇𝜈} and its symmetric part:

−1

2𝑘
C 𝛾𝛽

𝛼
def
=

Δ𝐼𝐺

Δ𝑇𝛼
𝛽𝛾

=
1

2
𝑏𝛾𝛽𝛼

⃒⃒
L=L 𝐺 , (96)

−1

2𝑘
E 𝜇

𝜈
def
=

1

2
𝑡𝜇𝜈 |L=L 𝐺 =

=
1

2

(︁
L 𝐺𝛿𝜇𝜈 −(𝐺) 𝐺𝛼𝛽𝛾𝜇𝑅𝛼𝛽𝛾𝜈

)︁
, (97)

−1

2𝑘

(︁
E (𝜇𝜈) −

*
∇𝜆C 𝜆(𝜇𝜈)

)︁
def
=

def
=

Δ𝐼𝐺

Δ𝑔𝜇𝜈
=

1

2

met
𝑡 𝜇𝜈

⃒⃒⃒⃒
L=L 𝐺

. (98)

Here,
(𝐺)𝐺𝛼

𝛽𝛾𝛿 def
= 𝐺𝛼

𝛽𝛾𝛿
⃒⃒
L=L 𝐺 = 2

𝜕L 𝐺

𝜕𝑅𝛼
𝛽𝛾𝛿

; (99)

𝑘
def
= (𝐷 − 1)Ω(𝐷−1) κ; Ω(𝐷−1) is an area of the

(𝐷−1)-dimensional unit sphere, and κ is the Newto-
nian gravitational constant in the (𝐷+1)-dimensional
space-time.

A restriction of the 2-nd Klein identity (66) and
definition (61) to the case of the Lagrangian L =L 𝐺

gives, with regard for definitions (96)–(97), the
Statement 22. The antisymmetric part of the

generalized Einstein tensor is the divergence of the
antisymmetric part of the Cartan tensor:

E [𝜇𝜈] ≡
*
∇𝜆C 𝜆[𝜇𝜈]. (100)

Using identity (100), one can represent (98) in the
form

2
Δ𝐼𝐺

Δ𝑔𝜇𝜈
≡ −1

𝑘

(︁
E 𝜇𝜈 −

*
∇𝜆C 𝜆𝜇𝜈

)︁
. (101)

Formulae (79) and (75) rewritten for the Lagran-
gian L 𝐺 after using definitions (97) and (96) lead
to the

Statement 23 (The generalized twice con-
tracted Bianchi identity). The generalized Ein-
stein tensor E and the Cartan tensor C obey the iden-
tity
*
∇𝜇E 𝜇

𝜈 ≡ −E 𝜇
𝜆𝑇

𝜆
𝜇𝜈 − C 𝜋

𝜌𝜎𝑅
𝜌𝜎

𝜋𝜈 . (102)
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4.3. Gravitational
field equations in the split form

By Eqs. (101) and the definition of the tensor

{
met

𝑇 𝜇𝜈}, the equations of motion of the metric field,
Δ(𝐼𝐺 + 𝐼𝑀 )/Δ𝑔𝜇𝜈 = 0, can be rewritten as

E 𝜇𝜈 −
*
∇𝜆C 𝜆𝜇𝜈 = 𝑘

met

𝑇
𝜇𝜈 . (103)

If we account for the equations of motion for the tor-
sion field
Δ(𝐼𝐺 + 𝐼𝑀 )

Δ𝑇 𝜈
𝜇𝜆

= 0 ⇔ C 𝜆𝜇𝜈 = 𝑘
mod

𝐵
𝜆𝜇𝜈 (104)

and the equations of motion for the 𝜙-fields:
Δ𝐼𝑀/Δ𝜙𝑎 = 0, one can transform (103) to the equa-
tion for the metric field only:

E 𝜇𝜈 = 𝑘
mod

𝑇
𝜇𝜈 (on the 𝜑-equations). (105)

Now, let us turn to (104). After the antisymmetriza-
tion in indices 𝜇 and 𝜈, using formula (55), the defi-

nitions of the tensors {
mod

𝐵 𝛾𝛽𝛼}, {
mod

𝑆 𝛾, 𝛽𝛼}, and the
identity

Δ
𝛾[𝛽𝛼]
𝜆𝜇𝜈 = −1

4
𝛿𝛾𝜆𝛿

𝛽𝛼
𝜇𝜈 , (106)

Eq. (104) acquires an equivalent form:

−2C 𝜆[𝜇𝜈] = 𝑘
mod

𝑆
𝜆, 𝜇𝜈 . (107)

Thus, the next is valid:
Statement 24. In arbitrary metric-torsion field

theories, the total system of field equations⎧⎪⎨⎪⎩
Δ𝐼/Δ𝑔𝜇𝜈 = 0;

Δ𝐼/Δ𝑇𝜆
𝜇𝜈 = 0;

Δ𝐼/Δ𝜙𝑎 = 0

(108)

(109)
(110)

can be always represented in the Einstein–Cartan-
theory-like form⎧⎪⎪⎪⎨⎪⎪⎪⎩

E 𝜇𝜈 = 𝑘
mod

𝑇
𝜇𝜈 (the g-equations);

− 2C 𝜆
[𝜇𝜈] = 𝑘

mod

𝑆
𝜆
𝜇𝜈 (the T-equations);

Δ𝐼𝑀/Δ𝜙𝑎 = 0 (the 𝜙-equations).

(111)

(112)

(113)

The interpretation of the gravitational equations of
the system is as follows. The source of the metric

field g is the modified canonical EMT of matter
mod

T ,
whereas the source of the torsion field T is the modi-

fied canonical ST of matter
mod

S .

5. Boundary Terms and Killing Vectors

5.1. Corrections induced by boundary terms

In Section 2 2.4, it has been shown that the sym-
metrized EMT

sym

t , consequently the symmetrized
current

sym

J [𝛿𝜉] also, does not depend on the di-
vergences in a Lagrangian. Now, let us analyze the
problem how the total divergence in the Lagrangian
influences the canonical current J[𝛿𝜉] (12) and super-
potential 𝜃[𝛿𝜉] (30).

Let {L 𝜇} be an arbitrary vector constructed from
field variables and their derivatives, and let

L ′ = L +ΔL , ΔL
def
=

*
∇𝜇L 𝜇 (114)

be a new Lagrangian with the corresponding new cur-
rent and superpotential:

J′[𝛿𝜉] = J[𝛿𝜉] + ΔJ[𝛿𝜉], (115)
𝜃′[𝛿𝜉] = 𝜃[𝛿𝜉] + Δ𝜃[𝛿𝜉]. (116)

Of course, both new J′[𝛿𝜉] and old J[𝛿𝜉] satisfy the
Klein–Noether boundary theorem. Therefore, formu-
lae (31) and (28) rewritten for new quantities yield

Statement 25. The total divergence in the Lag-
rangian induces changes of the canonical current
ΔJ[𝛿𝜉] and the superpotential Δ𝜃[𝛿𝜉], which are con-
nected as

Δ𝐽𝜇[𝛿𝜉] =
*
∇𝜈 (Δ𝜃𝜇𝜈 [𝛿𝜉])+

1

2
(Δ𝜃𝜌𝜎[𝛿𝜉])𝑇𝜇

𝜌𝜎. (117)

Define an explicit expression for Δ𝜃[𝛿𝜉]. Repeating
the logic presented in Sections 2 2.1–2 2.3 for a La-
grangian of the type L =

*
∇𝜇L 𝜇, one obtains

Statement 26. The addition of the item ΔL =

=
*
∇𝜇L 𝜇 to the Lagrangian induces adding the term

Δ𝜃[𝛿𝜉] to the canonical superpotential, which does not
depend on the structure of the vector {L 𝜇} and is
defined in a unique way:

Δ𝜃𝜇𝜈 [𝛿𝜉] = −2L [𝜇𝛿𝜉𝜈]. (118)

This generalizes the statement in [17] to the case of
the Riemann–Cartan space.

5.2. Currents on the Killing vectors

The generalized charges 𝑄[𝜒], currents J[𝜒],
sym

J [𝜒]
and superpotentials 𝜃[𝜒] constructed with the use of
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the Killing vectors 𝜒 of the Riemann–Cartan space
are extremely important in applications.

A definition of the Killing vector field 𝜒
def
= {𝜒𝜇} in

the Riemann–Cartan space, of course, is more com-
plicated, than in the Riemannian geometry, although
is defined also by the Lie transport. Thus,

Definition 1. The vector field 𝜒 is called the
Killing one in the Riemann–Cartan space C (1, 𝐷),
if, under the Lie translation along the vector 𝜒, both
the metric tensor g and the torsion tensor T are in-
variant, i.e.,{︃
ℒ𝜒𝑔𝜇𝜈 = 0;

ℒ𝜒𝑇
𝜆
𝜇𝜈 = 0.

(119)

(120)

Let us define an explicit expression for
sym

J [𝜒],
its physical sense, and a condition for its conserva-
tion. Under the decomposition of Lagrangian (88)–

(90), the current
sym

J [𝜒] is decomposed also as

sym

J [𝜒] = (𝐺)
sym

J [𝜒] + (𝑀)
sym

J [𝜒]; (121)

(𝐺)
sym

𝐽
𝜇[𝜒] = −1

𝑘

[︁
E 𝜇

𝛼 +
*
∇𝜈C

𝜇𝜈
𝛼 +

+
1

2
C 𝜌𝜎

𝛼𝑇
𝜇
𝜌𝜎 + C 𝜇𝛾

𝛽𝑇
𝛽
𝛾𝛼

]︂
𝜒𝛼; (122)

(𝑀)
sym

𝐽
𝜇[𝜒] =

sym

𝑇
𝜇
𝛼𝜒

𝛼. (123)

The last current has a clear physical sense:
Statement 27. The charges related to the Killing

vectors 𝜒(𝑎); 𝑎 = 1, 2, ...

𝑄(𝑎)
def
= 𝑄[𝜒(𝑎)] =

∫︁
Σ

𝑑𝜎𝜇
(𝑀)

sym

𝐽
𝜇[𝜒(𝑎)] (124)

define the corresponding conserved quantities in the
domain Σ, those could be energy, momentum, etc.

Next, as a consequence of identity (66), one has

sym
𝑡 [𝜇𝜈] ≡ − Δ𝐼

Δ𝜑𝑎
(Δ[𝜇𝜈]) 𝑎|𝑏 𝜑

𝑏. (125)

In the case of the Killing vector 𝜒 as a displacement
vector, using identities (83) and (125), one easily ob-
tains

*
∇𝜇

sym

𝐽
𝜇[𝜒] =

Δ𝐼

Δ𝜙𝑎
ℒ𝜒𝜙

𝑎. (126)

Decomposing this equality onto the pure gravitational
and pure matter parts, one proves the next state-
ments.

Statement 28. The pure gravitational part (𝐺)
sym

J

[𝜒] of the generalized symmetrized current
sym

J [𝜒]
is conserved identically, independently on holding the
equations of motion at all:

*
∇𝜇

(𝐺)
sym

𝐽
𝜇[𝜒] ≡ 0 (off-shell). (127)

Statement 29. The pure matter part (𝑀)
sym

J [𝜒] is
conserved identically, if the matter fields 𝜙 are Lie-
dragged:

*
∇𝜇

(𝑀)
sym

𝐽
𝜇[𝜒] ≡ 0 (off-shell) ⇔ ℒ𝜒𝜙

𝑎 = 0. (128)

Statement 30. The current (𝑀)
sym

J [𝜒] is conser-
ved if only the 𝜙-equations hold:

*
∇𝜇

(𝑀)
sym

𝐽
𝜇[𝜒] = 0 (on the 𝜙-equations). (129)

Consequence 2. Because the current (𝑀)
sym

J [𝜒]
is conserved independently on holding both the g-
and the T-equations, the matter fields can be clas-
sified as external ones with respect to the g- and T-
fields. This gives a possibility to construct and study
dynamic variables for the matter fields propagating in
a given/fixed Riemann–Cartan space.

Turn to the generalized canonical current

J[𝜒] = (𝐺)J[𝜒] + (𝑀)J[𝜒]. (130)

The pure matter part of this (𝑀)J[𝜒] is very cum-
bersome, see [3]. The expression for the pure gravita-
tional part (𝐺)J[𝜒] is, conversely, very simple:

(𝐺)J[𝜒] = L 𝐺𝜒𝜇. (131)

Conditions for the conservation of these currents can
be found in [3].

5.3. A sense of the generalized superpotential

Consider a pure gravitational part of the canonical
charge

(𝐺)𝑄[𝜒]
def
=

∫︁
Σ

𝑑𝜎𝜇
(𝐺)𝐽𝜇[𝜒]. (132)
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Using the Klein–Noether boundary theorem, one can
write

(𝐺)𝑄[𝜒] =

∫︁
Σ

𝑑𝜎𝜇
(𝐺)

sym

𝐽
𝜇[𝜒] +

+
1

2!

∮︁
𝜕Σ

𝑑𝑠𝜇𝜈
(𝐺)𝜃𝜇𝜈 [𝜒]. (133)

Because (𝐺)
sym

J [𝜒] = −(𝑀)
sym

J [𝜒] on-shell, the last
term takes the form

1

2!

∮︁
𝜕Σ

𝑑𝑠𝜇𝜈
(𝐺)𝜃𝜇𝜈 [𝜒] (on-shell) =

=

∫︁
Σ

𝑑𝜎𝜇

(︁
(𝐺)𝐽𝜇[𝜒] + (𝑀)

sym

𝐽
𝜇[𝜒]

)︁
. (134)

Substituting into the right-hand side the expressions
(𝐺)J[𝜒] (131) and (𝑀)

sym

J [𝜒] (123), one obtains

1

2!

∮︁
𝜕Σ

𝑑𝑠𝜇𝜈
(𝐺)𝜃𝜇𝜈 [𝜒] =

∫︁
Σ

𝑑𝜎𝜇

[︁
L 𝐺𝜒𝜇+

sym

𝑇
𝜇
𝜈𝜒

𝜈
]︁

(on-shell) (135)

This shows what the matter source structure is pre-
sented specifically by the surface integral of the grav-
itational superpotential (𝐺)𝜃[𝜒].

The gravitational theories with Lagrangians of the
type

L 𝐺 = L(𝑛)(g,R)− Λ (136)

are very important now. Here, Λ means the cos-
mological constant, whereas L(𝑛) is homogeneous
in the curvature tensor R function of the degree
𝑛. For example, the Einstein–Cartan theory, curva-
ture squared theories, the pure Lovelock–Cartan the-
ories are of this type. It is easy to show that

Statement 31. In the theories with Lagrangians
of the type (136), the generalized charge (𝐺)𝑄[𝜒] is
expressed only through the cosmological constant Λ

and the EMT of the matter fields
met

T :

(𝐺)𝑄[𝜒] =
1

2!

∮︁
𝜕Σ

𝑑𝑠𝜇𝜈
(𝐺)𝜃𝜇𝜈 [𝜒] =

=

∫︁
Σ

𝑑𝜎𝜇
2𝑛

(𝐷 + 1)− 2𝑛
Λ𝜒𝜇 +

+

∫︁
Σ

𝑑𝜎𝜇

[︂
sym

𝑇
𝜇
𝜈 − 1

(𝐷 + 1)− 2𝑛

mod

𝑇 𝛿𝜇𝜈

]︂
𝜒𝜈 def

=

def
= 𝑄Vac[𝜒] +𝑄Sour[𝜒]. (137)

The term 𝑄Vac[𝜒] describes the dynamic characteris-
tics (energy, momentum, ...) of the gravitational vac-
uum polarized by the matter sources (𝜑-fields). The
second term 𝑄Sour[𝜒] describes the dynamic char-
acteristics of disturbances induced by the matter
sources under vacuum. One has

Statement 32. Every of the charges 𝑄Vac[𝜒] and
𝑄Sour[𝜒] is conserved independently on one another;
thus, there is no exchange of dynamic characteristics
between the gravitational vacuum and the matter.

Formula (137) allows us to conclude the following.
Consequence 3. If the cosmological constant is

equal to zero, Λ = 0, then (𝐺)𝑄[𝜒] ̸= 0 only if
sym

T ̸= 0

or
mod

T ̸= 0. In such a theory, an arbitrary dynamic
characteristic of the gravitational vacuum (free gravi-
tational g- and T-fields without matter) automatically
is equal to zero.

Consequence 4. The matter influences the gravi-
tational fields by the way that a result of this action
brings the information related to the matter dynamic
characteristics, which can be identified.

Consequence 5. To define the dynamic charac-
teristics of matter sources, which fill the domain Σ,
it is enough to describe the gravitational fields only at
the boundary 𝑆 of this domain.
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ogy, and Gravity, BITP, Kyiv, Ukraine, 5–8 Septem-
ber, 2013 and the second Thirring School on Mathe-
matical Methods in Astroparticle Physics, TIMPANI,
Uzhgorod–Kosivs’ka Polyana, Ukraine, September 9-
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Central European Initiative.
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КОВАРIАНТНI ДИФЕРЕНЦIАЛЬНI
ТОТОЖНОСТI ТА ЗАКОНИ ЗБЕРЕЖЕННЯ
В МЕТРИЧНИХ ТЕОРIЯХ ГРАВIТАЦIЇ З КРУЧЕННЯМ

Р е з ю м е

В роботi описано нещодавно розроблений авторами загаль-
ний явно загальноковарiантний формалiзм для побудови
законiв збереження та величин, що зберiгаються, в довiль-
них метричних теорiях гравiтацiї з крученням.
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